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UNIVERSAL BERNOULLI POLYNOMIALS AND
P-ADIC CONGRUENCES
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1. INTRODUCTION

The classical Bernoulli numbers B, are defined by

A fundamental property of these numbers is the Clausen-von Staudt result that the de-
nominator of B, is the product of distinct primes.

The classical I** order Bernoulli numbers B,(.‘) are defined by

t { o0 (‘)t"
(+5) =X 80t

n=0

and the classical I* order Bernoulli polynomials By, )(z) are defined by
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which is the associated Appel sequence.
The special case | = 1 gives the ordinary Bernoulli numbers and polynomials, and

i [oss] m
) e =T B,
n=0

BY0) = BY. It is easy to show that if B (z) = S paiz™ ™ then a; = (’:)Biw which
is the characteristic Appel property.

L. Carlitz proved in {5, Theorem 14] and gave a more direct proof in [6, Theorem A] that
if the base p representation of a positive integer ! has r non-zero digits, then the highest power
of the prime p in the denominator of B,(,l) is at most r, i.e. p" ,(f) € Zy. The proofs involve
the complicated theory of Hurwitz series. The above Appel formula then shows that the same
result holds for all coefficients of BY (z). X

F. Clarke defined universal Bernoulli numbers B, in (7] which depend on parameters
€1,C2,.... They are important for studying universal formal groups. We generalized these
numbers in [3] to universal I** order Bernoulli numbers BY. our principal tool for the study
of these numbers is the use of certain explicit representations coming from Lagrange inversion
and related to the theory of partitions, which we first noted in [1].

In this paper we define universal l.“‘ order Bernoulli polynomials B,(f)(z) which generalize
the classical polynomials for ¢; = (—1)*, using the Lagrange inversion terms. We do not have a
generating function for these polynomials, nor are the coefficients simple functions of I** order

universal Bernoulli numbers, but it is still true that Bﬁl)(O) = B{. Other specializations that
may be of interest in the context of this conference are to the Fibonacci (¢; = Fyyq) or Lucas
(¢i = Li41) formal groups.

The basis for our definition of the universal Bernoulli polynomials is the classical inversion
formula [1]

BV (@) . o1 (log(L )\
T:[t J(1+1) 1(—t——) .

We have taken a concrete, combinatorial generalization of this formula as the definition (2),
but an equivalent umbral formulation is also given by (6).

It should be noted that our universal I** order Bernoulli polynomials are not an Appel
sequence, e.g., they are not monic. In [10] N. Ray defined universal first order Bernoulli
polynomials as an Appel sequence. This definition has some good functorial properties, but
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we do not believe that his polynomials are as useful as ours. In particular, our polynomials
are isobaric in the variables ¢y, g, . .., while his are not, and ours satisfy Kummer congruences
for p-adic integer values and his do not (Theorem 4).

We prove that the Carlitz bound noted above holds for the coefficients of B (z) (Theorem
3) and show that the bound is attainable, and in fact, v (f:’,(f) ) = —r for suitable n. We believe

that our proofs are conceptually simpler than Carlitz’s, and show- his result is really a special
case of our Theorem 1. This is the first publication of our simple proof.

Since our analysis of the p-adic pole structure of BY )(:c) was based entirely on the La-
grange inversion terms, the statements and proofs carry over essentially without change to the
universal polynomials (Theorems 1, 2). In particular, the down-sloping portion of the Newton

polygon of B,(f)(x) is identical with that of B’ (z), and indeed with all specializations where
the ¢; are p-adic units.

Finally, we consider the universal A(ordinary) Bernoulli polynomials, where | = 1. We
show that if @ € Z, and p — Ifn then By(a)/n € Zyley,cy,. .., ¢], and extend the Kummer

congruences for n # 0, 1(mod p — 1) to the universal case (Theorem 4) for values of By, (z)/n.
This generalizes our work on universal Kummer congruences in [3, 4].

2. UNIVERSAL ARBITRARY ORDER BERNOQULLI POLYNOMIALS

Consider the formula from [1, §3]

z s\ rd
s =ny () 5 G 0

; T
i=0 w(u)=n—1i

where s = | — n — 1, the summation is over all non-negative integer sequences (u) =
(u1,u2,...,us), with w(u)=3", tu; and d = d(u) = 3, u;,

(d) = ( d ), A% =2"3% | (n+1)%, and (s) and (x—,—l)
% Uy Up...Up d 1

are binomial coefficients.
Note that (u) is a partition of w(u) into d(u) parts, where u; = number of occurrences of
i in the partition. With the same notations, let 7, (s) = (3)(%)/A*.
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Definition: Let ¢,c¢o,... be indeterminates over Q, let ¢p = 1, and let ¢* = ¢}'cj? ... cln.
Then
- ; (x—1
BW(z) = n!Z(—l)‘q( ) ) > m-n—1)c". )
i=0 ' w(u)=n—i

From (1), the specialization ¢; = (—1)* gives the classical B,(f)(:z:).

Some low degree examples are Bé‘) (z) =1,B(z) = —c:(z — 1/2), and BY(z) =
c23? — (3ca + (I — )2z + (2Uez/3 +1(1 — 3)c2/4).

Note that all coefficients of BY (x) are isobaric polynomials of weight n in Q{{}[c1, ¢z, . .., cp),
where wt(c;) = %, and the highest coefficient is (—1)"¢c,. For most of our applications, ! will
be a positive integer, a p-adic integer, or a variable.

The critical cases are when [ is an integer in the range 0 <1 <n+1 Forl=n+1,
obviously

B (z) = (=1)"calz — 1)y = (=1)"cn(z — (@ - 2)...(z — n). (3)

In the classical case B (z) = z", but there is no corresponding simple formula for B,(;O)(x).

It is true that B (0) = 0if n > 0, and we will show (Corollary 2 to Theorem 3) that all
coefficients of B (z) are in Z[cy, ¢, .. ., cn).

The classical BY (z) is skew-symmetric about & = {/2, but there is no symmetry in the

universal case, and no obvious root if n > 1 and n is odd, unlike the classical case.
From [3, Corollary 2.3], we get the key formulas

BY(0) = BY (4)
and
N l—n -
BIO(1) = B, ©)

There is an umbral way of representing B (z), namely let F(t) = et G+ 1)
be the logarithm of the universal formal group law, so (t/F~'(t))" generates the universal [**
order Bernoulli numbers [3]. Then

230)] l-n—1
o (F) ©

n! t
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where C* = ¢;.

We do not take (6) as the definition, because of the presence of the index n in the “umbral
generating function.” We suspect that an umbral form of Lagrange inversion is involved. Our
definition gives us the concrete terms that we need for analysis.

If J is the ideal generated by all ¢; — ¢} in Q[l][c1, .. ., cn], the umbral representation leads
naturally to the easily verified recursive congruence

BNz +1) - BO(z) = —ney B (z)  (mod J).

However, since the specialization ¢; = ¢} clearly implies BY (z) = (—¢1)"BY (z), this is
equivalent to the classical recursion

BY(z +1) - BO(z) = nBY P (2).

3. P-ADIC CONSIDERATIONS

Let p be prime. Extend the standard p-adic valuation v = v, of Q, to Qpler, ez, -]
by (3 arc?) = min{v{as)}, so in particular a polynomial f(c) is integral if and only if all
coefficients of f are integral. If b > 0 and »(f(c)) = ~b, we say f(c) has a pole of order b.

Since the analysis of the pole structure of B,(f)(z) carried out in [1] entirely involved single
terms 7, (s) where (u) is concentrated in place p — 1, i.e., such that u; =0 if ¢ # p — 1, all the

results carry over without change to I§,(,‘) (z). For ease of reference, we summarize these results
using the versions stated in [2].

Let n = 3 1=, a:p' be the base p expansion of n. Then S(n) = 3, a; is the digit sum. If
S(n) > p—1, then N(n) is the smallest ¢ > 0 such that p — 1|t and p|(}). Thus N(n) is the

smallest ¢ such that p|(}) and S(t) =p— 1.

Theorem 1: Let | € Z,. If S(n) < p — 1, then the coefficients of B,(f)(x) have no poles. If
S(n) > p — 1, the successively higher order poles of the coefficients, from degree n down, are
determined as follows: the first pole is simple (order one) and occurs in degree n — Ny, where
N is minimal satisfying N; = N(n — l;) for some bottom segment l; of n (possibly /) = 0)
such that p{( Nll"/?p“_ll)). Similarly, the next higher order pole is double, and occurs in degree

n— Ny — N, where N; is minimal satisfying No = N(n—1; — N; —I2) for some bottom segment

1, of n — Iy — Nj such that M(le_/?p:ll))’ etc.
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If f(z) = Yipaiz™™* € Qple,ca,. . . |[x], consider the spots (3,v(a;)) where a; # 0 as
lattice points in the (z,y)-plane. The Newton polygon of f(z) is the lower boundary of the
convex null of the set of spots [2].

The preceding theorem characterizes the downward-sloping portion of the Newton polygon

of B,(f)(m) as follows.
Theorem 2: Let | € Z,. The negative slope sides of the Newton polygon of IAB‘,(,‘)(x) all
satisfy Ay; = —1, for 1 < ¢ < b, where v ( A,(f) (a:)) == —b. The corresponding Az; = N; are

determined algorithmically as in the preceding theorem, so in particular p—1|Az; for all ¢ and
p|Az; for all ¢ > 1 (and also for ¢ = 1 if pin).

Before deducing the Carlitz bound for the coefficients, recall the basic fact about p-
divisibility of binomial coeflicients [8].

(Lucas’s Theorem) e (::L) iff n; > my; for all the base p digits. (7)

Since (77) = (=1)™(**™"1), we deduce that p{(7") iff the base p sum of n — 1 and m

m

has no carries. Thus if p — 1|N, then N + N/(p — 1) = Np/(p— 1), so PI(:\;}?;:;))- Also, if a;
and b; are the lowest digits of N and N/(p — 1) respectively (which occur in the same place),
then a; = p — b;.

Theorem 3: Let | € N, and suppose that the base p expansion of | has r non-zero digits.

Then v (B,(f) (x)) > —r, i.e., all coefficients a; satisfy v(a;) > —7.

Proof: Since B,(L"“)(a:) is p-integral by (3), we have only the two cases 0 <l <nand!>n+1
to consider.

Case 1: 0 < I < n. With the notations of Theorem 1 and by the preceding remarks, since
al( Ni??p_——ll))’ I must have a digit in the lowest place of N; or in a lower place, causing a carry

from n — [ to that place. We prove inductively that ! has at least ¢ digits up to the bottom
digit of N;. This is true because, as above, if [ has no digit in the lowest place of N;, then
there must be a carry from below for n — I. Thus [ has a digit between the bottom places of
N; and Nj..; or n has a succession of digits all p — 1 below N;, and [ has an extra digit below
the succession, which causes the carry for n — [ to the lowest place of N;.
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Case 2: | > n + 1. In this case, ! must have a digit in the lowest place of Ny or a digit in a
lower place to prevent a carry for I —n — 1 to that place. We have a similar proof to case 1,

except that the digits of I are now required to prevent carries.
Thus b < r in both cases, i.e., the pole has order at most r. 0

Corollary 1: With the same notations, v (31(;‘) ) > -

We can verify that the Carlitz bound is best possible, e.g., if I = }°7_, a;p® with 8; <
s <. <spand1<a; <p—1,thenifn=(p—1)3_, p%, taking N; = (p — 1)p* shows

that v (B‘,(f)) = —r, hence also v (ﬁél)(x)) = e,
Note that our proof of Carlitz’s bound gives us a new proof for the classical case, as well
as for all specializations where the ¢; are p-adic integers, and the bound is then attained as

long as cp_1 is a p-adic unit.

If | = 0, the preceding theorem shows that for every prime p, the coefficients of B,(;O)(m)
are p-integral. Thus we deduce

Corollary 2: The coefficients of 3,(;0)(:::) are in Ziey, ¢, ..., 0l

Finally we turn to the case | = 1, i.e., the ordinary universal Bernoulli numbers B, and
polynomials By, (z). In this case, as in [3, Corollary 2.3]

(n — Dy (—n) = (=1)%(n +d — 1)1/ (u!A¥) (8)

where u! = uqlus!. .. u,! and A¥ is as before. Hence

2E Y e ¥t ©)

{
n i=0 w(uy=n—i A
The following corollary follows immediately from Theorem 3, taking I = 1.
Corollary 3: The coefficients of B,(z) have square-free denominators, so in particular if
a € Z, By(a) has square-free denominator.
The proofs of [3, Lemma 3.1 and Theorem 3.2} give the following resuit.
Theorem 4: Let a € Z,. Then

(1) If p — Yn, then B, (a)/n € Zplci,ca, .. ., Cal-
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(2) f n £ 0, 1(mod p — 1), then Bpyp—1(a)/(n+p — 1) = Bu(a)cp—1/n (mod p), where mod
p is an abbreviation for mod pZyc;, ¢y, . ...

The first assertion with the preceding corollary gives a modest generalization of the von
Staudt result to values of universal ordinary Bernoulli polynomials, while the second generalizes
the Kummer congruences. As noted in [3], the hypotheses are essential, even for the special
case a = 0 of the ordinary universal Bernoulli numbers. See [4] for the extension of the case
a=0ton=1 (mod p— 1), where we have found an explicit formula for B, /n mod p.
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