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Abstract

We extend Euler’s well-known quadratic recurrence relation for Bernoulli numbers, which can be writ-
ten in symbolic notation as (B0 + B0)n = −nBn−1 − (n − 1)Bn, to obtain explicit expressions for
(Bk + Bm)n with arbitrary fixed integers k,m � 0. The proof uses convolution identities for Stirling
numbers of the second kind and for sums of powers of integers, both involving Bernoulli numbers. As
consequences we obtain new types of quadratic recurrence relations, one of which gives B6k depending
only on B2k,B2k+2, . . . ,B4k .
© 2006 Published by Elsevier Inc.

1. Introduction

The Bernoulli numbers Bn, n = 0,1,2, . . . , which can be defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn

xn

n! , |x| < 2π, (1.1)
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have numerous important applications in number theory, combinatorics, and numerical analysis,
among other areas. They have therefore been studied extensively over the last two centuries. For
the most important properties see, for instance, [1,21,26], or [34]; for a comprehensive bibliog-
raphy, see [12].

It is easy to find the values B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and Bn = 0 for all
odd n � 3. While the vanishing of odd-index Bernoulli numbers can be proved directly with (1.1)
by observing that x

ex−1 + x
2 is an even function, individual values of Bn are best obtained by way

of a recurrence relation, the most basic one being

n∑
j=0

(
n + 1

j

)
Bj = 0 (n � 1), (1.2)

with B0 = 1. For a brief historical discussion of such recurrence relations, with numerous refer-
ences, see [6].

Next to (1.2), one of the most basic and remarkable identities for the Bernoulli numbers is the
convolution identity

n∑
j=0

(
n

j

)
BjBn−j = −nBn−1 − (n − 1)Bn (n � 1), (1.3)

which is also known in its equivalent form

n−1∑
j=1

(
2n

2j

)
B2jB2n−2j = −(2n + 1)B2n. (1.4)

In contrast to the linear recurrence relation (1.2), the identities (1.3) and (1.4) can be considered
quadratic recurrence relations. The relation (1.4) can be used, for instance, to show by induction
that (−1)n−1B2n > 0 for all n � 1, i.e., the even-index Bernoulli numbers have alternating signs.
The identities (1.3) and (1.4) are usually attributed to Euler; numerous other similar recurrences
can be found in [33] or in the handbook [22].

These identities have been generalized and extended in different directions. First, Sitara-
machandrarao and Davis [40] extended (1.4) to sums of products of N = 3 and N = 4 Bernoulli
numbers. This was further extended to N = 5 by Sankaranarayanan [38], to N � 7 by Zhang [43],
and to arbitrary positive integers N by the second author [11]. Analogues of (1.3) are also known
for Bernoulli polynomials and Euler numbers and polynomials (see, e.g., [22, Chapter 50],
extended in [11]), for generalized Bernoulli numbers and polynomials belonging to Dirichlet
characters (see [9,28]), and for q-Bernoulli numbers ([39], extended in [27]). Other related iden-
tities can be found in [13,25] and [30].

A different type of convolution identity for Bernoulli numbers is due to Miki [31]; see also
[17] for further remarks and generalizations. Lacunary versions of (1.4), for instance with 2j

replaced by 6j , are due to Ramanujan [36] and are listed in [22, Chapter 50]; see also [42].
It is the purpose of this paper to consider a different, but very natural, type of generalization

of (1.3). To do this, it will be convenient (though not essential) to use the symbolic notation that
was first introduced by Blissard in the mid-nineteenth century, was later made popular by Lucas,
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and is now also known as the “classical umbral calculus;” see [16] for a modern treatment. With
this notation we have, for integers k,m,n � 0,

(Bk + Bm)n =
n∑

j=0

(
n

j

)
Bk+jBm+n−j , (1.5)

so that Euler’s formula (1.3) can be rewritten as

(B0 + B0)
n = −nBn−1 − (n − 1)Bn (n � 1). (1.6)

The question that arises quite naturally, but does not appear to have been considered before,
is whether there exist formulas such as (1.6) also for the general sums (1.5) for arbitrary integers
k,m � 0. We will answer this question in the affirmative and give a general formula in Section 2,
followed by two special cases and a number of small instances stated explicitly.

A surprising and unusual consequence of these results are a set of quadratic recurrence rela-
tions of “Euler type” that allow us to compute B6k from only B2k,B2k+2, . . . ,B4k , and similarly
for B6k+2 and B6k+4. These will also be stated in Section 2.

In Section 3 we prove some auxiliary results on Stirling numbers of the second kind, followed
by the proof of our main theorem in Sections 4–6. We conclude this paper with some additional
remarks in Section 7.

2. Results

We begin this section by stating our main result. Note that the case of identity (1.6), i.e.,
k = m = 0, is excluded. The reason for this will become clear in the proof; also, combining this
case with the identity (2.1) below would make the statement of this result even more compli-
cated.

Theorem 2.1. Let k,m,n � 0 be integers, with k and m not both 0. Then

(Bk + Bm)n = − k!m!
(k + m + 1)!

(
n + δ(k,m)(k + m + 1)

)
Bn+k+m

+
k+m∑
r=1

(−1)r
Bk+m+1−r

k + m + 1 − r

{
(−1)k

(
k + 1

r

)(
k + 1 − r

k + 1
n − rm

k + 1

)

+ (−1)m
(

m + 1

r

)(
m + 1 − r

m + 1
n − rk

m + 1

)}
Bn+r−1, (2.1)

where δ(k,m) = 0 when k = 0 or m = 0, and δ(k,m) = 1 otherwise.

The formula (2.1) will be simpler in special cases. We state the following two corollaries.

Corollary 2.1. Let k � 2 and n � 0 be integers. Then
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(Bk + Bk)
n = − (k!)2

(2k + 1)! (n + 2k + 1)Bn+2k

+ (−1)k+1

k + 1

� k
2 �∑

r=0

B2(k−r)

k − r

(
k + 1

2r + 1

)(
(k − 2r)n − (2r + 1)k

)
Bn+2r . (2.2)

Corollary 2.2. Let k � 2 and n � 0 be integers. Then

(Bk + B0)
n = −(n − 1)BkBn − n

k + 1

k−1∑
r=2

(
k + 1

r

)
Bk+1−rBn+r−1

− n

2
Bn+k−1 − n

k + 1
Bn+k. (2.3)

For a different form of this last identity, see the final section. In this identity (2.3) it is clear
that the first term on the right vanishes whenever k is odd. Also, note that the right-hand side
of (2.2) vanishes when n is odd, and more generally, the right-hand side of (2.1) vanishes when
k � 2, m � 2, n � 2 and the parities of n and k + m are different. The cases 0 � k,m � 1 with
n and k + m of different parities are also trivial, as is (2.3) with n and k of different parity. All
this is best seen by considering the right-hand side of (1.5) and noting that B1 = − 1

2 is the only
nonzero odd-index Bernoulli number.

It can be observed that the right-hand sides of (2.1) and (2.2) are lacunary in a certain sense
if k,m, and n are appropriately chosen. In fact, this is most pronounced in (2.2) when n is close
to k. The following identities result from this observation, as direct consequences of (2.2).

Corollary 2.3. For all integers k � 1 we have

B6k = −
(

4k

2k

)
4k + 1

6k + 1

k∑
r=0

(
2k

2r

)(
2k(2k − 4r − 1)

(2r + 1)(2k − r)
+ 1

)
B2k+2rB4k−2r ,

and for k � 0,

B6k+2 =
(

4k + 2

2k + 1

)
4k + 3

6k + 3

k∑
r=0

(
2k + 1

2r

)(
4k2 − 8rk − 2r − 1

(2k + 1 − r)(2r + 1)
− 2r

2k + 1

)

× B2k+2rB4k+2−2r ,

B6k+4 = −
(

4k + 2

2k + 1

)
4k + 3

6k + 5

k∑
r=0

(
2k + 2

2r + 1

)
6rk + 2k + 4r + 1

(2k + 2)(2k + 1 − r)
B2k+2+2rB4k+2−2r .

These identities are unusual in that B6k , for instance, is obtained from only the values of
B2k,B2k+2, . . . ,B4k . We are not aware of any other such formulas in the literature.

There are, however, some linear recurrences that typically require only the second half of all
the Bernoulli numbers up to some B2n. Such recurrences go back to von Ettingshausen [14] in
1827 and later Stern [41]. See also Nielsen’s classic book [33]; for a modern treatment, see [16,
p. 415f], and for some historical perspective, see [6].
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The first identity in Corollary 2.3 is obtained by replacing k by 2k and setting n = 2k in (2.2).
Similarly, we get the other two identities if we replace k by 2k + 1 and set n = 2k, respectively
n = 2k + 2. The sums on both sides of (2.2) are then easily combined in all three cases. Of
course we could cancel a factorial from the binomial coefficients in all three expressions, but we
left them in this form to preserve the character of a binomial convolution.

In both (2.2) and (2.3) the inclusion of the case k = 1 would have made the identities more
complicated; this is once again due to the exceptional nature of B1. The excluded cases are listed
below, along with some other cases for small k and m, including Euler’s formula for complete-
ness.

Corollary 2.4. For all integers n � 0 we have

(B0 + B0)
n = −nBn−1 − (n − 1)Bn (n � 1),

(B0 + B1)
n = −1

2
(n + 1)Bn − 1

2
nBn+1,

(B0 + B2)
n = −1

6
(n − 1)Bn − 1

2
nBn+1 − 1

3
nBn+2,

(B0 + B3)
n = −1

4
nBn+1 − 1

2
nBn+2 − 1

4
nBn+3,

(B1 + B1)
n = 1

6
(n − 1)Bn − Bn+1 − 1

6
(n + 3)Bn+2,

(B1 + B2)
n = 1

12
nBn+1 − 1

2
Bn+2 − 1

12
(n + 4)Bn+3,

(B1 + B3)
n = − 1

30
(n − 1)Bn + 1

12
(n − 3)Bn+2 − 1

2
Bn+3 − 1

20
(n + 5)Bn+4,

(B2 + B2)
n = 1

30
(n − 1)Bn + 1

3
Bn+2 − 1

30
(n + 5)Bn+4,

(B2 + B3)
n = 1

60
nBn+1 + 1

6
Bn+3 − 1

60
(n + 6)Bn+5,

(B3 + B3)
n = 1

42
(n − 1)Bn − 1

60
(n − 9)Bn+2 − 1

140
(n + 7)Bn+6.

Of course, this list could easily be extended by using (2.1)–(2.3) with other small values of k

and m.

3. Stirling numbers

The most important tool in this paper are the Stirling numbers of the second kind S(n, k).
They can be defined by the generating function

k∏ x

1 − jx
=

∞∑
S(n, k)xn, (3.1)
j=1 n=k
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or as coefficients in the change between the two standard bases of the vector space of polynomi-
als:

xn =
n∑

k=0

S(n, k)x(x − 1) · . . . · (x − k + 1). (3.2)

For a combinatorial interpretation see again, e.g., [21], where numerous other properties can
be found. The book [10] is another good reference. The most basic recurrence relation is the
triangular or Pascal-type relation

S(n + 1, k) = S(n, k − 1) + kS(n, k). (3.3)

We will also use the well-known finite sum

S(n, k) = 1

k!
k−1∑
j=0

(−1)j
(

k

j

)
(k − j)n, (3.4)

rewritten as

S(n, k) = (−1)k

(k − 1)!
k∑

j=1

(−1)j
(

k − 1

j − 1

)
jn−1. (3.5)

Some explicit values are

S(0,0) = 1, S(n,0) = 0 for n � 1, (3.6)

S(n,1) = S(n,n) = 1, (3.7)

S(n,2) = 2n−1 − 1, (3.8)

S(n,3) = 1

2

(
3n−1 − 2n + 1

)
, (3.9)

S(n,n − 1) =
(

n

2

)
. (3.10)

Note that (3.7)–(3.9) are just special cases of (3.4). In spite of some advantages to the bracket
notation used in the book [21] (see also [29]), we chose the competing notation S(n, k) as used,
for instance, in the book [10] or in recent papers such as [16] or [17].

The principal connection between the Bernoulli numbers and the Stirling numbers of the
second kind, and in fact the key to the proof of our main theorem, is given by the following
lemma. A proof was already given in [6], but for the sake of completeness we repeat it here.

Lemma 3.1. For any m � 0 we have

dm

dxm

1

ex − 1
= (−1)m

m+1∑
(j − 1)!S(m + 1, j)

(ex − 1)j
, (3.11)
j=1
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dm

dxm

x

ex − 1
= (−1)m

m+1∑
j=1

(j − 1)!S(m + 1, j)x − mS(m, j)

(ex − 1)j
. (3.12)

Proof. We prove (3.11) by induction. The case m = 0 is obvious by (3.7). Now note that

d

dx

(
ex − 1

)−j = −j
(
ex − 1

)−j−1
ex = −j (ex − 1) + j

(ex − 1)j+1
,

so that from (3.11) we get

(−1)m+1 dm+1

dxm+1

1

ex − 1
=

m+1∑
j=1

(j − 1)!jS(m + 1, j)

(ex − 1)j
+

m+1∑
j=1

j !S(m + 1, j)

(ex − 1)j+1

=
m+1∑
j=1

(j − 1)!jS(m + 1, j)

(ex − 1)j
+

m+2∑
j=2

(j − 1)!S(m + 1, j − 1)

(ex − 1)j

=
m+2∑
j=1

(j − 1)!S(m + 2, j)

(ex − 1)j
,

where we have used (3.3). This proves (3.11) by induction. Finally we use Leibniz’s rule in the
form

dm

dxm

x

ex − 1
= x

dm

dxm

1

ex − 1
+ m

dm−1

dxm−1

1

ex − 1
.

With this, the identity (3.12) follows immediately from (3.11). �
A lemma very similar to (3.11) was derived and applied in [2]. Problem 209 in [35, p. 44] is

also relevant in this connection.
Convolution identities for Stirling numbers (of the second kind) will also be important for

this paper. Such identities, including those for Stirling numbers of the first kind, were recently
studied by the authors in [6]; others can be found, in somewhat different form, in [21, p. 272].
However, the following type of convolution does not seem to be covered by either reference.

Lemma 3.2. For integers k,m � 1 and d � 0 we have

d−1∑
i=0

S(k, i + 1)S(m,d − i)

d
(
d−1

i

) =
d+1∑
a=2

(−1)d+1−a

(a − 1)!(d + 1 − a)!
a−1∑
r=1

rk−1(a − r)m−1. (3.13)

Proof. For d = 0 both sides of (3.13) clearly vanish; so let d � 1. Using (3.5) and the obvious
identity d

(
d−1

i

)
i!(d − i − 1)! = d!, we rewrite (3.13) as

d−1∑(
i+1∑

(−1)r
(

i

r − 1

)
rk−1

)(
d−i∑

(−1)j
(

d − i − 1

j − 1

)
jm−1

)

i=0 r=1 j=1
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=
d+1∑
a=2

(−1)a
(

d

a − 1

) a−1∑
r=1

rk−1(a − r)m−1. (3.14)

We now introduce the variable x and consider the following polynomial expansion, where we
collect terms belonging to equal powers of x:

d−1∑
i=0

(
i+1∑
r=1

(
i

r − 1

)
rk−1xr

)(
d−i∑
j=1

(
d − i − 1

j − 1

)
jm−1xj

)

=
d−1∑
i=0

d+1∑
a=2

[
a−1∑
r=1

(
i

r − 1

)
rk−1

(
d − i − 1

a − r − 1

)
(a − r)m−1

]
xa

=
d+1∑
a=2

[
d−1∑
i=0

i+1∑
r=1

(
i

r − 1

)(
d − i − 1

a − r − 1

)
rk−1(a − r)m−1

]
xa

=
d+1∑
a=2

[
a−1∑
r=1

(
d−1∑

i=r−1

(
i

r − 1

)(
d − 1 − i

a − r − 1

))
rk−1(a − r)m−1

]
xa.

Now the inner-most sum of products of binomial coefficients has the very simple closed ex-
pression

(
d

a−1

)
. This is just an instance of a well-known combinatorial identity related to the

“Vandermonde convolution;” see, e.g., identity (5.26) in [21, p. 169], or identity (3.3) in [20].
Finally, if we replace x by −1, we immediately have (3.14), and this completes the proof. �

For a different evaluation of the left-hand side of (3.13), see Section 5.

4. Proof of Theorem 2.1

Binomial convolutions such as the one in (1.3) are usually obtained by taking the Cauchy
product of suitable exponential generating functions. Indeed, Euler’s formula (1.3) can be proved
by multiplying (1.1) with itself, and suitably manipulating the square of the generating function
on the left. In analogy, to prove our main theorem, we use the generating function

dm

dxm

x

ex − 1
=

∞∑
n=0

Bn+m

xn

n! , (4.1)

which follows immediately from (1.1). By taking the Cauchy product of two such expressions,
with the kth and the mth derivative, respectively, we obtain with (1.5) the expression

(Bk + Bm)n =
[

dn

dxn

((
dk

dxk

x

ex − 1

)(
dm

dxm

x

ex − 1

))]
x=0

. (4.2)

Thus we need to study the product of derivatives. To simplify notation, we set

gn+1,j := (j − 1)![S(n + 1, j)x − nS(n, j)
]
, (4.3)



T. Agoh, K. Dilcher / Journal of Number Theory 124 (2007) 105–122 113
where the variable x in gn+1,j is implied. Now, using (3.12) we get

(
dk

dxk

x

ex − 1

)(
dm

dxm

x

ex − 1

)
= (−1)k+m

(
k+1∑
j=1

gk+1,j

(ex − 1)j

)(
m+1∑
j=1

gm+1,j

(ex − 1)j

)

= (−1)k+m
k+m+2∑

r=1

(
r−1∑
i=1

gk+1,igm+1,r−i

)
1

(ex − 1)r
. (4.4)

We now state and then apply the following central result which will be proved in the next
section.

Proposition 4.1. For each r = 1,2, . . . , k + m + 2 we have

r−1∑
i=1

gk+1,igm+1,r−i =
k+m+1∑
j=r−1

(−1)k+m−j
(
a

k,m
j x + b

k,m
j

)
gj+1,r , (4.5)

where the sum on the left is considered to be 0 when r = 1, and the constants a
k,m
j , b

k,m
j are

rational numbers given by

a
k,m
j =

{
(−1)j

[
(−1)k

(
k
j

) + (−1)m
(
m
j

)] Bk+m+1−j

k+m+1−j
, 0 � j � k + m,

− k!m!
(k+m+1)! , j = k + m + 1,

(4.6)

b
k,m
j =

{
(−1)j

[
(−1)km

(
k
j

) + (−1)mk
(
m
j

)]Bk+m−j

k+m−j
, 0 � j � k + m − 1,

0, j = k + m + 1,
(4.7)

b
k,m
k+m =

⎧⎨
⎩

− k!m!
(k+m)! when k > 0 and m > 0,

0 when one of k and m is 0,

1 when k = m = 0.

(4.8)

Next we substitute (4.5) into (4.4) and change the order of summation:

(
dk

dxk

x

ex − 1

)(
dm

dxm

x

ex − 1

)

=
k+m+2∑

r=1

(
k+m+1∑
j=r−1

(−1)j
(
a

k,m
j x + b

k,m
j

)
gj+1,r

)
1

(ex − 1)r

=
k+m+1∑

j=0

(−1)j
(
a

k,m
j x + b

k,m
j

) j+1∑
r=1

gj+1,r

(ex − 1)r

=
k+m+1∑ (

a
k,m
j x + b

k,m
j

) dj

dxj

x

ex − 1
,

j=0
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where we have used (3.12). Hence with (4.2) we have by Leibniz’s generalized product formula,
followed by (4.1),

(Bk + Bm)n =
[

dn

dxn

k+m+1∑
j=0

(
a

k,m
j x + b

k,m
j

) dj

dxj

x

ex − 1

]
x=0

=
[
n

k+m+1∑
j=0

a
k,m
j

dj+n−1

dxj+n−1

x

ex − 1
+

k+m+1∑
j=0

b
k,m
j

dj+n

dxj+n

x

ex − 1

]
x=0

= n

k+m+1∑
j=0

a
k,m
j Bn+j−1 +

k+m+1∑
j=0

b
k,m
j Bn+j .

Using the convention b
k,m
−1 = 0 and the fact that b

k,m
k+m+1 = 0 by (4.7), we have therefore proved

the following

Proposition 4.2. For all integers k,m,n � 0 we have

(Bk + Bm)n =
k+m+1∑

j=0

(
na

k,m
j + b

k,m
j−1

)
Bn+j−1, (4.9)

with the coefficients a
k,m
j and b

k,m
j as in (4.6)–(4.8), and b

k,m
−1 = 0 by convention.

Let us first consider Euler’s case k = m = 0. In this case (4.6)–(4.8) show that a
0,0
0 =

2B1 = −1, a
0,0
1 = −1, b

0,0
0 = 1, and b

0,0
1 = 0. Then (4.9) clearly gives us (1.6).

When k + m � 1, then (4.6)–(4.8) substituted into (4.9) easily leads to the right-hand side
of (2.1). This completes the proof of Theorem 2.1, pending the proof of Proposition 4.1.

5. Proof of Proposition 4.1

In preparation for dealing with some special cases we use (4.3) with (3.6), (3.7), and (3.10) to
find the particular evaluations

gn+1,1 = x − n (n � 0), (5.1)

gn+1,n = n!
(

n + 1

2
x − 1

)
(n � 1), (5.2)

gn+1,n+1 = n!x (n � 0), (5.3)

gn+1,j = 0 for j > n + 1 (n � 0). (5.4)

We first prove (4.5) for the special case k = m = 0. With (5.1), (5.3) and the appropriate values
of a

0,0
j and b

0,0
j the case r = 1 reduces to 0 = (−x + 1)x − (−x)(x − 1), which is clearly true.

The case r = 2 is covered by the next case.
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Next we consider the case r = k + m + 2 for all k,m � 0. Then because of the property (5.4),
the identity (4.5) reduces to

gk+1,k+1gm+1,m+1 = −(
a

k,m
k+m+1x + b

k,m
k+m+1

)
gk+m+2,k+m+2,

and with (5.3) we immediately get

a
k,m
k+m+1x + b

k,m
k+m+1 = − k!m!

(k + m + 1)!x; (5.5)

this leads to the second values in both (4.6) and (4.7).
The next case, r = k + m + 1, is slightly more complicated. Again by (5.4) our identity (4.5)

reduces to

gk+1,kgm+1,m+1 + gk+1,k+1gm+1,m

= (
a

k,m
k+mx + b

k,m
k+m

)
gk+m+1,k+m+1 − (

a
k,m
k+m+1x + b

k,m
k+m+1

)
gk+m+2,k+m+1, (5.6)

provided we have both k � 1 and m � 1. All terms except the first term in parentheses on the
right are known by (5.2), (5.3), and (5.5). An easy calculation then gives

a
k,m
k+mx + b

k,m
k+m = − k!m!

(k + m)! ,

which is consistent with the first part of (4.6) (since both binomial coefficients vanish when
j = k + m and k > 0, m > 0), and with the first part of (4.8).

Now suppose that one of k,m is zero. By symmetry we may suppose that m = 0. Then r =
k + 1, and the left-hand side of (5.6) changes to the single summand gk+1,kg1,1, while the right-
hand side remains unchanged (but with m = 0). Again, solving as before we get

a
k,0
k x + b

k,0
k = −1

2
x;

this is consistent with the first part of (4.6) which gives a
k,0
k = − 1

2 = B1 when k � 1, and with
the second part of (4.8).

For the main part of the proof of Proposition 4.1 we note that the summands on both sides
of (4.5) are products of two linear polynomials; see (4.3). We multiply these polynomials and
compare coefficients of the powers of x. It will be convenient to replace r by d + 1 in (4.5)
and for the remainder of this section, so that d = 0,1, . . . , k + m + 1; but note that the cases
d = k + m,k + m + 1 have already been settled.

First we compare the constant coefficients on both sides of (4.5), and we get

(d − 1)!km

d−1∑
i=0

S(k, i + 1)S(m,d − i)(
d−1

i

)

= (−1)k+md!
k+m+1∑

(−1)j+1b
k,m
j jS(j, d + 1), (5.7)
j=d+1
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where we have used the fact that S(d, d + 1) = 0. If we divide both sides by d!km and use (4.7)
and (4.8), we easily see that (5.7) is equivalent to the following identity which we state as a
proposition, to be proved later.

Proposition 5.1. For all integers k,m � 1 and d = 0,1, . . . , k + m − 1 we have

k+m−1∑
j=d+1

(
(−1)m

(
k − 1

j − 1

)
+ (−1)k

(
m − 1

j − 1

))
Bk+m−j

k + m − j
S(j, d + 1)

= (k − 1)!(m − 1)!
(k + m − 1)! S(k + m,d + 1) −

d−1∑
i=0

S(k, i + 1)S(m,d − i)

d
(
d−1

i

) . (5.8)

Next we equate the coefficients of x2 on both sides of (4.5). Then, after dividing both sides
by d!, we have

d−1∑
i=0

S(k + 1, i + 1)S(m + 1, d − i)

d
(
d−1

i

) = (−1)k+m
k+m+1∑

j=d

(−1)j a
k,m
j S(j + 1, d + 1).

With (4.6), replacing k + 1 by k and m + 1 by m, and shifting the order of summation on the
right-hand side, we see that this last identity follows again from (5.8).

Finally we equate the coefficients of x on both sides of (4.5). Then, again after dividing by d!,

−
d−1∑
i=0

mS(k + 1, i + 1)S(m,d − i) + kS(k, i + 1)S(m + 1, d − i)

d
(
d−1

i

)

= (−1)k+m

(
−

k+m+1∑
j=d+1

(−1)j ja
k,m
j S(j, d + 1) −

k+m+1∑
j=d+1

(−1)j b
k,m
j−1S(j, d + 1)

)
. (5.9)

First we consider the two sums on the right and note that for j � k + m we get from the first
parts of (4.6) and (4.7),

(−1)j
(
ja

k,m
j + b

k,m
j−1

) =
(

(−1)kk

(
k − 1

j − 1

)
+ (−1)mm

(
m − 1

j − 1

)

− (−1)km

(
k

j − 1

)
− (−1)mk

(
m

j − 1

))
Bk+m−j+1

k + m − j + 1

= −k

(
(−1)k−1

(
k − 1

j − 1

)
+ (−1)m

(
m

j − 1

))
Bk+m−j+1

k + m − j + 1

− m

(
(−1)k

(
k

j − 1

)
+ (−1)m−1

(
m − 1

j − 1

))
Bk+m−j+1

k + m − j + 1
.

For j = k + m + 1 we have by (4.6) and (4.8),
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(k + m + 1)a
k,m
k+m+1 + b

k,m
k+m = − k!m!

(k + m)! − k!m!
(k + m)!

= −k
(k − 1)!m!

((k − 1) + m + 1)! − m
k!(m − 1)!

(k + (m − 1) + 1)! .

We now see that (5.9) is obtained by adding two copies of (5.8), one with k replaced by k + 1,
and the other with m replaced by m + 1. This completes the proof of Proposition 4.1, with
Proposition 5.1, however, still remaining to be proved.

6. Convolved powers and the proof of Proposition 5.1

If we consider Proposition 5.1 in relation with the representation (3.5) of the Stirling number
S(n, k), it is plausible that (5.8) should be related to the following identity.

Proposition 6.1. For integers k,m � 0 and a � 1 we have

(−1)m+1
k∑

j=0

(
k

j

)
Bm+1+j

m + 1 + j
ak−j + (−1)k+1

m∑
j=0

(
m

j

)
Bk+1+j

k + 1 + j
am−j

= k!m!
(k + m + 1)!a

k+m+1 −
a−1∑
r=1

rk(a − r)m. (6.1)

A few remarks are in order before we prove and apply this result. The identity (6.1) is not
new, and has a long and interesting history. It can be seen as an evaluation of the convolved
power sum on the right-hand side. Such sums were already studied by Glaisher, first for k = m

in [18], and then in general in [19]. There is also an expression for the general case in [24], but it
is not explicit. Later the general case was again considered by Neuman and Schonbach [32] from
the point of view of numerical analysis. In fact, it is pointed out that (6.1) can be considered a
discrete analogue of the interesting integral convolution

a∫
0

rk(a − r)m dr = k!m!
(k + m + 1)!a

k+m+1;

see [32] for further remarks and references. At about the same time Carlitz [8] generalized (6.1)
to a certain “shifted” power convolution; his result involves Bernoulli polynomials in place of
the Bernoulli numbers. Such a result was also later obtained by the first author [5, p. 205] in a
somewhat different but very simple form, using the symbolic notation discussed in the introduc-
tion. Alternating convolved sums were also obtained in [5, p. 205]; they involve Euler instead of
Bernoulli polynomials.

The Bernoulli polynomials Bk(x) can be defined by

Bk(x) =
k∑(

k

j

)
Bjx

k−j . (6.2)

j=0
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Their most important property is the difference equation Bk(x + 1) − Bk(x) = kxk−1 for k � 1,
which gives rise to the famous summation formula

a−1∑
r=1

rk = 1

k + 1

(
Bk+1(a) − Bk+1(1)

)
. (6.3)

The identity (6.1) can actually be seen as a generalization of (6.3). Indeed, if we set m = 0 in
(6.1) and use the fact that

(
k
j

) 1
j+1 = (

k+1
j+1

) 1
k+1 and the definition (6.2) with k + 1 instead of k, we

easily obtain (6.3).
From a different point of view, the identity (6.1) can also be seen as a generalization of a result

of Saalschütz [37], later rediscovered by M.B. Gelfand [15], namely

(−1)m+1
k∑

j=0

(
k

j

)
Bm+1+j

m + 1 + j
+ (−1)k+1

m∑
j=0

(
m

j

)
Bk+1+j

k + 1 + j
= k!m!

(k + m + 1)! .

This is obviously just (6.1) with a = 1.
Although (6.1) is known, we present here a proof by induction which appears to be shorter

than other known proofs.

Proof of Proposition 6.1. We proceed by induction on m. The case m = 0 was already con-
sidered above, following (6.3). We now assume that (6.1) holds for a certain m � 0 and for all
k � 0; we will show that it then holds for m + 1 and all k. To do this, we replace k by k + 1 in
(6.1) and then subtract a times the original identity (6.1) from this changed identity. It suffices to
consider the four terms separately. First,

(−1)m+1
k+1∑
j=0

[(
k + 1

j

)
−

(
k

j

)]
Bm+1+j

m + 1 + j
ak+1−j

= (−1)m+1
k+1∑
j=0

(
k

j − 1

)
Bm+1+j a

k+1−j

m + 1 + j
= −(−1)m+2

k∑
j=0

(
k

j

)
B(m+1)+1+j a

k−j

(m + 1) + 1 + j
.

Next,

(−1)k
m∑

j=0

(
m

j

)
Bk+2+j

k + 2 + j
am−j − (−1)k+1

m∑
j=0

(
m

j

)
Bk+1+j

k + 1 + j
am+1−j

= (−1)k
m+1∑
j=0

[(
m

j − 1

)
+

(
m

j

)]
Bk+1+j

k + 1 + j
am+1−j

= −(−1)k+1
m+1∑
j=0

(
m + 1

j

)
Bk+1+j

k + 1 + j
a(m+1)−j .

The last two terms are even easier:
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(
(k + 1)!m!

(k + m + 2)! − k!m!
(k + m + 1)!

)
ak+m+2

= k!m!
(k + m + 2)!

(
k + 1 − (k + m + 2)

)
ak+m+2 = − k!(m + 1)!

(k + m + 2)!a
k+m+2,

and finally,

−
a−1∑
r=1

rk+1(a − r)m + a

a−1∑
r=1

rk(a − r)m =
a−1∑
r=1

rk(a − r)m+1.

This completes the proof by induction. �
We are now ready to prove Proposition 5.1. To begin, we write (6.1) in a more convenient

form by replacing k and m by k − 1 and m − 1, respectively:

k+m+1∑
j=1

[
(−1)m

(
k − 1

j − 1

)
+ (−1)k

(
m − 1

j − 1

)]
Bk+m−j

k + m − j
aj−1

= (k − 1)!(m − 1)!
(k + m − 1)! ak+m−1 −

a−1∑
r=1

rk−1(a − r)m−1. (6.4)

Now for each a = 1,2, . . . , d + 1 we multiply both sides of (6.4) by (−1)d+1+a
(

d
a−1

) 1
d! and sum

over all these a. Then by (3.5) we get S(j, d + 1) in place of aj−1 in (6.4), and S(k + m,d + 1)

in place of ak+m−1; note that the first sum now starts only at j = d + 1 since S(j, d + 1) = 0 for
j � d . Finally, the sum of the last term is just (3.13), so altogether we get (5.8), and the proof is
complete.

7. Further remarks

7.1. We could interpret our main result (2.1) also as a relationship between two convolutions
involving Bernoulli numbers. Here the length of the left-hand convolution increases with n (if in-
deed we consider (2.1) as an Euler-type formula), while the length of the right-hand convolution
remains fixed and depends on the given parameters k and m.

This relationship between two convolutions is even more obvious in the special case (2.3). We
can carry this further by changing the right-hand side of (2.3), using the fact that B1 = − 1

2 and
B0 = 1, and replacing k by k − 1. Then we get the symmetric expression

k

n−1∑
j=0

(
n

j

)
Bk+n−1−jBj + n

k−1∑
r=0

(
k

r

)
Bk+n−1−rBr = −nkBk+n−2. (7.1)

This identity was actually proved in [3] already. A similar identity, involving both the Bernoulli
numbers and the numbers B ′

n := 1
n
(1−2n)Bn for n � 1, which are closely related to the Genocchi

numbers (see remark 7.3 below), was obtained in [4].
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Other similar identities can be obtained from our main theorem. For instance, if we set n = 0
in (2.1) and note that (Bk + Bm)0 = BkBm by (1.5), then after some easy manipulation we get,
for k � 1 and m � 1,

m

k∑
r=0

(−1)r

m + r

(
k

r

)
Bm+rBk−r + k

m∑
r=0

(−1)r

k + r

(
m

r

)
Bk+rBm−r

= BkBm + k!m!
(k + m)!Bk+m, (7.2)

or equivalently (after replacing k by k + 1 and m by m + 1),

k∑
r=0

(−1)r
(

k

r

)
Bm+1+r

m + 1 + r
· Bk+1−r

k + 1 − r
+

m∑
r=0

(−1)r
(

m

r

)
Bk+1+r

k + 1 + r
· Bm+1−r

m + 1 − r

= Bk+1

k + 1
· Bm+1

m + 1
+

(
k!m!

(k + m + 1)! + (−1)k

k + 1
+ (−1)m

m + 1

)
Bk+m+2

k + m + 2
. (7.3)

The factors (−1)r in (7.2) and (7.3) can be removed if we pay appropriate attention to the ex-
ceptional number B1 = −1/2. Also note that the identities are meaningful, as are most others we
have dealt with, only when k and m have the same parity, although they do hold for all pairs k

and m. The identity (7.2) is also not really new. It can be obtained from a formula for Bernoulli
polynomials that was derived in [33, p. 75] and can be found in modern notation, and more
accessibly, in [7].

These last relations, especially (7.3), are somehow reminiscent of a remarkable identity of
Miki [31] that connects a binomial convolution and an ordinary convolution of Bernoulli num-
bers, but in contrast to (7.3) also involves harmonic numbers. See also [17] for further remarks
and generalizations.

7.2. In view of the various generalizations of Euler’s formula to sums of products of more
than two Bernoulli numbers that were mentioned in the introduction, it is natural to ask whether
Theorem 2.1 can also be extended in this direction. The proof in Section 4 indicates that such
an extension is indeed possible. However, this would lead too far for this paper, and will be the
subject of a separate study.

7.3. We are grateful to one of the anonymous referees for the following remark. The Genoc-
chi numbers Gn, n = 0,1, . . . , can be defined by the generating function

2x

ex + 1
=

∞∑
n=0

Gn

xn

n! , |x| < 2π.

By comparing this with the generating function (1.1) it can be seen that

Gn = 2
(
1 − 2n

)
Bn,
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and with the von Staudt–Clausen theorem (see, e.g., [23, p. 91]) we see that the Gn are integers.
Using expansions analogous to (3.11) and (3.12) we obtain results analogous to Propositions 4.1
and 4.2, and then to all the results in Section 2.

This generalizes the most basic Euler-type convolution for the Genocchi numbers, namely

n∑
j=0

(
n

j

)
GjGn−j = 2

(
nGn−1 + (n − 1)Gn

)
, n � 1, (7.4)

which can be found in [4] in a slightly different form. Compare this with (1.3) and note the
factor −2 on the right-hand side of (7.4). This is true in general: The Genocchi analogue of (2.1)
is obtained by replacing Bn+r−1 and Bn+k+m by Gn+r−1 and Gn+k+m, respectively, and then
multiplying the right-hand side by −2.
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