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Euler’s well-known nonlinear relation for Bernoulli numbers, which
can be written in symbolic notation as (B0 + B0)

n = −nBn−1 −
(n − 1)Bn , is extended to (Bk1 +· · ·+ Bkm )n for m � 2 and arbitrary
fixed integers k1, . . . ,km � 0. In the general case we prove an
existence theorem for Euler-type formulas, and for m = 3 we obtain
explicit expressions. This extends the authors’ previous work for
m = 2.
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1. Introduction

The Bernoulli numbers Bn , n = 0,1,2, . . . , can be defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn
xn

n! , |x| < 2π. (1.1)

The first few values are B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and Bn = 0 for all odd n � 3; we
also have (−1)n+1 B2n > 0 for all n � 1. These and many other properties can be found, for instance,
in [1], [12], [14], or [18]; for a comprehensive bibliography, see [9].

One of the most remarkable identities for the Bernoulli numbers is Euler’s formula

n∑
j=0

(
n

j

)
B j Bn− j = −nBn−1 − (n − 1)Bn (n � 1), (1.2)
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which can be considered a convolution identity, or also a quadratic recurrence relation. This identity
has been extended in various directions; see [3] for a summary with numerous references.

It will be convenient to use the symbolic notation (or “classical umbral calculus”; see, e.g., [10]) to
write

(Bk + Bl)
n =

n∑
j=0

(
n

j

)
Bk+ j Bl+n− j, (1.3)

so that Euler’s formula takes the form (B0 + B0)
n = −nBn−1 − (n − 1)Bn , n � 1. In [3] we extended

this by giving an explicit expression for (Bk + Bl)
n for arbitrary integers k, l � 0 and n � 1. At the end

of that paper we indicated that similar methods could be used to also obtain Euler-type formulas for
higher-order analogues of (1.3), namely for the sums

(Bk1 + · · · + Bkm)n =
∑

i1+···+im=n
i1,...,im�0

n!
i1! · · · im! Bk1+i1 · · · Bkm+im . (1.4)

For the case k1 = · · · = km = 0 a variant of the problem (with even positive indices i j and even n)
was settled by the second author [8], with analogous results for Euler numbers and Bernoulli and
Euler polynomials. Further extensions and analogues were subsequently obtained by other authors;
see [7,13,15–17].

It is the purpose of this paper to deal with the sums (1.4) in general. Since this can be considered
a continuation of our previous paper [3], we will quote several auxiliary results from there.

Our main result, stated in Section 2, will be the existence of an Euler-type formula in the most
general case. In Section 3 we show how the coefficients in this main result can be determined by
computation. Furthermore, if the parameters k1, . . . ,km are large enough (greater than m−1), then we
will be able to explicitly state the leading coefficient in the expansion; this will be done in Section 4.
In Section 5 we indicate how to obtain formulas for all triples (k1,k2,k3) in the case m = 3, and give
explicit expressions when k1 = k2 = k3.

2. The existence result

Before we state the first and most general result of this paper, we introduce some notation. Let
m � 2 be an integer, and K := (k1, . . . ,km) a vector of m nonnegative integers. Furthermore, we set
sm := k1 + · · · + km .

Theorem 1. With notation as above, we have for all integers n � m − 1,

(Bk1 + · · · + Bkm )n =
sm∑

ν=−m+1

C K
ν (n)Bn+ν, (2.1)

where the polynomials C K
ν (x) have rational coefficients, depend only on the vector K (and not on n), are

recursively computable, and deg(C K
ν (x)) � m −1 for all ν . Furthermore, C K−m+1(n) vanishes unless k1 = · · · =

km = 0, in which case

C K−m+1(n) = (−1)m−1 n!
(n − m + 1)! = (−1)m−1n(n − 1) · · · (n − m + 2). (2.2)

To begin the proof of this result we use the generating function

dk

dxk

x

ex − 1
=

∞∑
Bn+k

xn

n! , (2.3)

n=0
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which follows directly from (1.1). By taking the Cauchy product of m instances of this generating
function, with k replaced by k1, . . . ,km , respectively, we get with the definition (1.4),

(Bk1 + · · · + Bkm )n =
[

dn

dxn

m∏
j=1

(
dk j

dxk j

x

ex − 1

)]
x=0

. (2.4)

The right-hand side of (2.4) now motivates the following auxiliary result.

Lemma 1. Let m � 1 and k1, . . . ,km be nonnegative integers.

(a) There exists a unique and recursively computable sequence of polynomials A j(x) ∈ Q[x] with
deg(A j(x)) � m − 1, j = 0,1, . . . , sm + m − 1, such that

m∏
j=1

(
dk j

dxk j

x

ex − 1

)
=

sm+m−1∑
j=0

A j(x)
d j

dx j

x

ex − 1
. (2.5)

(b) If we set A j(x) = a j,m−1xm−1 + a j,m−2xm−2 + · · · + a j,1x + a j,0 , then a j,i = 0 whenever j − i > sm.
(c) We have a0,m−1 = 0 unless k1 = · · · = km = 0, in which case a0,m−1 = (−1)m−1 .

For the proof of Lemma 1, and also for Section 5, we need an explicit result from [3] which we
quote here as a lemma, in a somewhat simplified form. (The corresponding result in [3] includes
k, l = 0.)

Lemma 2. Let k and l be positive integers, and set

(
dk

dxk

x

ex − 1

)(
dl

dxl

x

ex − 1

)
=

k+l+1∑
j=0

Ak,l
j (x)

d j

dx j

x

ex − 1
, (2.6)

with Ak,l
j (x) = bk,l

j,1x + bk,l
j,0 . Then

bk,l
j,1 =

{
(−1) j[(−1)k

(k
j

) + (−1)l
( l

j

)] Bk+l+1− j
k+l+1− j , 0 � j � k + l,

− k!l!
(k+l+1)! , j = k + l + 1; (2.7)

bk,l
j,0 =

⎧⎪⎨
⎪⎩

(−1) j[(−1)kl
(k

j

) + (−1)lk
( l

j

)] Bk+l− j
k+l− j , 0 � j � k + l − 1,

− k!l!
(k+l)! , j = k + l,

0, j = k + l + 1.

(2.8)

The identity (2.7) also holds when k = 0 or l = 0.

Proof of Lemma 1. We prove this lemma by induction on m. (a) For m = 1 the statement is trivial. For
the remainder of the proof we indicate the dependence of A j(x) on the k1, . . . ,km by superscripts.
The case m = 2 is immediate from Lemma 2. Now we suppose that (2.5) holds up to some m, and we
multiply both sides of (2.5) by

dkm+1

dxkm+1

x

ex − 1
.

By using the result for m = 2 we get
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m+1∏
j=1

(
dk j

dxk j

x

ex − 1

)
=

sm+m−1∑
j=0

Ak1,...,km
j (x)

(
d j

dx j

x

ex − 1

)(
dkm+1

dxkm+1

x

ex − 1

)

=
sm+m−1∑

j=0

Ak1,...,km
j (x)

j+km+1+1∑
ν=0

A
j,km+1
ν (x)

dν

dxν

x

ex − 1

=
sm+1+m∑

ν=0

(
sm+m−1∑

j=ν−km+1−1

A
j,km+1
ν (x)Ak1,...,km

j (x)

)
dν

dxν

x

ex − 1
,

where by convention we take Ak1,...,km
j (x) to be the zero polynomial for j < 0. Now the inner sum-

mation on the right-hand side is the sum of products of polynomials with rational coefficients and of
degrees at most 1 and at most m − 1, respectively. Hence the inner sum is a polynomial of degree
at most m, with rational coefficients, and is recursively computable. The uniqueness of the polynomi-
als A j(x) also follows from this induction.

(b) The case m = 1 is trivially true, while the statement for m = 2 follows from (2.8). Suppose now
that the statement holds for some m � 2, and consider

A
k1,...,km+1
ν (x) =

sm+m−1∑
j=ν−km+1−1

A
j,km+1
ν (x)Ak1,...,km

j (x), (2.9)

for ν = 0,1, . . . , sm+1 + m. Obviously it suffices to prove the statement for each summand in (2.9). So

fix j, 0 � j � sm +m−1, write Ak1,...,km
j (x) as in Lemma 1(b) and set, to simplify notation, A

j,km+1
ν (x) =

bν,1x + bν,0. Then

A
j,km+1
ν (x)Ak1,...,km

j (x) =
m∑

i=0

(bν,1a j,i−1 + bν,0a j,i)xi, (2.10)

where by convention we assume a j,−1 = a j,m = 0. Consider now the ith coefficient in (2.10). The first
summand, namely bν,1a j,i−1, vanishes by hypothesis if ν − 1 > j + km+1 (in which case bν,1 = 0)
or j − (i − 1) > sm (in which case a j,i−1 = 0). If we now add these two inequalities, we get
ν − i > km+1 + sm(= sm+1); this means that at least one of the original inequalities must hold if we
assume that ν − i > sm+1. Similarly, the second summand, namely bν,0a j,i , vanishes if ν > j + km+1
or j − i > sm . Again, one of these two inequalities must hold if ν − i > sm+1. This completes the proof
of part (b).

(c) The case m = 1 is again trivial, and the statement for m = 2 follows from (2.7) which gives

bk,l
0,1 = [

(−1)k + (−1)l] Bk+l+1

k + l + 1
. (2.11)

We now see that when k and l have different parities, then (−1)k + (−1)l = 0; if k, l have the same
parity then Bk+l+1 = 0 since odd-index Bernoulli numbers vanish, with the only exception B1 = −1/2,
so that b0,0

0,1 = −1.

Now consider (2.9) and (2.10), and let a0,m be the coefficient of xm in the polynomial A
k1,...,km+1
0 (x).

Then we have

a0,m =
sm+m−1∑

j=0

b
j,km+1
0,1 a j,m−1.
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Table 1
The polynomials A j(x) for K = (1,2,3).

j 8 7 6 5 4 3 2 1 0

a j,2
1

3360 0 −1
720 0 1

1140 0 1
2520 0 0

a j,1 0 1
210

1
120

−1
120 0 1

72
−1
120

−1
126 0

a j,0 0 0 1
60

1
20 0 −1

12
−1
20 0 1

126

Hence by (2.11) we have a0,m = 0 unless km+1 = 0 and a0,m−1 �= 0. Therefore by induction we have
a0,m = 0 unless all k j = 0, j = 1, . . . ,m + 1, in which case a0,m = (−1)m . This completes the proof. �
Remark. An alternative proof of the uniqueness of the polynomials A j(x) rests on the linear indepen-
dence of the power series (x/(ex − 1))r over the field Q(x). Indeed, if we have a linear relation

n∑
j=0

f j(x)
x j

(ex − 1) j
= 0

with fn(x) �= 0, then there exists a positive integer k with fn(2πki) �= 0. But this means that the
left-hand side of the above equation has a pole of order n, which is a contradiction.

We also remark that part (b) in Lemma 1 explains the lower left triangle of zeros in Table 1, and
part (c) accounts for the zero in the upper right-hand corner of the table. (In general there will not
be a larger triangle of zeros in that corner.)

Proof of Theorem 1, continued. With (2.4) and (2.5) we get

(Bk1 + · · · + Bkm )n =
sm+m−1∑

j=0

m−1∑
i=0

a j,i

[
dn

dxn

(
xi d j

dx j

x

ex − 1

)]
x=0

. (2.12)

Now by Leibniz’s rule for higher derivatives of a product we have

[
dn

dxn

(
xi d j

dx j

x

ex − 1

)]
x=0

=
n∑

k=0

(
n

k

)[(
dk

dxk
xi

)(
d j+n−k

dx j+n−k

x

ex − 1

)]
x=0

=
(

n

i

)
i!
[

d j+n−i

dx j+n−i

x

ex − 1

]
x=0

= n!
(n − i)! B j+n−i,

where we have used (2.3) in the last step. Thus, with (2.12) and upon changing the order of summa-
tion, we get

(Bk1 + · · · + Bkm )n =
sm+m−1∑

j=0

m−1∑
i=0

a j,i
n!

(n − i)! B j+n−i

=
sm+m−1∑
ν=−m+1

(
m−1∑
i=0

aν+i,i
n!

(n − i)!

)
Bn+ν, (2.13)

with the convention that a j,i = 0 for j < 0. Now the inner sum on the right-hand side is clearly
a polynomial in n of degree at most m −1, with rational coefficients that are computable by Lemma 1.
We denote this polynomial by C K

ν (n), that is,
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C K
ν (n) =

m−1∑
i=0

aν+i,i
n!

(n − i)! . (2.14)

Since by the last part of Lemma 1 we have aν+i,i = 0 whenever ν > sm , the sum in (2.1) goes only up
to sm .

Finally, by (2.14) we have C K−m+1(n) = a0,m−1n!/(n−m+1)!, and so the last assertion of Theorem 1
follows from Lemma 1(c). This completes the proof. �
3. Connections with Stirling numbers

In this section we use some basic properties of Stirling numbers of the second kind to derive
a simpler and practically feasible recurrence relation for the polynomials A j(x) in (2.5). Some useful
properties and references for the Stirling numbers of the second kind, S(n,k), can be found in [3]. As
we did in [4] and (in a different notation) in [3], we define the linear polynomial

T (n, j) := ( j − 1)![S(n + 1, j)x − nS(n, j)
]

( j � 1). (3.1)

The main connection with Bernoulli numbers is then given by the following expansion, which was
proved in [3] and is also used in [2].

Lemma 3. For any m � 0 we have

dm

dxm

x

ex − 1
= (−1)m

m+1∑
j=1

T (m, j)

(ex − 1) j
. (3.2)

While the proof of Lemma 1 allows us, in principle, to compute the polynomials A j(x), and thus
also the C K

ν (n), this would be rather cumbersome in practice. The main significance of Lemma 1 lies
in the fact that it shows us that the A j(x) are polynomials over Q of degree at most m − 1. This is
used in the following result which will lead to easier computations.

Theorem 2. Let m � 1 and k1, . . . ,km be nonnegative integers. Then for each r = 1,2, . . . , sm + m we have
polynomials A j(x) of degree at most m − 1, with

∑
i1+···+im=r
i1,...,im�1

m∏
j=1

T (k j, i j) =
sm+m−1∑

j=r−1

(−1)sm− j A j(x)T ( j, r), (3.3)

and the A j(x) are the same as in Lemma 1.

Proof. With (3.2) we get

m∏
j=1

(
dk j

dxk j

x

ex − 1

)
= (−1)sm

m∏
j=1

( k j+1∑
i=1

T (k j, i)

(ex − 1)i

)

= (−1)sm

sm+m∑
r=1

( ∑
i1+···+im=r
i ,...,i �1

m∏
j=1

T (k j, i j)

)
1

(ex − 1)r
, (3.4)
1 m
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where the inner sum on the right is empty, and thus zero, for r < m. On the other hand, we have
from (2.5) and (3.2),

m∏
j=1

(
dk j

dxk j

x

ex − 1

)
=

sm+m−1∑
j=0

A j(x)(−1) j
j+1∑
r=1

T ( j, r)

(ex − 1)r

=
sm+m∑
r=1

(
sm+m−1∑

j=r−1

(−1) j A j(x)T ( j, r)

)
1

(ex − 1)r
. (3.5)

Since the functions (ex −1)−r , r = 1,2, . . . , sm +m, are linearly independent over Q(x) (see the Remark
following the proof of Lemma 1), we immediately get (3.3) from comparing the right-hand sides
of (3.4) and (3.5). �

If we set r = sm + m in (3.3), the only nonzero term on the left corresponds to i j = k j + 1 for
j = 1,2, . . . ,m. Then we use the fact that S(n,n) = 1 and S(n,k) = 0 for k > n, then with (3.1) we get
k1! · · ·km!xm = (−1)m−1(sm + m − 1)!xAsm+m−1(x), and thus

Asm+m−1(x) = (−1)m−1 k1! · · ·km!
(sm + m − 1)! xm−1. (3.6)

We can now use this as the beginning of a recurrence relation for the A j(x); just rewrite (3.3) as

(−1)sm−r−1(r − 1)!xAr−1(x) =
∑

i1+···+im=r
i1,...,im�1

m∏
j=1

T (k j, i j) +
sm+m−1∑

j=r

(−1)sm− j−1 A j(x)T ( j, r). (3.7)

This can be used as a “downwards” recursion, successively for r = sm + m − 1, sm + m − 2, . . . ,1.
Computations are facilitated through the fact that major computer algebra systems, such as Maple or
Mathematica, have the Stirling numbers (of both kinds) as built-in functions.

As an example we take k1 = 1, k2 = 2, k3 = 3. If we set, as in Lemma 1(b), A j(x) = a j,2x2 +
a j,1x + a j,0 ( j = 0,1, . . . ,8), then (3.6) leads to the column for j = 8 in Table 1 (note that 1!2!3!/(6 +
3 − 1)! = 1/3360), and (3.7) gives all the successive columns.

In (2.14) we saw how the polynomials C K
ν (n) are related to the A j(x). Here it reduces to

C (1,2,3)
ν (n) = aν+2,2n(n − 1) + aν+1,1n + aν,0, ν = −2,−1, . . . ,6. (3.8)

Thus the highest term in (2.1) for K = (1,2,3) is

(
1

3360
n(n − 1) + 1

210
n + 1

60

)
Bn+6 = (n + 8)(n + 7)

3360
Bn+6.

For the other terms, and for other parameter vectors K , see Corollary 1 below.

Corollary 1. For all n � 2 we have

(B1 + B1 + B1)
n = (n + 5)(n + 4)

120
Bn+3 + n + 3

4
Bn+2 − n2 − n − 24

24
Bn+1

− n − 1
Bn + n(n − 2)

Bn−1;

4 30
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(B1 + B1 + B2)
n = (n + 6)(n + 5)

360
Bn+4 + n + 4

12
Bn+3 − n2 + n − 24

72
Bn+2

− n

12
Bn+1 + (n + 1)(n − 1)

90
Bn;

(B1 + B2 + B2)
n = (n + 7)(n + 6)

1260
Bn+5 + n + 5

60
Bn+4 − (n + 5)(n + 4)

360
Bn+3

− 1

6
Bn+2 − n(n − 13)

360
Bn+1 − n − 1

60
Bn + n(n − 2)

210
Bn−1;

(B1 + B1 + B3)
n = (n + 7)(n + 6)

840
Bn+5 + n + 5

20
Bn+4 − n2 − n + 50

120
Bn+3

− n − 3

12
Bn+2 + n(n − 3)

60
Bn+1 + n − 1

30
Bn − n(n − 2)

105
Bn−1;

(B2 + B2 + B2)
n = (n + 8)(n + 7)

5040
Bn+6 − n + 5

60
Bn+4 − n2 − n − 32

240
Bn+2

+ (5n + 26)(n − 1)

1260
Bn;

(B1 + B2 + B3)
n = (n + 8)(n + 7)

3360
Bn+6 + n + 6

120
Bn+5 − n(n + 5)

720
Bn+4 − 1

12
Bn+3

+ (6n − 19)(n + 18)

6840
Bn+2 − 1

120
Bn+1 + (n − 1)(n − 20)

2520
Bn;

(B1 + B1 + B4)
n = (n + 8)(n + 7)

1680
Bn+6 + n + 6

30
Bn+5 − n2 − n − 75

180
Bn+4 − n − 4

12
Bn+3

+ 11n2 − 31n + 48

720
Bn+2 + n

20
Bn+1 − (13n − 8)(n − 1)

1260
Bn.

Proof. Use (3.6) and (3.7) to create the equivalent of Table 1 for each parameter vector K . Then
use (3.8) to compute the coefficients C K

ν (n) in (2.1). �
4. The leading coefficient

In this short section we use a certain convolution formula for Stirling numbers of the second
kind, proved elsewhere, to find an explicit expression for the leading coefficient C K

sm
(n) in the expan-

sion (2.1).
If we were to set up Table 1 for K = (2,2,2), we would find that a8,2 = 1/5040, a7,1 = 1/315, and

a6,0 = 1/90, with all the other coefficients for j = 6,7,8 vanishing. This is actually true in general:
If k1, . . . ,km are sufficiently large then in addition to (3.6) there are explicit formulas for Asm (x),
Asm+1(x), . . . , Asm+m−2(x) as monomials.

Theorem 3. Let m � 2 and k j � m − 1 for j = 1, . . . ,m. Then we have

Asm+m−ν(x) = (−1)m−1 k1! · · ·km!
(sm + m − ν)!

(
m − 1

ν − 1

)
xm−ν (4.1)

for ν = 1,2, . . . ,m.

The identity (3.6) is obviously a special case of (4.1). The main ingredient in the proof of Theorem 3
is the following result, proved in [4]; see also [6].
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Lemma 4. Let m � 2 and k j � m − 1 for j = 1, . . . ,m. Then for all integers r � sm + 1 we have

∑
i1+···+im=r
i1,...,im�1

m∏
j=1

T (k j, i j)

k j ! =
sm+m+1−r∑

ν=1

(−1)ν−1
(

m − 1

ν − 1

)
T (sm + m − ν, r)

(sm + m − ν)! xm−ν . (4.2)

Proof of Theorem 3. Using the uniqueness of A j(x) and changing the order of summation on the
right-hand side of (3.3), we see that (4.1) follows immediately from (3.3) and (4.2). �

If we use the notation of Lemma 1(b) and set i := m − ν , then we get from (4.1) for i =
0,1, . . . ,m − 1,

asm+i,i = (−1)m−1 k1! · · ·km!
(sm + i)!

(
m − 1

i

)
. (4.3)

This, substituted into (2.14), gives

C K
sm

(n) = (−1)m−1k1! · · ·km!n!
m−1∑
i=0

(
m − 1

i

)
1

(sm + i)!(n − i)!

= (−1)m−1 k1! · · ·km!n!
(sm + n)!

m−1∑
i=0

(
m − 1

i

)(
sm + n

n − i

)
.

The sum on the right-hand side has the explicit evaluation
(sm+m−1+n

n

)
. This follows from a variant of

the well-known “Vandermonde convolution”; see, e.g., identity (3.4) in [11], or (5.27) in [12, p. 170].
Hence we have

C K
sm

(n) = (−1)m−1 k1! · · ·km!
(sm + n)!

(sm + m − 1 + n)!
(sm + m − 1)! ,

which proves the following result.

Corollary 2. Let m � 2 and k j � m − 1 for j = 1, . . . ,m. Then the leading term in the expansion (2.1) is

(−1)m−1 k1! · · ·km!
(sm + m − 1)!

(
m−1∏
i=1

(n + sm + i)

)
Bn+sm . (4.4)

We see that (4.4) is consistent with Corollary 1 for K = (2,2,2), and with the list of specific
expansions for m = 2 and k1 � 1, k2 � 1 given in [3, Corollary 2.4]. However, it appears that (4.4)
remains true for all the other special cases listed in Corollary 1. Thus, while computations show that
(4.1) is not valid for ν = m unless k j � m − 1 for all j, it appears that (4.3) remains valid for i = 0.
We will not consider this possible improvement here.

5. The case m = 3

The proof of Lemma 1 indicates that in general the determination of the polynomial A(x) in (2.5)
through iterating (2.9) would be very cumbersome, and we cannot expect reasonable closed expres-
sions. However, it is still possible to find explicit expressions for m = 3, generalizing those listed in
Corollary 1.
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We rewrite (2.9) for ν = 0,1, . . . ,k1 + k2 + k3 + 2:

Ak1,k2,k3
ν (x) =

k1+k2+1∑
j=ν−k3−1

A j,k3
ν (x)Ak1,k2

j (x)

=
k1+k2+1∑

j=ν−k3−1

(
a j,k3
ν x + b j,k3

ν

)(
ak1,k2

j x + bk1,k2
j

)
. (5.1)

We can now combine this with Lemma 2 and (2.14) to obtain an expression for (2.1) for any triple
K = (k1,k2,k3). For instance, in this way we obtain the following special formulas which supplement
Corollary 1.

Corollary 3. For all n � 2 we have

(B0 + B0 + B0)
n = (n − 1)(n − 2)

2
Bn + 3

n(n − 2)

2
Bn−1 + n(n − 1)Bn−2,

(B0 + B0 + B1)
n = n(n − 1)

6
Bn+1 + (n − 1)(n + 1)

2
Bn + n(n + 1)

3
Bn−1,

(B0 + B1 + B1)
n = n(n + 3)

24
Bn+2 + n(n + 8)

12
Bn+1 − n2 − 19n − 6

24
Bn − n(n − 2)

12
Bn−1,

(B0 + B0 + B2)
n = n(n − 1)

12
Bn+2 + n(n − 1)

3
Bn+1 + (5n − 2)(n − 1)

12
Bn + n(n − 2)

6
Bn−1.

While in general the method just outlined is not a very satisfactory result, in the special case
k1 = k2 = k3 an explicit general formula can be obtained. We set k := k1 = k2 = k3, so that K =
(k,k,k).

Theorem 4. For all k � 1 and n � 2 we have with K = (k,k,k),

(Bk + Bk + Bk)
n =

3k∑
j=−1

C K
j (n)Bn+ j, (5.2)

where

C K
3k(n) = k!3

(3k + 2)! (n + 3k + 1)(n + 3k + 2), (5.3)

C K
j (n) = 0, 2k + 1 � j � 3k − 1, (5.4)

C K
j (n) = 3(−1) jk!2

( j + 2)!(2k − j)!
(
n + ( j + 1)

)(
(2k − j)n − ( j + 2)k

) B3k− j

3k − j

+ 3

k + 1

(
k + 1

j + 1

) k∑
i= j

(
k − j

i − j

)[
n(n − 1)(k − i)

i − j

j + 2

− nk(k − j) + k2( j + 1)

]
B2k−i Bk− j+i

(2k − i)(k − j + i)
, −1 � j � 2k, (5.5)

where for j � k + 1 the summation on the right is considered to be 0.



T. Agoh, K. Dilcher / Journal of Number Theory 129 (2009) 1837–1847 1847
The proof rests on (5.1) and Lemma 2, and Theorem 1 in [5] is also used. We skip the details
which are long and tedious.

Finally, we also list two more specific expansions, directly obtained from Theorem 4. They supple-
ment Corollaries 1 and 3.

Corollary 4. For all n � 2 we have

(B3 + B3 + B3)
n = (n + 11)(n + 10)

184 800
Bn+9 + (n + 6)(n − 21)

5600
Bn+5

− (n + 4)(3n − 15)

1680
Bn+3 + n(n − 1)

300
Bn+1 − 2

n(n − 2)

1155
Bn−1;

(B4 + B4 + B4)
n = (n + 14)(n + 13)

6 306 300
Bn+12 + n + 9

6300
Bn+8 + (n + 7)(n − 16)

5880
Bn+6

− n2 − n − 32

600
Bn+4 + 63n2 + 65n − 768

13 860
Bn+2 − (n − 1)(437n + 1646)

143 325
Bn.

We have used the computer algebra system Maple to check and verify the expansions in Corollar-
ies 1, 3 and 4.
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