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Motzkin Numbers

MARTIN AIGNER

In this paper Motzkin numbers Mn (which are related to Catalan numbers) are studied. The

(known) connection to Tchebychev polynomials is discussed with applications to the Hankel ma-

trices of Motzkin numbers. It is shown that the sequence Mn is logarithmically concave with lim

Mn+1/Mn = 3. Finally, two ballot-number type sequences for Mn are derived, with an application

to directed animals.
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1. INTRODUCTION

In his forthcoming book [9] R. Stanley lists some 70 examples of enumeration problems

which are counted by the Catalan numbers Cn = 1
n+1

(2n
n

)
. In addition, he shows that many

of these settings give rise to closely related instances counted by the Motzkin numbers Mn ,

drawing mostly from material in the survey by Donaghey and Shapiro [2]. In the present

paper we want to study several aspects of the Motzkin numbers. In Section 2 we consider

a combinatorial setting particularly suited to our purposes. In Section 3 we demonstrate the

close (and known) connection of Motzkin numbers to Tchebychev polynomials Un(x), giving

several applications. In Section 4 we show that the sequence M1, M2, M3, . . . is logarithmically

concave and prove lim Mn+1/Mn = 3. In the last section two ballot-number type sequences

are derived, illustrating the results with a few examples.

For background on the combinatorial coefficients involved, the reader is referred to any of

the standard texts, e.g., [6, 9, 10].

2. A COMBINATORIAL SETTING

For convenience we list the defining recursions for Catalan and Motzkin numbers:

C0 = 1, Cn+1 =
n∑

k=0

CkCn−k (n ≥ 0) (1)

M0 = 1, Mn+1 = Mn +
n−1∑

k=0

Mk Mn−1−k (n ≥ 0). (2)

The first numbers are thus

n 0 1 2 3 4 5 6

Cn 1 1 2 5 14 42 132

Mn 1 1 2 4 9 21 51

Let Cn be the family of all 2 × n-arrays
a1a2 . . . an

b1b2 . . . bn
with all ai , bi equal to 0 or 1 such that

(i)
∑k

i=1 ai ≥
∑k

i=1 bi (1 ≤ k ≤ n)

(ii)
∑n

i=1 ai =
∑n

i=1 bi .
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By verifying (1) one finds |Cn| = Cn+1. Now let Mn be the subfamily of all arrays without
1
1 columns. Verifying (2) yields |Mn| = Mn where |M0| = 1 by definition. As examples

we have

C2 : 00 01 10 10 11

00 01 01 10 11

M3 : 000 010 100 100

000 001 001 010

By interpreting 1
0 as a step to the right, 0

1 as a step to the left, and 0
0 as a loop, we

obtain precisely the first example in [2]: Mn counts the number of n-step walks on the non-

negative integers, starting and returning to 0 with steps 1, −1, 0. All the standard formulae

for the numbers Mn can be easily derived from this setting, e.g., Mn =
∑

k≥0

(
n
2k

)
Ck and

Cn+1 =
∑n

k=0

(
n
k

)
Mk .

3. MOTZKIN NUMBERS AND TCHEBYCHEV POLYNOMIALS

It is well known that there is a connection between Motzkin numbers Mn and the Tchebychev

polynomials Un(x). This connection (Proposition 1) can also be derived via the Riordan group

(see [7]). We have chosen the present approach because it leads directly to the application

concerning the Hankel matrices (Proposition 2).

Let Mh be the Motzkin family of the last section, and denote by sh,n the number of arrays

with 1
0 in the first n columns, where n ≤ h. Thus sh,0 = Mh and sh,1 = Mh − Mh−1.

LEMMA 1. We have sh,n = sh,n−1 − sh−1,n−1 − sh−2,n−2 for 1 ≤ n ≤ h.

PROOF. To compute sh,n we have to subtract from sh,n−1 the number of arrays with 1
0 in

the first n − 1 columns and 0
0 resp. 0

1 in the n-th column. But these numbers are clearly

sh−1,n−1 resp. sh−2,n−2. ✷

It follows from Lemma 1 by induction that

sh,n = an Mh + an−1 Mh−1 + · · · + a0 Mh−n (3)

with integer coefficients ai . Note that the coefficients a0, . . . , an are independent of h.

Consider now the Motzkin polynomial Sn(x) = an xn + · · · + a1x + a0, with the ai s as in

(3). Applying Lemma 1 and grouping the coefficients we arrive at the recursion

Sn(x) = (x − 1)Sn−1(x) − Sn−2(x), S0(x) = 1, S1(x) = x − 1. (4)

In particular, Sn(x) has degree n with leading coefficient an = 1.

The polynomials Sn(x) will be our main tool in the study of the Motzkin numbers, using

the following idea (usually called the symbolic method). Let p(x) =
∑m

k=0 pk xk be any

polynomial. Then we denote by [p(x)]x=M or simply [p(x)] the number which results from

the substitution xk → Mk for all k, thus [p(x)] =
∑m

k=0 pk Mk . Clearly, [p(x) + q(x)] =
[p(x)] + [q(x)] and [cp(x)] = c[p(x)].

As our main example we note by our set-up

[xk Sn(x)] = sn+k,n . (5)
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In particular, we have

[xk Sn(x)] = 0 for k < n

(6)

[xn Sn(x)] = 1,

because for k < n there clearly is no array in Mk+n with n leading 1
0 columns, whereas

for k = n there is exactly one such array in M2n , namely n
1
0 columns followed by n

0
1

columns. Note that [S0(x)] = 1 and [Sn(x)] = 0 for all n ≥ 1.

The following result summarizes the properties of the polynomials Sn(x).

PROPOSITION 1. We have

(i) Sn(x) = Un( x−1
2 ), where Un(x) is the Tchebychev polynomial Un(x) = sin(n+1)θ

sin θ
,

x = cos θ .

(ii) Sn(x) =
∑

k≥0(−1)k
(

n−k
k

)
(x − 1)n−2k .

(iii) (x − 1)n =
∑

k≥0(
(

n
k

)
−

(
n

k−1

)
)Sn−2k(x).

(iv) Sk(x)Sℓ(x) = Sk+ℓ(x) + Sk+ℓ−2(x) + Sk+ℓ−4(x) + · · · + Sℓ−k(x) (0 ≤ k ≤ ℓ).

(v) The roots of Sn(x) are 2 cos kπ
n+1 + 1 (k = 1, . . . , n).

PROOF. (i) The polynomials Un(x) satisfy the recursion

Un(x) = 2xUn−1(x) − Un−2(x) (n ≥ 1)

(see [6]). Since U0(x) = S0(x) = 1, the result follows from (4).

(ii) We have (see [6])

Un

( x

2

)
=

∑

k≥0

(−1)k

(
n − k

k

)
xn−2k,

and hence

Sn(x) =
∑

k≥0

(−1)k

(
n − k

k

)
(x − 1)n−2k .

Tchebychev inversion (see [5, p. 62]) now yields (iii).

(iv) For k = 0 we have S0(x)Sℓ(x) = Sℓ(x), and (iv) is readily established by induction on

k and (4).

(v) The roots of Un(x) are cos kπ
n+1 (see [5]), which implies the assertion. ✷

COROLLARY 1. We have

(i)
∑

j≥0(−1) j
∑

k≥0(−1)k
(

n−k
k

)(
n−2k

j

)
M j = 0 (n ≥ 1)

(ii)
∑n

k=0(−1)n−k
(

n
k

)
Mk =

{
0 for n odd

Cn/2 for n even.

PROOF. (i) We know [Sn(x)] = 0 for n ≥ 1 by (6). Taking [p(x)] for the right-hand side

of (ii) in the Proposition yields

0 =
∑

k≥0

(−1)k

(
n − k

k

) ∑

j≥0

(−1)n−2k− j

(
n − 2k

j

)
M j

which is precisely (i).
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(ii) Looking at Proposition 1(iii) we obtain for the left-hand side

[(x − 1)n] =
n∑

k=0

(−1)n−k

(
n

k

)
Mk .

On the other hand, applying (6) to the right-hand side we find

∑

k≥0

((
n

k

)
−

(
n

k − 1

))
[Sn−2k(x)],

which is 0 for n odd and
(

n
n/2

)
) −

(
n

n/2−1

)
= Cn/2 for n even. ✷

REMARK. Let bn, j be the coefficient of M j in Corollary 1(i). Using the Zeilberger–

Petkovšek algorithm [4] it can be shown that the bn, j admit no closed form (in hypergeometric

terms), but satisfy the three term recursions:

(n + 2 − j)bn+2, j − (n + 2)bn+1, j + (n + 2 + j)bn, j = 0 ( j fixed)

3( j + 1)( j + 2)bn, j+2 + (2 j + 3)( j + 1)bn, j+1 + (n + 2 + j)bn, j = 0 (n fixed).

As our first application we look at the Hankel matrices

Ãn =




M0 M1 . . . Mn

M1 M2 . . . Mn+1

...
...

...

Mn Mn+1 . . . M2n


 , B̃n =




M1 M2 . . . Mn

M2 M3 . . . Mn+1

...
...

...

Mn Mn+1 . . . M2n+1


 .

PROPOSITION 2. We have

(i) det Ãn = 1 for all n,

(ii) det B̃n = 1, 0, −1 for n ≡ 0, 1 (mod 6), n ≡ 2, 5 (mod 6), and n ≡ 3, 4 (mod 6),

respectively.

PROOF. Consider the (n +1)×(n +1)-matrix An = (akℓ) where the akℓ are the coefficients

of Sk(x), i.e., Sk(x) = ak0 + ak1x + · · · + akk xk , 0 ≤ k ≤ n. An is thus a lower triangular

matrix with det An = 1 because all akk = 1. The k-th row of the product An Ãn (0 ≤ k ≤ n)

is therefore

([Sk(x)], [x Sk(x)], . . . , [xn Sk(x)]).

Next we compute An Ãn AT
n . For the (k, ℓ)-entry we obtain by Proposition 1(iv)

aℓ0[Sk(x)] + aℓ1[x Sk(x)] + · · · + aℓℓ[xℓSk(x)] = [Sk(x)Sℓ(x)]
= [Sk+ℓ(x)] + [Sk+ℓ−2(x)]
+ · · · + [S|k−ℓ|(x)]

which is 1 for k = ℓ and 0 for k 6= ℓ by (6). Thus An Ãn AT
n = In and therefore det Ãn = 1.

Let us now consider B̃n . In this case the k-th row of An−1 B̃n (0 ≤ k ≤ n − 1) is

([x Sk(x)], [x2Sk(x)], . . . , [xn Sk(x)]),



Motzkin numbers 667

and we obtain for the (k, ℓ)-entry of An−1 B̃n AT
n−1

aℓ0[x Sk(x)] + aℓ1[x2Sk(x)] + · · · + aℓℓ[xℓ+1Sk(x)] = [x Sk(x)Sℓ(x)]
= [x Sk+ℓ(x)] + · · · + [x S|k−ℓ|(x)].

Using (6) again, we obtain for k = ℓ [x S0(x)] = M1 = 1, for |k − ℓ| = 1 [x S1(x)] =
M2 − M1 = 1, and 0 for |k − ℓ| ≥ 2. The matrix Dn = An−1 B̃n AT

n−1 is therefore of the

following form:

Dn =




1 1

1 1 1 0

1 1
. . . 1

0 1 1




with det B̃n = det Dn . The determinant of Dn is now easily evaluated by induction as stated

in the proposition. ✷

The Motzkin numbers are thus the unique sequence of real numbers such that the determi-

nants are alternately equal to det Ãn and det B̃n , starting with Ã0, B̃1.

4. LOGARITHMIC CONCAVITY AND LIMIT

The purpose of this section is to discuss the following three results:

(a) Mn

Mn−1
≤ Mn+1

Mn
(n ≥ 1)

(b) Mn

Mn−1
< 3 (n ≥ 1)

(c) limn→∞
Mn

Mn−1
= 3.

No combinatorial proof of (a), that is an injection of M(n)2 into M(n − 1) ×M(n + 1) is

known to me, similarly for (b).

Let us first look at (a). If n is odd, then Proposition 2 applies. Indeed, as all principal

submatrices of Ãn have determinant 1, Ãn is positive definite which implies that all submatrices(
M2m−2 M2m−1

M2m−1 M2m

)
have positive determinant. But this is precisely statement (a) for n =

2m − 1. However, since B̃n is indefinite, for even n we have to proceed differently.

Let An be the matrix of the last section. We proved there Ãn = A−1
n AT −1

n , so let us determine

A−1
n .

LEMMA 2. (i) We have (A−1
n )i j = [x i S j (x)].

(ii) Let A−1
n = (bk,ℓ), then

bk,ℓ = bk−1,ℓ−1 + bk−1,ℓ + bk−1,ℓ+1
(7)

b0,0 = 1, bk,ℓ = 0 for k < ℓ.

PROOF. Setting Bn = ([x i S j (x)]), we find

(An Bn))k,ℓ =
k∑

i=0

aki [x i Sℓ(x)] = [Sk(x)Sℓ(x)]

= [Sk+ℓ(x)] + · · · + [S|k−ℓ|(x)] = δkℓ,
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and thus Bn = A−1
n as claimed. A−1

n is therefore a lower triangular matrix by (6).

To prove (ii) we see by the recursion (4)

bk,ℓ = [xk Sℓ(x)] = [xk−1x Sℓ(x)]
= [xk−1Sℓ−1(x)] + [xk−1Sℓ(x)] + [xk−1Sℓ+1(x)]
= bk−1,ℓ−1 + bk−1,ℓ + bk−1,ℓ+1. ✷

Consider the infinite lower triangular matrix B = (bk,ℓ) with rows r0, r1, r2, . . . observing

(7). As Ãn = Bn BT
n we obtain the useful result

rk · rℓ = Mk+ℓ for all k, ℓ, (8)

where rk · rℓ denotes the usual inner product.

The recursion (7) together with (8) yields therefore another representation of the Motzkin

numbers.

As an illustration let us consider the first rows of B according to the recursion (7):

B =




1

1 1 0

2 2 1

4 5 3 1

9 12 9 4 1
...

...
...

...
...




.

We obtain e.g. r2 · r4 = 2 · 9 + 2 · 12 + 1 · 9 = 51 = M6, and similarly r3 · r3 =
4 · 4 + 5 · 5 + 3 · 3 + 1 · 1 = 51.

REMARK. It was pointed out by the referee that the matrix B and its inverse A can also be

determined by the elegant approach via the Riordan group (see [7]).

Let us rewrite (7) in the following compact form. For any vector a = (a0, a1, a2, . . .) we

set a+ = (0, a0, a1, . . .) and a− = (a1, a2, . . .). Then (7) reads

rk = r+
k−1 + rk−1 + r−

k−1. (9)

PROPOSITION 3. We have M2
n ≤ Mn−1 Mn+1 for all n ≥ 1.

PROOF. By our remark above it suffices to consider n even, but let us prove the case n odd

anyway. Set n = 2m − 1, then by (8), M2m−1 = rm−1 · rm , M2m−2 = r2
m−1, M2m = r2

m , and

M2
2m−1 ≤ M2m−2 · M2m is equivalent to (rm−1 · rm)2 ≤ r2

m−1 · r2
m , which is just Cauchy’s

inequality.

Now let n = 2m. Setting a = rm−1, b = rm , c = rm+1, we have to prove by (8)

(a · b)(b · c) ≥ (a · c)(b · b), (10)

for any three consecutive rows of B. For a = r0, b = r1, c = r2 this is true and we proceed

by induction. Let a = (ai ), b = (bi ), c = (ci ). We need the following lemma whose proof is

omitted.

LEMMA 3. Let 0 ≤ i ≤ j , then

(i) ai b j ≥ a j bi
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(ii) ai (b j−1 + b j+1) ≥ a j (bi−1 + bi+1)

(iii) bi (b j−1 + b j+1) ≥ b j (bi−1 + bi+1).

To complete the proof set c = b+ + b + b− as in (9). Then by (10) we have to show

(a · b)(b · b+ + b · b + b · b−) ≥ (a · b+ + a · b + a · b−)b2

or

(a · b)(b · b+ + b · b−) ≥ (a · b+ + a · b−)b2,

that is ∑

i, j

(ai bi )(b j b j−1) + (ai bi )(b j b j+1) ≥
∑

i, j

(ai bi−1)b
2
j + (ai bi+1)b

2
j .

For i = j both contributions are identical. For i < j we group together the contributions

corresponding to the index pairs (i, j) and ( j, i). For the left-hand side we obtain

L = ai bi b j b j−1 + ai bi b j b j+1 + a j b j bi bi−1 + a j b j bi bi+1

and for the right-hand side

R = ai bi−1b j b j + ai bi+1b j b j + a j b j−1bi bi + a j b j+1bi bi .

This yields

L − R = (ai b j − a j bi )[bi (b j−1 + b j+1) − b j (bi−1 + bi+1)],

and thus L ≥ R by the lemma. As this holds for any pair i ≤ j , we are done. ✷

In a similar way the following result can be proved.

PROPOSITION 4. We have Mn

Mn−1
< 3 for all n ≥ 1.

PROPOSITION 5. We have limn→∞
Mn

Mn−1
= 3.

PROOF. By Propositions 3 and 4, α = lim Mn

Mn−1
exists with α ≤ 3. To prove α = 3 we

use the notation sh,n , Sn(x) = xn + an−1xn−1 + + · · · + a1x + a0 as in the previous section.

As sh,n = Mh + an−1 Mh−1 + · · · + a0 Mh−n counts the number of arrays with n leading
1
0 -columns, we have sh,n ≥ 0, and hence

Mh

Mh−1
+ an−1 + an−2

Mh−2

Mh−1
+ · · · + a0

Mh−n

Mh−1
≥ 0.

Going with h to infinity this implies

α + an−1 + an−2α
−1 + · · · + a0α

−(n−1) ≥ 0

or

αn + an−1α
n−1 + · · · + a0 ≥ 0 for all n. (11)

By Proposition 1(v), the second largest root of Sn(x) is smaller than the largest root of

Sn−1(x), and we infer by induction and (11) that α is at least as large as the largest root of

Sn(x) for all n. But as shown in Proposition 1(v), the largest root of Sn(x) equals 2 cos π
n+1 +1,

and this goes to 3 with n to infinity, thus proving our claim. ✷

REMARK. Proposition 5 can also be proved directly using the ratio test (as pointed out by

the referee) or by employing an asymptotic estimate as in [1].
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5. BALLOT NUMBERS

Recall that the Catalan numbers may be generated as follows (see [6]): Define an,k (0 ≤
k ≤ n) recursively by

a0,0 = 1

an,k = an−1,0 + · · · + an−1,k, n ≥ 1, 0 ≤ k ≤ n − 1,

an,n = 0 n ≥ 1.

Then Cn =
∑n

k=0 an,k and an+1,n = Cn . The an,k are the ballot numbers with an,k =
n−k
n+k

(
n+k

n

)
.

The aim of this section is to exhibit two ballot-number sequences for the Motzkin numbers

which arise from two different combinatorial classifications.

Define the numbers bn,k (0 ≤ k ≤ n + 1) as follows:

b0,0 = b0,1 = 1

bn,k = bn−1,0 + · · · + bn−1,k−2 + bn−1,k, n ≥ 1, 0 ≤ k ≤ n, (12)

bn,n+1 = bn,n .

Note that in the recursion the term bn−1,k−1 is missing. The following table gives the first

rows:
n◗

◗
k 0 1 2 3 4 5 6

0 1 1

1 1 1 1

2 1 1 2 2

3 1 1 3 4 4

4 1 1 4 6 9 9

5 1 1 5 8 15 21 21

PROPOSITION 6. We have

(i)
∑n

k=0 bn,k = Mn+1

(ii) bn,n = Mn

(iii) bn,k =
∑

i≥0

(
n
i

)
[
(

k−i
i

)
−

(
k−i
i+2

)
].

PROOF. Define b0,k = 1 −
(

k
2

)
(k ≥ 0), and extend the recursion (12) to all n and k. Note

that b0,k agrees with b0,0 = b0,1 = 1. Let Bn(x) =
∑

k≥0 bn,k xk be the generating function

of the n-th row. By (12),

Bn(x) =
x2

1 − x
Bn−1(x) + Bn−1(x) (n ≥ 1)

and thus

Bn(x) =
(

1 − x + x2

1 − x

)n

B0(x),

where

B0(x) =
∑

k≥0

(1 −
(

k

2

)
)xk =

1

1 − x
−

∑

k≥0

(
k

2

)
xk .
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We therefore find for the coefficient of xk in Bn(x):

(xk)Bn(x) = (xk)

(
1 − x + x2

1 − x

)n

− (xk)

(
1 − x + x2

1 − x

)n ∑

i≥0

(
i

2

)
x i .

Let us look at the first summand:
(

1 − x + x2

1 − x

)n
1

1 − x
= (1 +

x2

1 − x
)n 1

1 − x
=

n∑

i=0

(
n

i

)
x2i 1

(1 − x)i+1

=
n∑

i=0

(
n

i

)
x2i

∑

j≥0

(
i + j

i

)
x j =

∑

k≥0

(
∑

i≥0

(
n

i

)(
k − i

i

)
)xk .

Hence

(xk)

(
1 − x + x2

1 − x

)n
1

1 − x
=

∑

i≥0

(
n

i

)(
k − i

i

)
.

For the second summand we similarly obtain

(xk)

(
1 − x + x2

1 − x

)n ∑

i≥0

(
i

2

)
x i =

∑

i≥0

(
n

i

)(
k − i

i + 2

)
.

Using the identity
∑

i≥0

(
n
i

)(
n−i

i

)
=

∑
i≥0

(
n
2i

)(2i
i

)
one easily finds

bn,n = bn,n+1 =
∑

i≥0

(
n

2i

)
Ci = Mn .

Hence we have
n∑

k=0

bn,k =
n−1∑

k=0

bn,k + bn,n+1 = bn+1,n+1 = Mn+1,

and we are finished. ✷

EXAMPLE. A well-known instance counted by the Catalan numbers Cn are the non-crossing

partitions of {1, 2, . . . , n} (see [8, 9]). Call a partition π = {A1, . . . , At } non-crossing if

a < b < c < d and a, c ∈ Ai , b, d ∈ A j imply i = j . Let us say, π is strongly non-crossing

if, in addition, Ai = {a}, b, c ∈ A j and b < a < c never occurs. We want to show that

|5n| = Mn where 5n is the family of strongly non-crossing partitions.

As an example, we have for n = 4 the following 9 = M4 partitions:

1 2 3 4

1 2 3 − 4

1 2 − 3 4, 1 2 − 3 − 4, 1 4 − 2 3

1 − 2 3 4, 1 − 2 3 − 4, 1 − 2 − 3 4, 1 − 2 − 3 − 4,

where we have arranged the partitions according to n − |A1| with 1 ∈ A1. Note that the

numbers 1, 1, 3, 4 in this classification are precisely the ballot-numbers b3,k (0 ≤ k ≤ 3). In

the light of Proposition 6, it remains to show that the numbers

mn,k = {π ∈ 5n+1 : n + 1 − |A1| = k} (0 ≤ k ≤ n)

satisfy (12), where we set mn,n+1 = mn,n .
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We trivially have m0,0 = 1. Let 5n+1,k be the subfamily with |A1| = n + 1 − k, let π ∈
5n+1,k with 1 ∈ A1, 2 ∈ A2, and assume k ≤ n −1. We associate to π the following partition

π ′ ∈ 5n : Delete 1 from A1 and merge (A1\1)∪ A2, keeping all other blocks unchanged. It is

easy to see that π ′ is strongly non-crossing. Now if A1 = A2, then n − |A1 ∪ A2\1| = k, and

if A1 6= A2, then n − |A1 ∪ A2\1| ≤ k − 2 because |A1| ≥ 2 and therefore |A2| ≥ 2 by the

definition of strongly non-crossing. It is straightforward to check that π → π ′ is a bijection

from 5n+1,k onto
k−2⋃
i=0

5n,i ∪ 5n,k . In the case k = n, A1 = {1} is a singleton, and we clearly

have mn,n =
∑n−1

k=0 mn−1,k =
∑n−2

k=0 mn−1,k + mn−1,n , thus proving our result.

REMARK. The same classification for the ordinary non-crossing partitions yields the ballot

numbers an,k for Cn .

REMARK. It may be interesting to see how the involution of non-crossing partitions de-

scribed in [8] acts on the set of strongly non-crossing partitions.

Let us turn to the second ballot-number sequence. Let cn,k (0 ≤ k ≤ n) be defined as

follows:

c0,0 = c1,0 = 1

cn,k = (cn−2,0 + · · · + cn−2,k) + (cn−3,0 + · · · + cn−3,k−1), n ≥ 2, 0 ≤ k ≤ n − 2,

cn,n−1 = cn−2,0 + · · · + cn−2,n−2 (n ≥ 2)

cn,n = 0 (n ≥ 1). (13)

The first values are given in the following table:

n◗
◗

k 0 1 2 3 4 5 6

0 1

1 1 0

2 1 1 0

3 1 2 1 0

4 1 3 3 2 0

5 1 4 6 6 4 0

6 1 5 10 13 13 9 0

PROPOSITION 7. We have

(i)
∑n

k=0 cn,k = Mn (n ≥ 0)

(ii) cn,n−1 = Mn−2 (n ≥ 2).

PROOF. This time we give a combinatorial proof and determine the generating functions

later. Let Mn,k be the subfamily of all arrays a1 . . . an
b1 . . . bn

in Mn with the leading 1 among the

bi s appearing in place n − k + 1. The array has thus the following form:

a1a2 . . .0 . . . an
(0 ≤ k ≤ n − 1).

00 . . .1 . . . bn︸ ︷︷ ︸
k

Note that Mn,0 contains just the all-zero array. We want to show that the numbers pn,k =
|Mn,k | satisfy the recursion (13). This will prove part (i) and also (ii) as pn,n−1 clearly equals

Mn−2.



Motzkin numbers 673

We have p1,0 = p2,0 = p2,1 = 1 in agreement with (13), and p0,0 = 1 by definition.

Suppose n ≥ 3, A ∈ Mn,k , and assume that there are i
0
0 columns between the last 1 in the

first row of A before the leading 1 in the second row:

a1 . . . ah1

i︷ ︸︸ ︷
0 0 0 . . .

∣∣∣∣∣ · · ·

∣∣∣∣∣0 . . . 00 0 0 1 . . .

c Z c′

We now map A into A′ ∈ Mn−2 ∪ Mn−3 as follows:

(a) If i ≥ 2, remove two 0
0 columns from Z ,

(b) If i = 0, remove the columns c and c′,
(c) If i = 1, remove c, Z , c′.

Clearly, A′ is a Motzkin array. In case (a) we have A′ ∈ Mn−2,k , in case (b) A′ ∈ Mn−2,≤k−1,

and in case (c), A′ ∈ Mn−3,≤k−1. Note that for k = n − 1, the cases (a) and (c) cannot occur.

The map A → A′ is easily seen to be a bijection, and we are finished. ✷

Again we note that the corresponding classification for Cn yields the ordinary ballot numbers.

EXAMPLE. A beautiful combinatorial setting counted by the Motzkin numbers was discov-

ered by Gouyou-Beauchamps and Viennot [3]. Mn is the number of subsets S ⊆ N × N in the

first octant, 0 ≤ y ≤ x , of size n + 1 satisfying the following property: If p ∈ S, then there

is a lattice path from (0, 0) to p with steps (1, 0) and (0, 1) all of whose vertices lie in S. For

n = 4 we obtain the following nine configurations:

r r r r r

r r r r

r

r r r r

r

r r r r

r

r r r

r r

r r r

r

r

r r r

r r

r r

r r r

r r

r r

r

If we classify these nine configurations according to the number of elements above the base

line, we obtain precisely the ballot numbers c4,k , 0 ≤ k ≤ 3. The following operation shows

that this holds in general, thereby providing an alternate proof of their result. Let P be an

admissible configuration of size n + 1. Remove the two right–most points on the base line.

The new configuration will, in general, not be admissible anymore; let Q be the set of

‘hanging’ points, that is the set of those points which cannot be reached from (0, 0) by an

admissible path. Now slide Q one step down, diagonally to the left. There may arise one

duplicate point which we only keep once. (Note, that this accounts for n + 1 to drop down to

n − 2.) This yields the desired bijection P −→ P ′. To illustrate the map P −→ P ′ look at

the following example, where the points denoted by × form the set Q.

P =
r r r r r r r r

r r r r

r r r

r r r r

−→
r r r r r r

r r r ×
r ××
r r r r

−→
r r r r r r

r r r r r

r

r r r rr r r r

= P ′.
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Finally, we want to compute the generating functions Cn(x) for the n-th row (cn,0, cn,1, . . .),

extending the recursion (13) to all n and k. Using (13) backwards it is not hard to see that

c0,n = c1,n for all n, and

c0,0 = 1, c0,1 = 0, and c0,n+2 = −M0 + M1 − · · · + (−1)n−1 Mn (n ≥ 0).

With
∑

n≥0 Mn xn = 1−x−
√

1−2x−3x2

2x2 , we thus obtain

C0(x) = C1(x) = 1 − 1+x−
√

1+2x−3x2

2(1−x)

= 1−3x+
√

1+2x−3x2

2(1−x)
.

Furthermore, (13) implies

Cn(x) =
Cn−2(x)

1 − x
+

xCn−3(x)

1 − x
+ C0(x)([n = 0] + [n = 1]).

Setting F(x, t) =
∑

n≥0 Cn(x)tn , we find

F(x, t) =
t2 F(x, t)

1 − x
+

xt3 F(x, t)

1 − x
+ (1 + t)C0(x),

and hence

F(x, t) =
(1 + t)C0(x)

1 − t2

1−x
− xt3

1−x

=
C0(x)

1 − t − x
1−x

t2
.

Using partial fractions, this yields

Cn(x) =
C0(x)√

1+3x
1−x







1 +
√

1+3x
1−x

2




n+1

−




1 −
√

1+3x
1−x

2




n+1
 ,

and thus our final formula

Cn(x) =
1 − 3x +

√
1 + 2x − 3x2

1 − x

1

2n+1

∑

i≥0

(
n + 1

2i + 1

) (
1 + 3x

1 − x

)i

.

REMARK. It was pointed out by the referee that the two ballot-number sequences can, after

suitable rearrangement, be recovered in the context of Riordan matrices. For the first sequence

we obtain 


1 0 0 0 0 . . .

1 1 0 0 0 . . .

2 1 1 0 0 . . .

4 3 1 1 0 . . .

9 6 4 1 1 . . .

. . .

. . .




=


M(x),

1 −
√

1−3x
1+x

2x


 ,
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and for the second



1 0 0 0 0 . . .

1 1 0 0 0 . . .

1 2 1 0 0 . . .

2 3 3 1 0 . . .

4 6 6 4 1 . . .

. . .




= (1 + x M(x), x(1 + x M(x)),

where M(x) is the generating function of the Motzkin numbers.
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