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1. Introduction

The classical Jacobi polynomials P,(,a’ﬂ ) (x) of degree n are defined by the Rodrigues formula
@.p) (=D"1=x)"%1A+x)"F d
PP (x) = o D1 - 0" 1 +x"F} (Dy:= = (11)
or, equivalently, by
o+n 1—x
P;“’ﬂ)(x)=< : >2F1<—n,ot+,3+n+1;a+l;T>, (1.2)

where ,F; denotes the familiar (Gauss) hypergeometric function which corresponds to the special case r — 1 =s=1 of the
generalized hypergeometric function ,Fs with r numerator and s denominator parameters. The classical Jacobi polynomials
P'%)(x) are generated by

o p(@f) 204F
> PP ot = T(1 —t+p) YA +t+p) 7P, (13)
n=0

where p = (1 — 2tx + t2)1/2 [2]. These polynomials are orthogonal over the interval (—1,1) with respect to the weight
function
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wx) =1 —x%1+x7~.
In fact, we have the following relation

2208 P 4+ DI(B+n+1)
Mo+ B+2n+ DM @+B+n+1) ™"

1
/ (1 =01+ PP PP (x)dx =
-1

(min{R(@), R(B)} > —1; m,n € Ng :=NU{0}),
where 8, , denotes the Kronecker delta.

In order to give a unified presentation of the classical orthogonal polynomials (especially Jacobi, Laguerre and Hermite
polynomials), Fujiwara [4] studied the polynomial F,ﬁa’ﬂ) (x;a, b, c) so-called extended Jacobi polynomial (EJP) and defined it
by the Rodrigues formula
(=o"

n!

FP (e ab, )= ——x-a b= Di{x-a" b -0""} (>0). (14)
The polynomials F,S“’ﬁ) (x;a,b,c) are essentially those that were considered by Szegé himself [9, p. 58], who showed (by
means of a simple linear transformation) that these polynomials are just a constant multiple of the classical Jacobi polyno-
mials P,ﬁa’ﬂ ) (x). By comparing the Rodrigues representations (1.1) and (1.4), it is not difficult to rewrite Szegd’s observation
[9, p. 58, Eq. (4.1.2)] in the form (cf, e.g., [8, p. 388, Problem 11}, [6]):

FP) (x: 0, b, ¢) = [c(a— b)}"P,ﬁ“’ﬂ)(% n 1) (15)
or, equivalently,
PP (o) = [c@—b)} TEEP (% {a+b+@—Dbx}iab, C). (16)

Thus, as already pointed out by Srivastava and Manocha [8], the polynomials F,(f"’s) (x; a, b, c) may be looked upon as being
equivalent to (and not as a generalization of) the classical Jacobi polynomials P,ﬂ”’ﬂ ) (x). Furthermore, by recourse to certain
limiting processes, it is easily verified that the polynomials F,ﬁ”’ﬂ ) (x;a,b,c) would give rise to the Laguerre and Hermite

polynomials (and indeed also the Bessel polynomials) just as the classical Jacobi polynomials P,(f[’ﬂ ) (x) do. Consequently,
the main purpose of Fujiwara’s investigation [4] is already served by the classical Jacobi polynomials themselves.
In terms of the hypergeometric function, we find from (1.2) and (1.5) that

F P (xa,b,0) = {C(a—b)}"(a:rI)zF] (—n,a +h+n+TLa+1; %) (1.7)

The EJPs F,ﬁ“'ﬁ)(x;a,b,c) are orthogonal over the interval (a,b) with respect to the weight function w(x;a,b) =
(x —a)® (b — x)?. In fact, we have

b
/(x —a)%(b —x)P F,ga”g)(x; a,b, c)Fr(na’ﬂ) (x;a,b,c)dx
a

M (=)@ (@ — pym B D@ fn+ )T (B+n+1) s
no+p+2n+Dra+p+n+1)
(min{R(@), R(B)} > —1; m,n € Ng:=NU{0}). (1.8)
The main object of this paper is to construct a systematic investigation of a multivariable extension of the EJPs
F,S“"S )(x;a,b,c) and give some relations satisfied by these polynomials. We derive various families of multilinear and
multilateral generating functions for the polynomials F,(f‘"s )(x;a,b,c). We also obtain relations between the polynomials
F,S“*ﬁ )(x; a, b, c) and some other known multivariable polynomials.

m,n

2. Multivariable EJPs and their properties

With the help of the products of the EJPs F,ﬁa’ﬂ) (x;a, b, c), we define the multivariable EJPs with degree n as follows:

Fl(lal ----- s By Bs) (X) = Frgll)llq-tnas:ﬁ]wuﬁs) (X] e XS)

..... ng
= FP) (xy; a1, b1, 1) .. FP) (xs; as, bs, ), 1)

where X = (x1,...,Xs) and n=nq +--- +ns; ny,...,ns € Np.
The following results can easily be proved by using (1.6) and (1.7).
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Theorem 2.1. The following relation between the polynomials F,(f[1 """ i S)(x) and the classical Jacobi polynomials P,(,'f“ﬁ ")(xi)
holds:

s

(@1sess3 B ) ni (e B) ( 2(Xi — ai)
F =[T{ci@ —bn}" Py; T ).
n x) H{q(a, D} P, ( P +

Theorem 2.2. By means of the hypergeometric function , F1, we have

S
; i+
Fl(1061,“..a3,ﬂ1 ,,,,, ﬂs)(x) _ H{Ci(ai _ bi)}" < ln 1>

i=1 !

X — i
><2F1(—ni,ai+ﬁ1+ni+1;a;+l;b' a1>' (2.2)
i—a

Corollary 2.3. We have

= li[{ci(ai — by} FR (% {ai +bi + (@i — bi)xi}; ai, bi, Ci>,
i=1
where X = (X1,...,Xs) andn=nq +---+ng; nq,...,ns € Ng.
Now we have the following
Theorem 2.4. The multivariable EJPs F,(,O‘1 “““ s:P1:-0s) (x) given by (2.2) are orthogonal with respect to the weight function
w(X) = w1(x1;a1,b1) ... ws(xs; as, bs)

= (X1 —an® (by — x1)P1 ... (xs — a5)® (bs — x5)Ps

over the domain

Q={x=(@,....x): aq;<x;<bj; 1=1,2,....5}.
Proof. By (1.8) and (2.1), we have

/Fl(lal ..... 053 tveafs) (o) FL@1 - 53B1 0 B5) () 1 30)

by
= / Fr(flxl’ﬂl)(xl: 1117191,Cl)Fr(nu?'ﬂ])(Xl;01,1?1,61)(?(1 —a)* (b1 —x1)P dxg
ap

bs
X X / Fr(lixs’ﬂS)(Xs; as, b, Cs)Fr(zgs’ﬁS)(Xsi as, b, ¢5)(xs — as)* (bs — Xs)ﬂs dxs
as

= ﬁcmwnf(_l)mmﬁ (@i — b AT Ms i A DEBidmit D
il nillei +Bi+2ni+1) @i+ pi+ni+1) m

where dx =dx; ...dxs and min{R(«;), R(8;)} > —1; m;,n; e Ng:=NU{0}; i=1,2,...,s. The proof is completed. O
3. Relations between EJP and Chan-Chyan-Srivastava multivariable polynomials

Recently, Chan, Chyan and Srivastava [1] have introduced and investigated the multivariable extension of the classical

Lagrange polynomials g,(fx’ﬁ) (x,¥) [2, p. 267] generated by

r
Jj=

oo
[A=x074} =" g™ (. x0t", 31)
1 n=0

where |t| < min{|x{|71, ..., |x/|"}.



124 A. Altin et al. / J. Math. Anal. Appl. 353 (2009) 121-133

In this section, we give various relations between Lagrange and EJP, Lagrange and multivariable EJP, Chan-Chyan-
Srivastava and Jacobi polynomials. We also obtain an equality for Chan-Chyan-Srivastava polynomials with respect to
hypergeometric function ; Fq(x).

It is well known that the following equality between Jacobi and Lagrange polynomials [1]:

wnpm (XY _
Pyt n)(x—y>:(y—x) g P (x, y) (3.2)

holds. We first get the following result.
Theorem 3.1. For the EJPs F*'") (x; a, b, ¢), we have

—a—n.—B— —b
Fye ’”(—ai_yy;a,b,c):{c(a—b)}”(y—x)‘”gé""ﬁ)(x,y)‘

Proof. In (1.5), taking % +1— ;H_'—z o — —a —n and 8 — —B —n, we obtain

a—n.—f— —b —a—n—f—
Fiem ok n)<—ax y;a,b,c):{c(a—b)}nP,(, a—n.—p n)<x—+y)A
X—y X—Yy

Using (3.2) in the right-hand side of the last equality, we find the desired result. O
The next result can be obtained from Theorem 3.1, immediately.

Theorem 3.2. For the multivariable EJPs, we have

S
. —oi—ni —Bi—n:) [ QiXi — biyj
Fl(lal ----- as; B, ﬁs)(x; y) — | | Fzg, ai—nj,—pi nx)( le‘ yl.yl : afvbi7 Ci)
11— N

S
= H{Ci(ai - bi)}ni yi— Xi)_n"g;g?i’ﬂi)(xi, yi),
i=1

where X = (X1,...,%), Y= (V1,...,¥s), n =11 + --- +ng; n1,...,ns € Ng and F,(,O“""‘D‘S:ﬁ1 """ ﬁS)(x; y) is multivariable EJP of
degree n with 2s variables.

Theorem 3.3. The Chan—Chyan-Srivastava multivariable polynomials g,ﬁal""'a’) (X1, ..., xr) satisfy the following equality

r—2
(G2 _ —i ni i o\
&n Xiox) = Y ]_[( N )(—1) X (X1 = )"

n+en_1=n i=1

x P(*D‘r*nr—l ,—0r_1—Ny—1) <Xr + Xr—1 )

fir=1 Xr — Xr—1
Proof. For each j=1,...,r, taking Taylor expansions of the functions (1 — x;t)~*/ and after some simple calculations, it
follows from (3.1) that the equality
k1 kr
(a1,....0r) — XL X
&n X1,...,%) = Z (Oll)kl---(dr)k,k1!mkr!

ky+-+kr=n

holds (see [1]), where (A)g:=A(A+1)...(A+k—1) and (A)g := 1 denotes the Pochhammer symbol. From this expression,
we may write that

( ) A
at,...,o 1 r
gnl T(Xls-..,Xr)Z Z (al)kl...(ar)krﬁ...ﬁ
fey+-+kr=n r r
n k] kr—z

= Z Z Z (@) n—k; (@2)k; —ky « - (O —1Dky_p—ky_y P )kp_y

k1=0 k=0 kr—1=0

n—ki k1—kz kr—2—kr—1 kr_1
Xl X2 Xr—l Xr

=k k—k)! T U2 — k) k!
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n kr 2 Ar_q
= ="
-5 () ()6
x X ki k]_’Q..Axlr‘r‘].

Multiplying and dividing by (x,_; — x;)*—17*—2 the last equality and making the necessary arrangements, we can obtain
that

n k1 kr—3
—O_ _
s =30 3 3 () (S, e

k] 0 k2
n—ky ki—ka Kkr_3—kr_2 ke
XXXy XS T (X — X)) 2
P( or—kr_z,—or_1—kr—2) [ Xr +Xr—1
kr—2 Xr — Xr—1

S | [ ST T

ki+-+kr—1=n i=1

x Plg_ollr_kr—l ,—0r—1—kr—1) (Xr +Xr—1 ) )
—

Xr — Xr—1
Therefore, taking n; instead of k; (i=1,...,r — 1) in the last statement, the proof is completed. O
Theorem 3.4. The Chan—Chyan-Srivastava multivariable polynomials ,g“"1 """ ar) (X1, ..., xr) have the following relations:

g = Y ]_[( )( DM (-1 — X)) {c@—b)} !

ny+--+n_1=n i=1

— — ax, bX —

Oy —1, o —n T r—1

F(r 11 r—1, r—1 r—1) .a, b, c
Xr — Xr—1

and

(@1,....0r) _ i i o [ T
&n W)= Y H( )( DM (-1 = X) 1<n )

ny+-+np_1=n j=1 -1

Xr—1
x 2F4 (*nr—lv O — Q1 — Ny + 1, —ar —np 1 + 15 ﬁ)
r—1 — Ar

Proof. In (1.5), taking % +1—> ;‘:f% n—nr_1, @ = —ay —ny_1 and B — —o;_1 —ny_q, we obtain
(—0r—Mr—1,—0r—1—Nr—1) Xr + Xr—1 _ —nNr—1 (—ar—nr—1,—0r—1—nr—q) [ OXr — bXT 1
P”r 1 VI —{C(a—b)} F”r 1 77, ,b Cc
Xr — Xr—1 Xr — Xr—1

Using this fact and Theorem 3.3, the first equality follows. Similarly, by (1.7) and the first equality of this theorem, we
obtain easily the second one. O

4. Generating functions and recurrence relations for multivariable EJPs

In [7] it was shown that the Jacobi polynomials are generated by

[ee) (a,B) _
Z(a+ﬂ+1)n1’n (x)tnz(l_t),l,a,ﬂ2F1<a+ﬂ+1’oz+ﬁ+2;1 a;Zt(x 1))
(1+a)n 2 2 (1 —1t)2

n=0

Using this formula and (1.6), it is easily seen that the EJPs Fr(,a’ﬂ) (x,a,b, c) hold

i @+ B+ Dnlca—b)}y"FP (x:a,b, c) n

bt 1+ o)

e o (@Bl @2 Atx—0)
=1-0 2F1( 2 2 % uCha—io?

(4.1)
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Theorem 4.1. For the multivariable E[Ps F*" % #1-P) %) we have

o0
Yy PP B g g

:
—ai—B; i+pi+1 aj+pBi+2 4ti(x; — aj)
=[] -t e pigp, (HEST X oy — 42

£y ) 2‘( 2 2 T G by — )2 (42)

or, equivalently

.
B ai+pi+1 aj+Bi+2 —4t;v;
—_||1—t- 1-ai=fi  p ! , 4o —— ), 43
l_]( 1) 21 2 2 i (1_ti)2 ( )

where

(i + Bi + Dy {cit@ —bp} "
v =[]  +an,

)

i=1
(b—ayw+a=((by—ap)vi+a,...,br—a)v, +ap).

Proof. Using (2.1) and (4.1), we obtain the first generating relation. Changing appropriate variables, we have the second
one. O

Now, we need the following lemma to obtain some recurrence relations for multivariable EJPs F,(,“"""“';ﬂ 1o r)(x).

Lemma 4.2. Let a generating function for fy, . n (X1,...,%r) be

m (X1, Xt (4.4)

yeees

—4x1tq —4x, tr ) ad

iy R _
A=t .. (d—t) W((l—n)z’”"(l—tr)z

= Sy
ni,.., l’lr:O

where fu,, . . (X1, ..., X;) is a polynomial of degree n; with respect to x; (of total degree n =ny + - - - +n;), provided that

—4x;t;
Yur,...,u) = Y1) ... Pr(ur); Uj=—>5, i=1....7,
(1—t)
o0
Vi) = ) gnu;’, @0 #0.
n;=0
Then we have
af .... . af yeensNi—1,0i—1,Mj11,..., r
Xi nalx,- - =i foy,n = =i +1i =D fay oy mi—tngg o — Xi a 18”)(,‘ i 45
1 ni—1
af ..... n ’ af SO PRSI &) PR TRN  1
Xt =i fny,..n, = —di Z frroomisy ki n, — 2%i Z o Bt SRl (4.6)
3x; axi
k=0 k=0
8f n,-—]
Xi Moty nifag,ny = Z(—l)ni_k(di + 2k)fn1...4,ni_1,k,n,'+1,...,ﬂr’ (4.7)
oxi k=0

Proof. Differentiating (4.4) with respect to x; and t; and making necessary arrangements, we obtain the desired rela-
tions. O

As a result of Lemma 4.2, considering (4.3), we can write that
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_(ai+ Bi+ on

=BT g4 B+ 1, i=1,...,T
220in;1(1 + i), =it it

nj

With the help of Lemma 4.2 and also considering (4.5)-(4.7), one can easily obtain the next result.

Theorem 4.3. For the multivariable EJPs F,(Ial""'“’;ﬂ 10ee0Br) (x), we have the following recurrence relations, respectively:
0 (@1 Broe )
X —ap)y @y, ..., np)—Fp 4
ax; 7
0 (@ssri Bl Br)
+ & —a)y @y, ...,n_1,n —1,ni4q, ..., nr)a—xiFn],1,“,n,-f1,;11,-—1,nr,-+1,m,nr
(®1,..., Blyens )
=—(aj+pi+n)ym,....nj_1,n — 1, nj41,..., "T)Fn?}...,nirlﬁl,-—l,ﬁrm YYYY n
F iy, ) E PP
0 . .
(i = @)y () Fr ) gy g B )
1
ni—1

(@1, Blyeees )
==y, ...nic ki, nr){(a,- + B+ DE el
k=0

0 (@11 B)
+2(xi — al)a_xl.Fﬂl,wﬂif],k,"iﬂ ~~~~~ n |
and
0 . .
& —a)y i, ..., nr)gFé‘f}::;;{f‘r‘ﬁ“"‘ﬁ” —niy(nn, ..., n) FOL s er P o
1
nj—1
= DD Bt T+ 2y @i Ko i P
k=0

Fujiwara [4] shows that the EJPs are generated by

9] 201+/3
Y REP @t = S+ 8t +p) (1 =5t + p) P,
n=0 p
where
p={1+2eX ) +8})"?, X =cx—a)b—x),
8 =c(b—a).

As a generalization of this expression, we have the following result by using (4.8).

Theorem 4.4. For the multivariable EJPs, we have

ad T owithi

S HE PP et =[] T (1 8+ o) T (1 = it + o) P

n=0 i=1 M
where

n n—ng n—-ny—---—nr_2
(@1,.0s0r3 B150 Br) _ (a@1,..., or; B,y Br) .
Hj X1,...,%) = Z Z Z an(n1+“.+nr71),n1,“”nril X1, ..., Xr);
n1=0 n,=0 ny—1=0

and also

172
pi = {1+2tX](x;) + 67t} 2 Xixi) =ci(xi — ap) (b — X)),

8i =ci(b; —ay).
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5. Partial differential equation for the product of EJPs
Lee [5] obtained a partial differential equation for the product of two Jacobi polynomials. Actually, the family of polyno-
mials having the form

n,oo

8 s
@all2o =P 0P DYk o

holds the equation

(1- XZ)ZUXXXX —-2(1- xz)(l - yz)”xxyy +(1- yz)zuyyyy
+2[B—a—(@+p+Dx](1 - x)umx —2[f —a — (@ + B+ 2)x](1 — y*)uxyy
20—y —CG+y+2y](1 —P)uny +2[6 —y — G+ ¥ +Dy](1 — ¥*)uyyy
+[An(1 = %) + a1 (%) (a1(®) — 2%) Jure + [Bn (1 = ¥2) + b1(») (b1(¥) — 2y) Juyy
—2b1(y)a1 (X)uxy + Cha1 (X)ux + Dpb1(Y)uy +n(n+a + B+ 1)
xm+y+s+1Hn+a+B+y+6+2)u=0, (5.1)

where

Ap=2 +(y +84+2n+ D@+ B+y +8+2) =2+ +3),
By=2n*+(+p+2n+D(@+p+y+8+2)—2(y +8+3),
Crn=2n*+(y+s+2n+Da+B+y +8+2)— (@+p+2),
Dp=2n*+@+p+2n+D@+p+y+8+2)—(y +8+2),
@ =p-—a—(@+B+2)x,  bi(y)=5—y—-E+y+2)y.

By means of this equation and the relation between Jacobi polynomials and EJPs given by (1.5), we give a partial differential

equation satisfied by the product of two EJPs as follows.

Theorem 5.1. The family of polynomials given by

s 0 s
(@a}le2o = {F e ar by, c) FY D (yiaz. ba. )} o

holds

(x —a1)*(x = b1) e + (v — a2)2(y — b2)*Uyyyy
—2(x—a1)(x—b1)(y —a2)(y — b2)uxxyy
—[(B=a) (@1 —b1) — (@ + B+4)(2x —ar — by) | (x — a1) (x — b1)uxxx
+[(B—a)@ —b1) — (@ + B +2)(2x — a1 — b1)](y — az)(y — b2)uxyy
+[(6—=y)az—by) — G +y +2)Q2y —az —b2)](x —a1)(x — bty
—[=y)az—b) — B +y +4Q2y —az—b)]|(y —a2)(y — b2)uyyy

+

—An(x—ay)(x—by) + a;—x)(a(X) —22x—a _bl))}uxx

{ b(y)

+1—Bn(y —a2)(y — b2) + T(b(J’) —2Qy—a;— bz))}uyy

1 1 1
— Ea(x)b(y)uxy + ECna(x)ux + EDnb(y)uy +nn+oa+B+1)
xm+y+s+1Hn+a+B+y+35+2)u=0,

where A, By, C, and D, are the same as above; and also

ax)=(B —oa)a —b1) — (¢ + B +2)(2x —ay —b1),
b(y)=06—-y)a2—b2) =6+ y +2)2y —az —by).
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Proof. In (5.1), taking

2(x — 2(y —
MR (x al)_i_]’ v y ﬂz)_H
a; — by a; — by

and using 1.5, we easily obtain the desired equation for the product of two EJPs. O
6. Integral representations for the multivariable EJPs

The Jacobi polynomials P,ﬁa’ﬁ )(x) have the following integral representation given by Feldheim [3]:

[e°]
1
PP (x) = (et (5 - X)t) dt

1
F(a+ﬁ+n+1)0f
(¢+B>-1,Vne{0,1,...}), (6.1)

where L,(f‘) is the Laguerre polynomial of degree n. By (6.1) and (1.5), it is easily seen that the EJPs have the following
integral representation

o0
— b))\ _
FOPa b, )= OO [apingrp@(X790) g
F'a+pB+n+1) b—a
0

As a result of this formula, we obtain the next result.

Theorem 6.1. For the multivariable EJPs Fy 1,051 1.....P 5)(x), we have the following integral representation

Fl(lal---nas?ﬁl ----- ﬁs)(x)

000 oo .
2/// l_[ {ci(a; — bp)}™ t;¥1+ﬂx+n1e—t1L(d)<;aiti) dt
o+ Bi+ni+1) x bi —a;
00 0

(@i+Bi>—1,i=1,...,5, Vn; €{0,1,..0}),
where dt =dtq .. .dts.

Theorem 6.2. For the multivariable EJPs F,(,O“""“)‘“ﬁ1 """ Bs) (z), we have another integral representation formula

Fl(.lala-was?ﬂlw-,ﬂs) (1, ..., ZS)

= FP 215 a1, b1, cr) o FEOP) (25 ag, b, )

11 1 s
f/ /]‘[A(s)r‘“ﬁﬁ”la )P — b+ zjt; —ajtp) de
0 0

j=1
<1; j=1,. )

s nj
c:I'(aj+nj+1)
— — J
de=dtrdts, A0 =]] F(j+ D (aj+Bj+nj+DI(=Bj—nj)
=1 J JTRPIT ]

0
(Re(al +1)>Re(xj+8j+nj+1)>0,

b]

where

Proof. We know that the integral representation for the classical Jacobi polynomials Pr(,a’ﬂ ) (2) (see [9]) is

Ta+n+1)
2+ D @+p+n+DI(——n)’

1
PP (2) = / P — PN — - t2)" de
0

z—1
Re(w +1) >Re(w +B8+n+1) >0, ‘? <1.

Using this equality in (1.5) and (2.1), we obtain the desired result. O
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7. Multilinear and multilateral generating functions

In this section, we derive several families of multilinear and multilateral generating functions for the multivariable EJPs
given by (2.2).
We begin by stating the following theorem.

Theorem 7.1. Corresponding to an identically non-vanishing function £2,,(y1, ..., ys) of s complex variables y1, ..., ys (s € N) and
of complex order 1, let

o0
Apyv(Y1,...,Ys:2) == ZakQMJrvk(YL cees }/s)zk (@ #0, u,vel (7.1)
k=0
and
[n/p]
Onprw X1 X Y1 Ysi ) i= ) H P () QD y)EE mop e, (7.2)
k=0

Then we have

o0
Ui
Z@n,p,u,u<x17 X Y1, Yss ﬁ)tn
n=0
T oaithi

(it o)A =8it+ o) Ay (y1, L ysi ) (7.3)
1

i=1
provided that each member of (7.3) exists, where

/ 1/2
pi={1+2eXa) + 8222, X = cixi — ap by — x3),
8i = ci(b; — aj).

Proof. For convenience, let S denote the first member of the assertion (7.3) of Theorem 7.1. Then, upon substituting for the
polynomials

n
@n,p.u$v<xlv--~7xr§y1a~--s_Vs; t_p>

from the definition (7.2) into the left-hand side of (7.3), we obtain

oo [n/p]
S=3 D aH P ) Ry yn T, (7.4)
n=0 k=0

Upon inverting the order of summation in (7.4), if we replace n by n + pk, we can write

n=0 k=0
o0 o0
:ZHr(im ..... arfroens ﬁr)(Xl, AT Zakg,u—o—vk(}’ls ~--7y3)77k
n=0 k=0
T oaithi

(A +8it+ )% A =8t + o) P A vy, ..., ysim),

1

which completes the proof of Theorem 7.1. O

Theorem 7.2. Corresponding to an identically non-vanishing function $2,,(y1, ..., ys) of s complex variables y1, ..., ys (s € N) and
of complex order (, let
[o¢]
A1, Y52 = kY1, .., Y52 (@ #0, v eC). (7.5)
k=0

Then we have
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oo [m/p]

Z Z Zﬂk)/(m—pk,nz,...,nr)

n1=0 ny,...,n,=0 k=0
©@1,...0r3 815, Br) ny n kn1—pk
X mepk,n;,,..,nr T X G 2ok (V1 L YN

.
=Apv(Y1,. Y5 M) l_[(l e

i=1

><2F1(ai+'3i+l oi+Bi+2 4ti(xi — a;) ) (76)

, ;1 i;
3 p T G b — )2

provided that each member of (7.6) exists, where

r

1+ 1+1 iCi I_bl —nj
y (1, .,nr)zl_[(a B (1)i§i)(rclzi ) .

i=1

Proof. For convenience, let S denote the first member of the assertion (7.6) of Theorem 7.2. Straightforward calculations
give
[o¢]

[o¢]
S= Y Y@y ) Fner e P xRy yon®
ny,...,nr=0 k=0

o0 (o]
= Zak9M+U,<(y1, L yon Z Y@r, o g FAC @ PP o et
k=0 ny,...,ny=0

If we use (4.2), then the proof of Theorem 7.2 is completed. O

8. Further consequences
By expressing the multivariable function

2uok(Y1, ..., Ys) (keNp,seN)
in terms of simpler function of one and more variables, we can give further applications of Theorem 7.1 as well as Theo-
rem 7.2. For example, if we set

s=r and Q1. y0 =gt vy

in Theorem 7.1, where the Chan-Chyan-Srivastava multivariable polynomials

)

is generated by (3.1), then we obtain the following result which provides a class of bilateral generating functions for the
Chan-Chyan-Srivastava multivariable polynomials and the multivariable EJPs defined by (2.2).

Corollary 8.1.If Ay v (Y1, ..., Y13 2) i= Y peo akgfjvyl’l;‘,é’m(yh ..., yr)Z¥ where ay #0, v, i € No; and

n  n-m n—ny—-—ny_y

TS ED Sl SRR S et IR )

n1=0 ny=0 ny—1=0
then we have

s n T ocithi ) :
> O <x1, X Ve Y t—p)t” =11 > (48t + pi) "% (1 =it + pp)~Fi
n=0 i=t M

X ApvY1s---5 Y M) (8.1)

provided that each member of (8.1) exists.
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Remark 8.1. Using the generating relation (3.1) for the Chan-Chyan-Srivastava multivariable polynomials and taking a; =1,

mw=0,v=1, we have

oo [n/p]

Z ZH(OH ..... o B, ﬁr)(xl’ xr)gm Vr)(yl’””yr)nktn—pk
n=0 k=0

—H

20‘1+,31
(A +8t+p) "% =8t + p) Pl — yip) ™,

where

(Il <min{ly:|7" ...yl 7))

Choosing s =r, and 2,y k(¥1,...,¥r) = HOo 00D () y ) (v € Np), in Theorem 7.1 we obtain the follow-

Hn+vk
ing class of bilinear generating function for the multivariable E]JPs.

Corollary 8.2. If

00
ApvY1, .0 Yr32) = ZakHLy_:_vk R Ur)()’lm--’J/r)Zk,

where ay #0, i, v € Ng and

[n/p]

® . CrY e (01,003 B, Br) V12, ¥r101,...,07)
Onp, v K1 Xes V1o Vi €)= ) @eH X PP ey ) H M V1.

where n, p € N, then we have

o0

n
ZOQH,P.MJ)(XL~--er§Yls~--».Vr§ t—p>t"=l_[
n=

i=1

20‘1"'51
(1 + it + p)~% (1 = 8it + pi) P

i
X ApvY1s- Y M)

provided that each member of (8.2) exists.

p-o)

If we choose s =1, 2,40k(¥) =P, [

Corollary 8.3.1f A, ,(y: 2) == Y22 axPV:%) ()7 (ar #0, w, v € No), then we have

nAvk
00 [n1/p]
Z Z Zaky(nl pk,ny, ..., ng)
n1=0 ny,....n;=0 k=
(a1,....ar:B1, . Br) ny ny p(¥,0) kn1 pk
XFm pkn; ,,,,, ny r(X]""’Xr)tZ‘ trpu—o—vk(y) t

= Auv(y: n)]_[(l —ty) 1 h
i=1

(Oli+/3i+l ai+Bi+2 A4t (xi — a;) )
x o F1 . Lot T

, 1t a;
2 2 T by — )2

provided that each member of (8.3) exists, where

ny) = 11[ (@i + Bi + D fci(a; — by} ™ |

n,...,
y(m 1+,

i=1

Remark 8.2. Using (1.3) and taking a, =1, © =0, v =1, we have

-7Yr)§k,

(y) (ax #0, u,v € Ng) in Theorem 7.2, we obtain the following result which
provides a class of bilateral generating functlons for the classical Jacobi polynomials and the multivariable EJPs.

(83)
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oo [m/p]

Z Z Z y (1 —pk,ny,...,np)

n1=0 ny,....,n;=0 k=0

[CTI" or; By Br) n (y,0) k.n1—pk
X Fm]—pk,n;,.j,nr , (... Xr)tzz "'t?r Pk (y)n t]1

2V 0 d
="——(=n+p) 7V A+n+p " [[a -t " H
i=1
ai+Bi+1 ai+pi+2 Ati(xi —ai)
x 2Fq , 4o ——————— |,
2 2 (@i —bi)(1 = ti)
where p = (1 —2ny +n*)1/2.
Furthermore, for every suitable choice of the coefficients ay (k € Np), if the multivariable function £, 1vk(y1,...,¥s)

(s € N), is expressed as an appropriate product of several simpler functions, the assertions of Theorems 7.1 and 7.2 can be
applied in order to derive various families of multilinear and multilateral generating functions for the multivariable E]JPs.
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