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Abstract

It is well known that the classical families of Jacobi, Laguerre, Hermite, and Bessel polynomials are characterized as eigenvectors
of a second order linear differential operator with polynomial coefficients, Rodrigues formula, etc. In this paper we present a unified
study of the classical discrete polynomials and q-polynomials of the q-Hahn tableau by using the difference calculus on linear-type
lattices. We obtain in a straightforward way several characterization theorems for the classical discrete and q-polynomials of the
“q-Hahn tableau”. Finally, a detailed discussion of a characterization by Marcellán et al. is presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The well known families of Hermite, Laguerre, Jacobi, and Bessel polynomials (usually called the classical orthogonal
polynomials) are the most important instances of orthogonal polynomials. One of the reasons is because they satisfy
not only a three-term recurrence relation (TTRR)

xP n(x) = �nPn+1(x) + �nPn(x) + �nPn−1(x), �n �= 0, P−1(x) = 0, P0(x) = 1, (1.1)

but also other useful properties: they are the eigenfunction of a second order linear differential operator with polynomial
coefficients, their derivatives also constitute an orthogonal family, their generating functions can be given explicitly,
among others (see for instances [1,8,24,25] or the more recent work [3]). Among all these properties there are very
important ones that characterize these families of polynomials.

In fact not every property characterizes a sequence of classical orthogonal polynomials. The simplest example is the
TTRR (1.1). It is well known (see e.g., [8]) that the TTRR characterizes the sequences of orthogonal polynomials if
�n �= 0 for all n ∈ N. This is the so-called Favard Theorem (for a review see [18]). Nevertheless there exist several
families that satisfy the TTRR but not a second order linear differential equation with polynomial coefficients, or a
Rodrigues-type formula. In fact only the aforesaid families of orthogonal polynomials satisfy these properties.
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Table 1
The classical OPS

Pn(x) Hermite Laguerre Jacobi Bessel

Hn(x) L�
n(x) P

�,�
n (x) B�

n(x)

(a, b) R [0, ∞) [−1, 1] T := {|z| = 1, z ∈ C}
�(x) 1 x 1 − x2 x2

�(x) −2x −x + � + 1 −(� + � + 2)x + � − � (� + 2)x + 2

�n 2n n n(n + � + � + 1) −n(n + � + 1)

�(x) e−x2
x�e−x (1 − x)�(1 + x)� 1

2�i

∞∑
k=0

	(a+2)
	(a+k+1)

(
− 2

x

)k

�> − 1 �,�> − 1 �> − 2

Definition 1.1. We say that the orthogonal polynomial sequence (OPS) (Table 1) (Pn)n is a classical OPS with respect
to the weight function � if∫ b

a

Pn(x)Pm(x)�(x) dx = 
mnd
2
n , (1.2)

where 
mn is the Kronecker symbol 
mn = 1 if n = m and 0 otherwise, dn is the norm of the polynomial Pn, � is the
solution of the Pearson equation

[�(x)�(x)]′ = �(x)�(x), (1.3)

where � and � are fixed polynomials of degrees at most 2 and exactly 1, respectively, such that the following boundary
conditions hold1

�(a)�(a) = �(b)�(b) = 0.

It can be shown (see e.g., [3,8,25]) that the only families satisfying the above definition are the Hermite, Laguerre,
Jacobi, and Bessel polynomials. Nevertheless there are other properties characterizing such families and that can be
used to define the classical OPS. The oldest one is the so called Hahn characterization—unless this was firstly observed
and proved for the Jacobi, Laguerre, and Hermite polynomials by Sonin in 1887. In [12], Hahn proved the following,

Theorem 1.2 (Sonin–Hahn [12,19]). A given sequence of orthogonal polynomials (Pn)n, is a classical sequence if
and only if the sequence of its derivatives (P ′

n)n is an orthogonal polynomial sequence.

Furthermore, we have the following (see e.g., [1,8,19,20]).

Theorem 1.3. Let (Pn)n be an OPS. The following statements are equivalent:

(1) (Pn)n is a classical orthogonal polynomial sequence (COPS) (Hildebrandt [14]).
(2) The sequence of its derivatives (P ′

n)n�1 is an OPS2 with respect to the weight function �1(x)=�(x)�(x), where
� satisfies (1.3).

(3) (Pn)n satisfies the second order linear differential equation with polynomial coefficients (Bochner [7])

�(x)P ′′
n (x) + �(x)P ′

n(x) + �nPn(x) = 0, (1.4)

where deg(�)�2, deg(�) = 1, and are independent of n, and �n is a constant independent of x.

1 These conditions follow from the fact that for the classical polynomials the moments �n =∫ b
a xn�(x) dx, n�0, of the measure associated with

�(x) are be finite. Furthermore, here we will restrict ourselves to the Jacobi, Laguerre, Hermite cases. The Bessel case is a little more complicated
and we should use a different boundary condition. For more details see e.g., [3,11].

2 Notice that this is not the Hahn theorem (1.2). In the Hahn theorem the orthogonality of both sequences is imposed whereas here a more
restrictive condition is supposed.
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(4) (Pn)n can be expressed by the Rodrigues formula (Tricomi [28] and Cryer [9])

Pn(x) = Bn

�(x)

dn

dxn [�n(x)�(x)].

(5) There exist three sequences of complex numbers (an)n, (bn)n, (cn)n, and a polynomial �, deg(�)�2, such
that [2]

�(x)P ′
n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n�1. (1.5)

(6) There exist two sequences of complex numbers (fn)n and (gn)n such that the following relation for the monic
polynomials holds (Marcellán et al. [19])

Pn(x) = P ′
n+1(x)

n + 1
+ fnP

′
n(x) + gnP

′
n−1(x), gn �= �n, n�1, (1.6)

where �n is the corresponding coefficient of the TTRR (1.1).

For the sake of completeness we include a proof of this theorem in the Appendix A.

Remark 1.4. Notice that the only orthogonal polynomial solutions of the differential equation (1.4) are the Jacobi,
Laguerre, Hermite, and Bessel polynomials (see e.g., [3,7,8,25]). Therefore, the statements of Theorems 1.2 and 1.3
are equivalent, i.e., they both characterize the same families of orthogonal polynomials.

A natural extension of the classical polynomials are the so-called discrete polynomials (those of Charlier, Meixner,
Kravchuk, and Hahn, see e.g., [8,24,25]) and the q-polynomials (see e.g., [6,24,25]). In this respect, Hahn in 1949 [13]
posed the problem of finding all the orthogonal polynomial sequences satisfying the Theorem 1.2 and the conditions
3 and 4 (among others) in Theorem 1.3 but instead of the derivatives, the linear operator Lq,w

Lq,wf (x) = f (qx + w) − f (x)

(q − 1)x + w
, q, w ∈ R+, (1.7)

is considered. Hahn solved the problem for the case when q ∈ (0, 1) and w = 0, that leads to the “q-Hahn tableau”
(see e.g., [16,5]). In this case Lq,0 = Dq , where

D�P(x) = P(�x) − P(x)

x(� − 1)
, � �= 0, ±1, (1.8)

is the �-Jackson derivative. In particular, Hahn found the more general sequence of orthogonal polynomials (Pn)n
such that the sequence of its q-derivatives (DqPn)n was also an OPS, the so-called big q-Jacobi polynomials (see e.g.,
[15,16], and Section 4.1), and proved that they satisfy a second order difference equation of the form (here we use the
equivalent equation obtained in [23])

�(x)DqD1/qPn(x) + �(x)DqPn(x) + �nPn(x) = 0, (1.9)

where � and � are polynomials independent of n, deg(�)�2, deg(�) = 1, and �n is a constant independent of x. Let us
point out that the other polynomial solutions of (1.9) can be obtained from the big q-Jacobi polynomials via certain
limit processes (see e.g., [5,6,15,26]). The properties of the corresponding families of these q-polynomials can be found
in [5,15,23].

After the work by Hahn, the study of such polynomials has known an increasing interest (for recent reviews see
[3,6,15]). Indeed the first systematic approach for q-polynomials comes from the fact that they are basic (terminating)
hypergeometric series

r
p

(
a1, . . . , ar

b1, . . . , bp

; q, z

)
=

∞∑
k=0

(a1; q)k · · · (ar ; q)k

(b1; q)k · · · (bp; q)k

zk

(q; q)k
[(−1)kq(k(k−1))/2]p−r+1, (1.10)

being (a; q)k =∏k−1
m=0(1−aqm), (a; q)0 := 1, the q-shifted factorial. For a complete set of references on this see [6,15].

Another point of view was developed by the Russian (former Soviet) school of mathematicians starting from a work by
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Nikiforov and Uvarov in 1983. It was based on the idea that the q-polynomials are the solution of a second-order linear
difference equation with certain properties: the so-called difference equation of hypergeometric type on non-uniform
lattices [24,25]

�(s)
�

�x(s − 1/2)

∇Pn[x(s)]
∇x(s)

+ �(s)
�Pn[x(s)]

�x(s)
+ �nPn[x(s)] = 0, (1.11)

�(s) = �̃(x(s)) − 1
2�(s)�x(s − 1

2 ), x(s) = c1(q)qs + c2(q)q−s + c3(q),

where �̃ and � are polynomials in x(s) of degrees at most 2 and 1, respectively, and �n is a constant independent
of s. Here �f (s) = f (s + 1) − f (s) and ∇f (s) = f (s) − f (s − 1) denote the forward and backward difference
operators, respectively. One of the properties of the above equation is that its polynomial solutions can be expressed as
basic hypergeometric series. In particular, when the lattice function is x(s) = qs it becomes into the Hahn q-difference
equation (1.9). This approach based on the difference equation is usually called the Nikiforov–Uvarov scheme of
q-polynomials [26] (for more details see e.g., [3,6,24,27]).

The case w = q = 1 in (1.7), leads to the classical discrete polynomials of Charlier, Meixner, Kravchuk, and Hahn
(see [8,17,24,25]). In particular, these families of discrete polynomials satisfy the difference equation (1.11) in the
linear lattice x(s) = s, i.e.,

�(s)�∇Pn(s) + �(s)�Pn(s) + �nPn(s) = 0,

where deg(�)�2, deg(�) = 1, and are independent of n, and �n is a constant independent of s. They are orthogonal on
the integers in [a, b − 1] with respect to the weight function �(s), i.e.,

b−1∑
x=a

Pn(s)Pm(s)�(s) = 
mnd
2
n ,

provided that the boundary condition �(s)�(s)sk|s=a,b = 0, for all k�0, holds, where dn is the norm of the polynomial
Pn(s), and � satisfies the Pearson type equation �[�(s)�(s)] = �(s)�(s).

A complete study of the characterization theorems for these two cases has been performed using a functional approach
in the papers [10] (discrete case) and [23] (“q” case). The main aim of the present paper is twofold: on the one hand
to present a simple and unified approach to the aforesaid two cases using the theory of difference equations on lattices
presented in [24,25], and on the other hand to complete the study started in [10,20,23].

The structure of the paper is as follows: In Section 2 we introduce the “linear” lattices x(s) and characterize them. In
Section 3 the characterization theorem is presented and proved for any linear-type lattice and, as a direct consequence,
the corresponding theorems for the uniform lattice x(s)=s and the q-linear lattice x(s)=c1q

s +c2 are obtained. Finally,
in Section 4, we discuss each case in details as well as the classical case (that can be obtained taking an appropriate
limit q → 1−). In particular, some problems related to the characterization by Marcellán et al. [19] are discussed.

2. The linear-type lattices x(s)

Definition 2.1. A complex function x(z) of the complex variable z is said to be a linear-type lattice if

x(z + �) = F(�)x(z) + G(�) ∀z, � ∈ C, F (�) �= 0, (2.1)

being F and G two complex functions independent of z.

Obviously for the linear lattice x(s)=s we have F(�)=1 and G(�)=�. Another important instance of the linear-type
lattice is the q-linear lattice, (q �= {0, ±1}), i.e., the functions of the form x(s) = Aqs + B, A, B some constants. In this
case x(s + �) = F(�)x(s) + G(�), where F(�) = q� and G(�) = B(1 − q�).

Proposition 2.2. Let q ∈ C, q �= {0, ±1}. The function x(z) is a q-linear lattice of z if and only if it satisfies
x(z + 1) = qx(z) + C, where C is a complex number.
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Proof. A straightforward computation shows that if x(z) is a q-linear function of z, i.e., x(z)= cqz + d then it satisfies
the recurrence formula x(z + 1) = qx(z) + C, where C = d(1 − q) is a constant. But the general solution of the
difference equation x(z + 1) = qx(z) + C is x(z) = Aqz + D, where A and D are, in general, non-zero constants. �

Notice that for the linear-type lattices, if Qm(x(s)) is a polynomial of degree m in x(s), Qm(x(s + �)) is also a
polynomial of degree m in x(s), i.e., Qm(x(s + �)) = Q̃m(x(s)). Moreover, for the linear-type lattices we have the
following.

Lemma 2.3. Let x(s) be a linear-type lattice and Qm(x(s)) a polynomial of degree m in x(s). Then

�Qm(x(s + �))

�x(s + �)
= Rm−1(x(s)) ∀�, � ∈ C,

where Rm−1(x(s)) is again a polynomial in x(s) but of degree m − 1.

Proof. It is sufficient to prove the lemma for the powers xn(s). Since x(s) is a linear-type lattice

�xn(s + �)

�x(s + �)
= �(F (�)x(s) + G(�))n

F (�)�x(s)
=

n∑
k=0

(n

k

) F(�)kG(�)n−k

F (�)

�xk(s)

�x(s)
.

But �xk(s)/�x(s) is a polynomial of degree k − 1 in x(s) and therefore �xn(s + �)/�x(s + �) also is. �

Remark 2.4. From Proposition 2.2 and Definition 2.1 it follows that the only linear-type lattices are those corresponding
to F(1) = 1 (the linear lattice x(s) = C1s + C2) and the ones when F(1) = q for some q �= 0, ±1 (the q-linear lattices
x(s) = c1q

s + c2).

3. The characterization theorem for classical polynomials

In the sequel we will assume that (Pn[x(s)])n is an orthogonal polynomial sequence on a linear-type lattice x(s)

with respect to the weight function �(s), i.e.,

b−1∑
s=a

Pn(s)Pm(s)�(s)∇x1(s) = 
mnd
2
n, xk(s) = x(s + k/2), (3.1)

where 
mn is the Kronecker symbol and dn is the norm of the polynomials.
For the sake of simplicity we will denote Pn(s) := Pn[x(s)]. Since the polynomials Pn(s), n = 0, 1, 2, . . . , are

orthogonal they satisfy the TTRR

x(s)Pn(s) = �nPn+1(s) + �nPn(s) + �nPn−1(s), P−1(s) = 0, P0(s) = 1. (3.2)

Let us point out that if �n �= 0, for all n ∈ N, then the above TTRR defines an OPS. Nevertheless there are several
examples for which �n = 0 for some n0 ∈ N (e.g., the Hahn and q-Hahn polynomials). In this case we have a finite
family of orthogonal polynomials (see e.g., [8,25]). In the first case, i.e., when �n �= 0, for all n ∈ N we say that it
is a quasi-definite case [8] (also called the regular case) whereas in the second one, we get a weak-quasi-definite case
or weak-regular case. Here we will assume that (Pn)n is a normal sequence, i.e., deg(Pn) = n, and that �n �= 0 for all
n ∈ N where by N we denote either the set N = {1, 2, . . . , n0} for some n0 ∈ N or N = N.

Here we will use the notation of the theory of difference calculus on non-uniform lattices (for more details see [25,
Section 13] or [24, Chapter 3]).

Let s = a, a + 1, a + 2, . . . . We will define the forward and backward differences in x(s) by

�y[x(s)]
�x(s)

,
∇y[x(s)]
∇x(s)

,

respectively, where ∇f (s) = f (s) − f (s − 1), �f (s) = f (s + 1) − f (s).
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Table 2
Classical discrete OPS

Pn Hahn Meixner Kravchuk Charlier

h
�,�
n (s; N) M

�,�
n (s) K

p
n (s) C

�
n(s)

[a, b] [0, N ] [0, ∞) [0, N + 1] [0, ∞)

� s(N + � − s) s s s

� (� + 1)(N − 1) − (� + � + 2)s (� − 1)s + �� Np−s
1−p

� − s

�n n(n + � + � + 1) (1 − �)n n
1−p

n

� 	(N+�−s)	(�+s+1)
	(N−s)	(s+1)

�s	(�+s)
	(�)	(s+1)

N !ps(1−p)N−s

	(N+1−s)	(s+1)
e−��s

	(s+1)

�,�� − 1, n�N − 1 �> 0, 0 <�< 1 0 < p < 1, n�N − 1 �> 0

For the operator � we have

�{f (s)g(s)} = g(s){�f (s)} + f (s + 1){�g(s)}. (3.3)

Thus, the following formula of summation by parts holds

b∑
s=a

f (s)�g(s) = f (s)g(s)

∣∣∣∣∣
b+1

a

−
b∑

s=a

(�f (s))g(s + 1). (3.4)

Also we define the kth forward difference of a function f (s) by

�(k)f (s) := �

�xk−1(s)

�

�xk−2(s)
· · · �

�x(s)
f (s), xm(s) = x

(
s + m

2

)
.

Remark 3.1. Notice that the differences �(k)Pn(s) can be written in the linear-type lattice, up to a constant factor, as
(�/�x(s))kPn(s). Moreover, the operator �/�x(s) for the q-linear lattice x(s)=c1q

s becomes the Jackson q-derivative
Dq (1.8).

Definition 3.2. We say that an OPS (Pn)n is a classical OPS on the linear-type lattice if they satisfy (3.1) where � is
the solution of the Pearson-type equation

�[�(s)�(s)] = �(s)�(s)∇x1(s), (3.5)

and � and � are fixed polynomials on x(s) of degrees at most 2 and exactly 1, respectively, and such that the following
boundary conditions hold

xk(a)�(a)�(a) = xk(b)�(b)�(b) = 0 ∀k = 0, 1, 2, . . . . (3.6)

Next we state the Hahn–Lesky theorem.

Theorem 3.3. A given sequence of orthogonal polynomials (Pn)n, is a classical sequence if and only if

• The sequence of its differences (�Pn)n is an OPS [10,17].
• The sequence of its q-differences (DqPn)n is an OPS [13,23].

Let us remember here that the first case lead to the classical discrete polynomials (see Table 2), whereas the second
one, leads to the “q-Hahn tableau”.

Notice that since we are dealing with linear lattices the statement of the theorem can be replaced by the following
equivalent one:

Theorem 3.3. A sequence of orthogonal polynomials (Pn)n is classical if and only if the sequence of their finite
differences ([�/�x(s)]Pn)n is an OPS, x(s) being a linear-type lattice.
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The standard proof of this theorem can be found in [17] for the linear lattice x(s)= s, and in [10] using the functional
technique developed by Maroni. For the q-linear lattice x(s)=qs it has been done by Hahn in [13] and using a functional
approach in [23].

We are now in a position to state the main result of the paper.

Theorem 3.4. Let (Pn)n be an OPS on a linear-type lattice x(s) satisfying (3.1) and let �(s) and �(s) be two functions
such that (3.6) holds. Then, the following statements are equivalent

(1) (Pn)n is a classical OPS.
(2) The sequence of its differences (�Pn/�x(s))n also is an OPS with respect to the weight function �1(s) =

�(s + 1)�(s + 1), where � satisfy (3.5).
(3) (Pn)n satisfies the second order linear difference equation with polynomial coefficients

�(s)
�

�x(s − 1/2)

∇Pn(s)

∇x(s)
+ �(s)

�Pn(s)

�x(s)
+ �nPn(s) = 0, (3.7)

where deg(�)�2, deg(�) = 1, are independent of n and �n is a constant independent of x.
(4) (Pn)n can be expressed by the Rodrigues-type formula

Pn(s) = Bn

�(s)

∇
∇x1(s)

∇
∇x2(s)

· · · ∇
∇xn(s)

[�n(s)], (3.8)

where �n(s) = �(s + n)
∏n

m=1�(s + m) and Bn is a constant non-equal to 0.
(5) There exist three sequences of complex numbers (an)n, (bn)n, (cn)n, and a polynomial �, deg(�)�2, such that

�(x)
�Pn(s)

�x(s)
= anPn+1(x) + bnPn(x) + cnPn−1(x), n�1. (3.9)

(6) There exist three sequences of complex numbers (en)n, (fn)n, (gn)n such that the following relation holds for all
n�1

Pn(x) = en

�Pn+1(s)

�x(s)
+ fn

�Pn(s)

�x(s)
+ gn

�Pn−1(s)

�x(s)
, (3.10)

where en �= 0, gn �= �n, for all n ∈ N, and �n is the corresponding coefficient of the TTRR (1.1).

As a simple consequence of the above theorem we have the following.

Corollary 3.5 (García et al. [10], Medem et al. [23]). The discrete polynomials on the linear lattice x(s) = s are
classical. The q-polynomials in the q-linear lattice (or exponential lattice) x(s) = c1q

s + c2 are classical.

Proof. It follows from the fact that x(s) = s and x(s) = c1q
s + c2 are linear-type lattices. �

Remark 3.6. Notice that the more general orthogonal polynomial solutions of the difference equation (3.7) are the
big q-Jacobi polynomials for the q-linear lattice and the Hahn polynomials for the linear one (see e.g., [3,6,13,24]),
then the statement (3) of Theorem 3.4 and the Hahn–Lesky Theorem 3.3 are equivalent, i.e., they both characterize the
same families of orthogonal polynomials.

Let us prove the Theorem 3.4. We start proving that (1) → (2):

Proposition 3.7 ((1) → (2)). Let x(s) be a linear-type lattice and let (Pn)n be a classical OPS orthogonal, i.e., an OPS
with respect to a weight function �, solution of the Pearson-type equation (3.5) with the boundary conditions3 (3.6).
Then the sequence (�Pn(s)/�x(s))n is also a classical OPS with respect to the weight function �1(s)=�(s+1)�(s+1).

3 This condition leads to the so-called discrete orthogonal polynomials, i.e., polynomials with a discrete orthogonality of the form (3.1). For the
q-linear lattices (3.1) becomes into the q-Jackson integral (see e.g., [5,15,16]). For the continuous orthogonality see [24, Section 3.10].



R. Álvarez-Nodarse / Journal of Computational and Applied Mathematics 196 (2006) 320–337 327

Proof. Let Qk(s) be an arbitrary kth degree polynomial on x(s), k < n. The orthogonality conditions for (Pn)n yield,
for all k < n,

0 =
b−1∑
s=a

Pn(s)Qk−1(s)�(s)�(s)∇x1(s) (from (3.5))

=
b−1∑
s=a

Pn(s)Qk−1(s)�(�(s)�(s)) (from (3.4) and (3.6))

= −
b−1∑
s=a

�(Pn(s)Qk−1(s))�(s + 1)�(s + 1).

Applying the Leibniz rule (3.3)

0 = −
b−1∑
s=a

(�Pn(s))Qk−1(s)�(s + 1)�(s + 1)

+
b−1∑
s=a

Pn(s + 1)(�Qk−1(s))�(s + 1)�(s + 1) (s → s − 1, and (3.6))

= −
b−2∑
s=a

(
�Pn(s)

�x(s)

)
Qk−1(s)�(s + 1)�(s + 1)∇x1(s + 1

2 )

+
b∑

s=a+1

Pn(s)

(
�Qk−1(s − 1)

�x(s − 1/2)

)
�(s)�(s)∇x1(s).

Next, we use Lemma 2.3 as well as the conditions (3.6), then

0 = −
b−2∑
s=a

(
�Pn(s)

�x(s)

)
Qk−1(s)�(s + 1)�(s + 1)∇x1(s + 1

2 )

+
b−1∑
s=a

Pn(s) (Rk−2(s))�(s)︸ ︷︷ ︸
degree�n

�(s)∇x1(s) (from (3.6) and (3.1))

= −
b−2∑
s=a

(
�Pn(s)

�x(s)

)
Qk−1(s)�(s + 1)�(s + 1)∇x1(s).

Thus, �Pn(s)/�x(s) is orthogonal with respect to �1(s)∇x1(s + 1
2 ) = �(s + 1)�(s + 1)�x(s). We only need now to

prove that �(1)Pn(s) is a classical OPS. For doing this notice that the weight function �1(s) satisfy the Pearson type
equation (see e.g., [24, Section 3.2.2])

�

�x1(s − 1/2)
[�(s)�1(s)] = �1(s)�1(s),

where �1 is a first degree polynomial on x(s) given by

�1(s) = �(s + 1) − �(s) + �(s + 1)�x1(s)

�x(s)
.

Thus, �1 satisfies a difference equation of the form (3.5). This completes the proof. �



328 R. Álvarez-Nodarse / Journal of Computational and Applied Mathematics 196 (2006) 320–337

In the same way, using induction we have:

Corollary 3.8. Let x(s) be a linear-type lattice and let (Pn)n be a classical OPS. Then, the sequence of their kth finite
differences �(k)Pn(s), where

�(k) := �

�xk−1(s)

�

�xk−2(s)
. . .

�

�x(s)
,

also is a classical OPS orthogonal with respect to the weight function �k(s) = �(s + k)
∏k

m=1�(s + m).

Proposition 3.9 ((2) → (3)). Let x(s) be a linear-type lattice and (Pn)n a sequence of polynomials. If the sequences
(�(1)Pn)n is orthogonal with respect to the function �1(s)�x(s), where �1(s) = �(s + 1)�(s + 1), and �(s) satisfy
(3.5), then (Pn)n satisfies the second order linear difference equation of hypergeometric type (3.7).

Proof. Let k < n. Then, using the orthogonality of �(1)Pn,

0 =
b−2∑
s=a

�Pn(s)

�x(s)

�Qk(s)

�x(s)
�(s + 1)�(s + 1)∇x1(s + 1

2 ) (from (3.6))

=
b−1∑
s=a

�Pn(s)

�x(s)
�Qk(s)�(s + 1)�(s + 1) (from (3.4) and (3.6))

= −
b−1∑
s=a

Qk(s)�

(
�Pn(s − 1)

�x(s − 1)
�(s)�(s)

)
(�f (s) = ∇f (s + 1))

= −
b−1∑
s=a

Qk(s)�

(∇Pn(s)

∇x(s)
�(s)�(s)

)
(from (3.3))

= −
b−1∑
s=a

Qk(s)

(
�(s)�(s)�

∇Pn(s)

∇x(s)
+ ∇Pn(s + 1)

∇x(s + 1)
�[�(s)�(s)]

)
(from (3.5))

= −
b−1∑
s=a

Qk(s)

(
�(s)

�

�x(s − 1/2)

∇Pn(s)

∇x(s)
+ �(s)

�Pn(s)

�x(s)

)
�(s)∇x1(s).

But, since the lattice x(s) is of the linear type,

Q(s) := �(s)
�

�x(s − 1/2)

∇Pn(s)

∇x(s)
+ �(s)

�Pn(s)

�x(s)

is a polynomial of degree n in x(s). Therefore, it should be, up to a constant factor (in general depending on n) the
polynomial Pn(s). Thus Q(s) = −�nPn(s) where �n is independent of s. �

Remark 3.10. The proof of the last proposition in the linear lattice x(s) = s can be found in the first Russian edition
of the book [25].

(3) → (4): The last proposition is very important because it gives a very simple method for finding the classical
polynomials on the linear-type lattice: solving the difference equation (3.7). In fact, it was the key in the proofs of
Theorem 3.3 (see Remark 3.6). The solutions of (3.7) have been extensively studied (see e.g., [6,24,25]). In partic-
ular, they can be written by the Rodrigues-type formula (3.8) [24,25], so (3) → (4). Let us mention that from the
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Rodrigues-type formula (3.8) one can obtain an explicit expression for the classical polynomials in terms of the
hypergeometric or basic hypergeometric series as it is shown in several previous works (see e.g., [3,6,24]).

(4) → (1): Another consequence of the Rodrigues formula is the following: By setting n = 1 in (3.8) we obtain

P1(s) = B1

�(s)

�

∇x1(s)
[�(s)�(s)] ⇒ �[�(s)�(s)] = �(s)�(s)∇x1(s),

i.e., the Pearson-type equation (3.5) thus (4) → (1).

Remark 3.11. Notice that from the above results the equivalence of (1)–(4) in Theorem 3.4 follows. Moreover, since
Remark 3.6, the statement (1)–(4) are equivalent to the Hahn–Lesky Theorem 3.3.

Proposition 3.12 ((5) → (1)). Let x(s) be a linear-type lattice and �(s) a polynomial such that deg(�)�2. If (Pn)n
is an OPS and there exist three sequences of complex numbers (an)n, (bn)n, and (cn)n, such that (3.9) holds,

�(x)
�Pn(s)

�x(s)
= anPn+1(s) + bnPn(s) + cnPn−1(s) ∀n ∈ N

then (Pn)n is a classical OPS.

Proof. We start computing the following sum for all k < n − 1

b−1∑
s=a

Qk(s)
�Pn(s)

�x(s)
�(s)�(s)�x(s)

=
b−1∑
s=a

Qk(s)[anPn+1(s) + bnPn(s) + cnPn−1(s)]�(s)�x(s)

= F

(
−1

2

) b−1∑
s=a

Qk(s)[anPn+1(s) + bnPn(s) + cnPn−1(s)]�(s)∇x1(s) = 0.

Therefore, the sequence (�Pn(s)/�x(s))n is an OPS, and then by Theorem 3.3 and Remark 3.11 Pn is a classical
OPS. �

Remark 3.13. From the above proposition it follows that �(s)�(s)=�1(s)=�(s +1)�(s +1). Therefore, comparison
with the Pearson-type equation leads to the expression �(s) = �(s) + �(s)∇x1(s). Notice also that since (Pn)n is an
OPS then, the relation (3.9), the so-called structure relation of Al-Salam and Chihara type, is equivalent to the following
relations (I is the identity operator)

LnPn(x) :=
(

�(x)
�

�x(s)
+ �1(x, n)I

)
Pn(x) = c̃nPn−1(x), deg(�1) = 1,

RnPn(x) :=
(

�(x)
�

�x(s)
+ �2(x, n)I

)
Pn(x) = ãnPn+1(x), deg(�2) = 1.

The operators Ln and Rn are usually called the lowering and raising operators for the polynomial family (Pn)n.

Proposition 3.14 ((6) → (1)). Let x(s) be a linear-type lattice. If (Pn)n is a monic OPS and there exist three sequences
of complex numbers (en)n, (fn)n, and (gn)n, en �= 0, gn �= �n, ∀n ∈ N, such that (3.10) holds, i.e.,

Pn(x) = en

�Pn+1(s)

�x(s)
+ fn

�Pn(s)

�x(s)
+ gn

�Pn−1(s)

�x(s)
,

then (Pn)n is a classical OPS.
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Proof. For a sake of simplicity we will suppose that (Pn)n is a monic sequence. Since (Pn)n is an OPS they satisfy a
TTRR (3.2). Taking the difference to both sides of (3.2), using (3.3) as well as the linearity property (2.1) we get

Pn(s) + [F(1)x(s) + G(1)]�Pn(s)

�x(s)
= �Pn+1(s)

�x(s)
+ �n

�Pn(s)

�x(s)
+ �n

�Pn−1(s)

�x(s)
.

Then, substituting the value of Pn(s) from (3.10) we find

F(1)x(s)
�Pn(s)

�x(s)
= (1 − en)

�Pn+1(s)

�x(s)
+ (�n − G(1) − fn)

�Pn(s)

�x(s)
+ (�n − gn)

�Pn−1(s)

�x(s)
.

If gn �= �n, ∀n ∈ N, then from the Favard theorem (see e.g., [8]) the sequence (�Pn(s)/�x(s))n is an OPS, and
therefore by Theorem 3.3 and Remark 3.11 Pn is a classical OPS. �

To conclude the proof we should show that if (Pn)n is a classical OPS, then (3.9) and (3.10) takes place. The first
one follows directly from the Rodrigues-type formula as it is shown in [3,4] so (4) → (5), and the second one follows
from the first one, i.e., (5) → (6) (see [3,4]). For the sake of completeness we will present it here and alternative proof
for the second case taken from [3] (the first relation can be proven using the same ideas and we leave it as an exercise
to the reader). In fact we will show that (2) → (6).

Let be Qn(s) = �Pn+1(s)/�x(s). Using the linearity of x(s) we have Pn(s) = ∑n
k=0cn,kQk(s). Since (Qn)n is a

classical OPS

cn,k =
(∑b−2

s=aPn(s)Qk(s)�1(s)�x(s)
)

d2
1 k

, �1(s) = �(s + 1)�(s + 1),

where d2
1 k is the square of the norm of Qk . Using the condition (3.6) the numerator becomes

b−2∑
s=a−1

Pn(s)Qk(s)�1(s)�x(s) =
b−2∑

s=a−1

Pn(s)�[Pk+1(s)]�1(s)

= Pn(s)Pk+1(s)�1(s)

∣∣∣∣∣
b−1

a−1

−
b−2∑

s=a−1

Pk+1(s + 1)�[Pn(s)�1(s)]

= −
b−2∑

s=a−1

Pk+1(s + 1)Pn(s + 1)�[�1(s)] −
b−2∑

s=a−1

Pk+1(s + 1)�[Pn(s)]�1(s)

= −
b−1∑
s=a

Pk+1(s)Pn(s)�(s)�(s)∇x1(s) −
b−2∑
s=a

Pk+1(s + 1)
�Pn(s)

�x(s)
�1(s)�x(s),

where we use the condition (3.6), the formula (3.3) as well as the Pearson-type equation (3.5). Now, from the or-
thogonality of the polynomials Pn we conclude that the first sum vanishes for all k < n − 2. But the second one also
vanishes for all k < n − 2 since �Pn(s)/�x(s) is an orthogonal sequence with respect to �1(s)�x(s) and Pk+1(s + 1)

is a polynomial of degree k + 1 in x(s). This completes the proof of Theorem 3.4. �

Remark 3.15. Notice that if we consider monic polynomials, then for the linear lattice x(s), en = 1/(n + 1) �= 0 and
F(1) = 1 and for the q-linear one en = (1 − q)/(1 − qn+1) �= 0 and F(1) = q.

It is important to notice that in the proof of Proposition 3.12 there is not any restriction on cn but for the classical
“continuous”, discrete and q cases the condition cn �= 0 was imposed (see e.g., [10,19,23]). A similar situation happens
in the proof of the Proposition 3.14, in the same aforesaid papers the condition gn �= 0 is imposed. Nevertheless, we see
from the proof presented here that a more restricted condition should be imposed: gn �= �n. Notice that since �n �= 0
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(by Favard theorem) the last condition implies the first one �n �= 0. In the next section we will discuss what happens if
these conditions are not fulfilled.

4. The classical polynomials: further discussion

4.1. The q-linear lattices: The “q-Hahn tableau”

Here we will discuss the q-case. The classical case follows from the limit q → 1−. For the sake of simplicity and
without loss of generality we will consider the most simple q-lattice x(s) = qs . Hereafter, we will use the notation

DqP (x) = �P(s)

�x(s)
, D1/qP (x) = ∇P(s)

∇x(s)
, x(s) := x = qs ,

where D� denotes, as before, the classical q-Jackson derivative (1.8). With this notation we have that (3.7), (3.9), and
(3.10) become

�(x)DqPn(x) − �(x)D1/qPn(x) − x(1 − q)q−1/2�nPn(x) = 0, x := qs , (4.1)

�(x)DqPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), x := qs , (4.2)

Pn(x) = 1

[n + 1]q DqPn+1(x) + fnDqPn(x) + gnDqPn−1(x), x := qs , (4.3)

respectively, being �(x) = �(x) − q−1/2�(x)x(1 − q).
The general polynomial solution of (4.1) is [6,24].

Pn(s) = 3
2

(
q−n, qs1+s2−s̄1−s̄2+n−1, x q−s̄2

qs1−s̄2 , qs2−s̄2

∣∣∣∣ q, q

)
, (4.4)

where the basic hypergeometric series 3
2 is defined by (1.10). It corresponds to the functions

�(x) = C(x − qs1)(x − qs2), �(x) = C′(x − qs̄1)(x − qs̄2), Cqs1qs2 = C′qs̄1qs̄2 ,

and the eigenvalues are given by

�n = −C q−n+(3/2)

c2
1(1 − q)2 (1 − qn)(1 − qs1+s2−s̄1−s̄2+n−1).

In particular, choosing � = aq(x − 1)(bx − c) and � = q−1(x − aq)(x − cq), we find

�n = −q−n+1/2 1 − qn

1 − q

1 − abqn+1

1 − q

and we obtain the big q-Jacobi polynomials introduced by Hahn in [13], i.e.,

pn(x; a, b, c; q) = 3
2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q

)
.

In the particular case c = q−N−1, the aforesaid q-Hahn polynomials Qn(x; a, b, N |q) are deduced.

Remark 4.1. The general solution of Eq. (4.1) defines the so-called “q-Hahn tableau” [16].A detailed study of this class
has been done in [5]. In particular, in [5] comparison with the q-analog of the Askey tableau [15] and the Nikiforov and
Uvarov tableau [26] has been performed and all possible limit cases obtained from (4.4) have been analyzed, identifying
them with several known classical families of q-polynomials as well as two new ones.
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On the sequel we will use the notation introduced in [23]

�(x) = âx2 + ax + ã, �(x) := q−1/2�(s) = b̂x + b̄, b̂ �= 0. (4.5)

In the paper [23] the values of the coefficients of the TTRR (3.2), and the structure relations (4.2) and (4.3) have
been obtained in terms of the coefficients of � and � defined in (4.5). In particular,

�n = − qn−1[n]q([n − 2]q â + b̂)

([2n − 1]q â + b̂)([2n − 2]q â + b̂)2([2n − 3]q â + b̂)

× [qn−1([n − 1]qa + b)(qn−1âb − a([n − 1]q â + b̂)) + ã([2n − 2]q â + b̂)2], n�1, (4.6)

cn = −[n]q−1([n − 1]q â + b̂)

[n]q �n, n�1, (4.7)

and

gn = −qn−2[n − 1]q â

[n − 2]q â + b̂
�n, n�2, (4.8)

where we use the standard notation for the q-numbers

[x]� = �x − 1

� − 1
.

From the above relations it follows that if we want to have an infinite orthogonal polynomial sequence (Pn)n�0 (the
so called quasi-definite or regular case) �n should be different from zero for all n�0. But, as we already pointed out,
there exist some examples when �n = 0 for some n0 (e.g., the q-Hahn and q-Kravchuk polynomials for n = N + 1). In
these cases we have a finite family of polynomials (strictly speaking this case does not constitute a regular case) that
corresponds to a weak-regular case. Notice that from formula (4.6) it follows that the corresponding family exists, at
least in the weak-regular sense, if the square bracket in (4.6) is different from zero and a sufficient condition is

[n]q â + b̂ �= 0 for n ∈ N. (4.9)

The last condition is usually called the admissibility condition (for a detailed study of this condition see [21,22] and
references therein). That this condition was necessary was established in [23].

Now, from the expression (4.7) and taking into account that �n �= 0 for all n ∈ N, the condition cn �= 0, for all
n ∈ N, follows. This condition is equivalent to the admissibility condition.

Let us now analyze the expression (4.8). In this case we see that for the quasi-definite case gn �= 0. But in our proof
we see that gn �= �n for all n ∈ N. Thus, the following question arises: what happens if gn = �n for n = 1, 2, . . . , n0?

To answer this question we use (4.8). Then

gn = �n ⇐⇒ [2n − 3]q â + b̂ = 0 ∀n = 2, 3, . . . ,

which is in contradiction with the admissibility condition (4.9).

Remark 4.2. In [23] the condition gn �= 0 for all n ∈ N was imposed but not the more restrictive one gn �= �n, from
where the first one immediately follows. Of course in [23] the admissibility condition [n]q â + b̂ �= 0 is assumed and
it implies that gn �= �n for all n ∈ N.

From the above discussion it follows that the q-classical polynomials are completely characterized by the relation
(4.3) with the restriction gn �= �n for all n ∈ N. Moreover, if gn = �n for all n = 1, 2, . . . , n0, then the corresponding
orthogonal polynomial sequence, if such a sequence exists, is not a classical one.
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4.2. The linear lattice x(s) = s

For the linear lattice x := x(s) = s the second order linear difference equation is

[�(x) + �(x)]�Pn(x) − �(x)∇Pn(x) + �nPn(x) = 0, (4.10)

where

�(x) = A(x − x1)(x − x2), �(x) := �(x) + �(x) = A(x − x̄1)(x − x̄2),

and its general solution is of the form

Pn(x) = 3F2

( −n, x1 + x2 − x̄1 − x̄2 + n − 1, x1 − x

x1 − x̄1, x1 − x̄2

∣∣∣∣ 1

)
, (4.11)

and

�n = −An (x1 + x2 − x̄1 − x̄2 + n − 1).

Here 3F2 is the generalized hypergeometric series

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣ x
)

=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k! ,

where (a)k = ∏k−1
m=0(a + m), (a)0 := 1, is the Pochhammer symbol.

A particular choice x1 = 0, x2 = N + �, x̄1 = −� − 1, and x̄2 = N − 1 leads to the Hahn polynomials. Taking several
limits from (4.11) we can obtain the other classical families: Kravchuk, Meixner, and Charlier (see e.g., [3,15,24,26]).
In this case the structure relations are

�(x)�Pn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x),

Pn(x) = 1

n + 1
�Pn+1(x) + fn�Pn(x) + gn�Pn−1(x). (4.12)

Next we compute �n. For this purpose, since we are dealing with monic polynomials we can set �n = ln − ln+1 −kn�n

(it can be obtained by identifying the coefficients of xn−1 in the TTRR (1.1)), where kn and ln are the coefficients of
the monomials xn−1 and xn−2 in Pn(x) = xn + knx

n−1 + lnx
n−2 + · · · , n�3. To compute the values of kn and ln we

substitute Pn in the second order linear difference equation (4.10) and identify the coefficients of the monomials xn−1

and xn−2 (for more details see [3]). This yields

�n = − (p + a(n − 2))n

(p + 2a(n − 1))2(p + a(2n − 3))(p + a(2n − 1))

× [c(p + 2a(n − 1))2 − bp(q + p(n − 1) + a(n − 1)2).

+ a(q + p(n − 1)a(n − 1)2)2 − b2(p + a(n − 1))(n − 1)], n�1,

where the expressions �(x) = ax2 + bx + c and �(x) = px + q have been used.
From the above expression we see that the corresponding orthogonal polynomial sequence exists (at least in the

weak-regular sense) provided that the expression in the square bracket is different from zero and a sufficient condition
for this is p + na �= 0, for all n ∈ N.

But now, using the expression (see e.g., [3, p. 108]) cn = �n�n/n, we see that for all n�1, cn �= 0. The condition
p + na �= 0 for all n ∈ N is the admissibility condition in this case.

Let us now analyze the structure relation (4.12). In this case [3, p. 109] gn =−((n−1)a�n)/(p+ (n−2)a), therefore
in the quasi-definite case gn �= 0. If �n = gn for all n, then we obtain that p + (2n − 3)a = 0, for all n which is in
contradiction with the admissibility condition.
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Remark 4.3. In [10] the condition gn �= 0 for all n ∈ N was imposed but not the more restrictive one gn �= �n, from
where the first one immediately follows. For the discrete case in [10] the admissibility condition p+na �= 0 is assumed
and therefore gn �= �n for all n ∈ N.

From the above discussion also it follows that the classical discrete polynomials are completely characterized by the
relation (4.12) with the restriction gn �= �n for all n ∈ N. Moreover, if gn = �n for all n ∈ N, then the corresponding
orthogonal polynomial sequence, if such a sequence exists, is not a classical one.

4.3. The classical case

The classical case can be obtained from the q-case taking the limit q → 1−. Nevertheless the Theorem 1.3 can
be proved by using the same scheme as in Section 3. The only difference is that here one uses the standard integral
calculus and integration by parts instead of the calculus with the difference operator. Of particular interest is the proof
of property 6 so we will provide it here: taking derivatives of the TTRR (1.1) and using (1.6), we have the expression

xP ′
n(x) = n

n + 1
P ′

n+1(x) + (�n − fn)P
′
n(x) + (�n − gn)P

′
n−1(x), (4.13)

from where, if gn �= �n, ∀n ∈ N, and using the Favard theorem the sequence (P ′
n)n is an OPS, and therefore by the

Sonin–Hahn Theorem 1.2 Pn is a classical OPS. Notice again that the condition gn �= �n should be imposed. Using the
formulas in [20] it is easy to see that this condition is equivalent to the condition n�′′/2 + �′ = 0 which is nothing else
that the admissibility condition for the classical polynomials [20]. Let us point out that the more restrictive condition
�n �= gn for all n ∈ N was not considered in [19] (they considered only the regular case, i.e., �n �= 0). As in the cases
already discussed we conclude that the classical continuous polynomials are completely characterized by the relation
(1.6) with the restriction gn �= �n for all n ∈ N. Moreover, if gn = �n for n = 1, 2, . . . , n0, then the corresponding
orthogonal polynomial sequence, if such a sequence exists, is not a classical one.

4.4. The characterization by Marcellán et al.

At this point the following question arises: what happens if we do not impose the condition gn �= �n, ∀n=1, 2, . . . , n0?
There is any family of orthogonal polynomials, necessarily non-classical, that satisfies the TTRR (1.1) where �n �= 0
for n ∈ N, and the relation (1.6) with gn = �n for all n ∈ N ? i.e.,

Pn(x) = P ′
n+1(x)

n + 1
+ fnP

′
n(x) + �nP

′
n−1(x). (4.14)

To answer this question we can use (4.13) but rewritten in the form4

P ′
n+1(x) = n + 1

n
(x − �n + fn)P

′
n(x),

that leads to

P ′
n(x) = n

n−1∏
j=1

(x − �j + fj ), n�2.

Therefore, substituting the last expression in (4.14) we get, denoting �j = �j − fj ,

Pn(x) = [(x − �n)(x − �n−1) + nf n(x − �n−1) + (n − 1)�n]
n−2∏
j=1

(x − �j ).

But this implies that for n�3, two consecutive polynomials have common zeros that is a contradiction. Therefore,
there is not any family of orthogonal polynomials that satisfy (4.14).

4 As in Section 4.3 we will take the derivative of the TTRR (1.1) but now use (4.14).
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For the linear lattices x(s) = s and x(s) = qs the situation is the same. We present here the computations only for
the q-case, the other case is analogous—in fact the final expression for the polynomials Pn coincide with the one in the
classical “continuous” case.

For the q-case we proceed as before, i.e., we take the q-derivatives of the TTRR (3.2) and use the relation (4.3) where
en = 1/[n]q , gn = �n, F(1) = 1, G(1) = 0, we obtain

DqPn+1(x) = [n + 1]q
[n]q (x − �n/q)DqPn(x), �j = �j − fj .

Substituting it in (4.3) when gn = �n we obtain the following expression for the polynomials Pn

Pn(x) = [(x − �n/q)(x − �n−1/q) + [n]qfn(x − �n−1/q) + [n − 1]q�n]
n−2∏
j=1

(x − �j /q).

As before, from this expression follows that for n�3, two consecutive polynomials have common zeros, that is in
contradiction with the fact that they constitutes an orthogonal sequence.

From the above discussion follows that the structure relation (3.10) when gn �= �n for all n ∈ N completely
characterizes the classical orthogonal polynomials.
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Appendix A. The classical polynomials

In this appendix we will present the proof of the Theorem 1.3. We will follow the same scheme in Section 3. Our
starting point will be the Definition 1.1.

(1) → (2): Using the orthogonality of the classical OPS (Pn)n with respect to � (1.2) we have that for any polynomial
of degree less than or equal to k − 1, Qk−1, with k < n,

0 =
∫ b

a

Pn(x) Qk−1(x)�(x)︸ ︷︷ ︸
degree�k<n

�(x) dx =
∫ b

a

Pn(x)Qk−1(x)[�(x)�(x)]′ dx

= Pn(x)Qk−1(x)�(x)�(x)|ba︸ ︷︷ ︸
=0

−
∫ b

a

[Pn(x)Qk−1(x)]′�(x)�(x) dx

= −
∫ b

a

Pn(x)

degree<n︷ ︸︸ ︷
Q′

k−1(x)�(x) �(x) dx︸ ︷︷ ︸
=0

−
∫ b

a

P ′
n(x)Qk−1(x)[�(x)�(x)] dx.

Thus P ′
n is orthogonal to any polynomial of degree k − 1 < n − 1, i.e., (P ′

n)n is also an orthogonal family. Further-
more, since the weight function for the sequence (P ′

n)n is �1(x) = �(x)�(x), we have that they satisfy the equation
[�(x)�1(x)]′ = [�(x) + �′(x)]�1(x), i.e., a Pearson equation (1.3).
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(2) → (3): We use now that (P ′
n)n is an orthogonal family with respect to the weight function �1(x) = �(x)�(x)

where � satisfies the Pearson equation (1.3). Thus,

0 =
∫ b

a

P ′
n(x)Q′

k(x)�1(x) dx

= P ′
n(x)Qk(x)�(x)�(x)|ba︸ ︷︷ ︸

=0

−
∫ b

a

[�(x)�(x)P ′
n(x)]′Qk(x) dx

= −
∫ b

a

Qk(x)

⎧⎪⎨
⎪⎩[�(x)�(x)]′︸ ︷︷ ︸

=�(x)�(x)

P ′
n(x) + �(x)�(x)P ′′

n (x)

⎫⎪⎬
⎪⎭

=
∫ b

a

Qk(x)[�(x)P ′′
n (x) + �(x)P ′

n(x)]�(x) dx.

But since the last integral vanishes for every polynomial Qk of degree k < n then �(x)P ′′
n (x) + �(x)P ′′

n (x) should be
proportional to Pn, i.e., �(x)P ′′

n (x) + �(x)P ′′
n (x) = −�nPn, where �n is a constant, in general depending on n.

(3) → (4): The solution of the above differential equation can be written in the following compact form (see e.g.,
[25, Section 2] or [24, Section 1.2]) usually called the Rodrigues formula

Pn(x) = Bn

�(x)

dn

dxn [�n(x)�(x)],

where Bn is a constant.
(4) → (1): It follows from the Rodrigues formula just putting n = 1.
(4) → (5): From the Rodrigues formula the following expression (see e.g., [25, Eq. (7) p. 25]) immediately follows

�(x)P ′
n(x) = �n

n�′
n

[
�n(x)Pn(x) − Bn

Bn+1
Pn+1(x)

]
, �n(x) = �(x) + n�′(x),

from where, using the three-term recurrence relation for the family (Pn)n the structure relation (1.5) follows.
(5) → (1): Suppose that (1.5) holds where deg ��2 and (Pn)n is an orthogonal family. Notice that the integral

∫ b

a

Qk(x)P ′
n(x)�(x)�(x) dx =

∫ b

a

Qk(x)�(x)[anPn+1(x) + bnPn(x) + cnPn−1(x)] dx

vanishes for all k < n − 1. Then (P ′
n)n is an orthogonal family with respect to the weight function �1(x) = �(x)�(x)

and therefore by the Sonin–Hahn Theorem 1.2 (Pn)n is a classical OPS.
(2) → (6): For proving this we suppose that (Pn)n and (P ′

n)n are orthogonal with respect to �(x) and �1(x) =
�(x)�(x), respectively. If (Pn)n is a monic sequence then

Pn(x) = 1

n + 1
P ′

n+1 + fnP
′
n(x) + gnP

′
n−1(x) +

n−2∑
k=1

ck(n)P ′
k(x).

But

ck(n) =
∫ b

a
Pn(x)P ′

k(x)�(x)�(x) dx∫ b

a
[P ′

k(x)]2�(x)�(x) dx
= 0,

since deg P ′
k��k + 1 < n − 2 and (Pn)n is and orthogonal family with respect to �(x).

Finally the proof (6) → (1) is presented in Section 4.3.
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