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ABSTRACT., We examine the connection coefficients a . in the ldentity
pn(x) = z ankrk(x) where pn(x) is an arbitrary family of polynemlals and
rk(x) is the k~th little g-Jacobi polynomizal. From this study we obtain many
of the results derived by Bogers, Bailey and Slater. We also discover "dual"

identities most of which previously seemed to be unrelated either to Pogers-

Ramanujan type ildentities or to connection coefficient problems.

1. Introduction. There are numercus problems in combinatorics coucernin
the determination of the connection coefficients <K between two sequences c

polynomials pn(x) and rn(x), viz,

n
(1.1} pn(x) = 3 ankrk(x}.

k=0
Rota et al [28], (291, [30], considered this problem in detail for polynomials
that they call "of binomial type." Askey [9] devotes Lecture 7 to comnection

coefficients especially when the polynomials involved are the Jacobi poly-

nomials Pia'a)(x). For reference we note that
[?n ntorBel; 12X
{a,f) L. fotn * 2
(1.23 Pn (x) (un J 21’1 o+l '

where the 2Fl—function is the hypergeometric function defined in general by

(1)Partially supported by National Science Foundation Grant

I wish to thank Professor R, Askey for numerous useful conversations on thi
paper and especially for his comments on L.J. Rogers's solutions to comnectior
coefficlient problems.
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Qpyenssd st = . n-1 (a1+j)(u2+j)...(ar+j)

@ 8 nzl ET—on (B 43) (B#3) - (Bg*)

B } .
In [7) and [B], Askey and I considered (1.1} for the little gq~Jacobi

polynomials

-n n+l
| q ,abg T3q,xq
(1.4 p (x;a,blq) = .4, aq ,

where the 2nﬁl—function is a basic hypergeometric function defined in general

1.5) P e Nt TR E t? (:l)nEZZ)n"‘(:s;I)n ’
s+l s bl""’bs n=l (Q)n ( 1)n Z)n"'( e'n
where
(1.6) @ = (a;0)_ = (1-2)(1-aq)...(t-aa" D),
and
(1.7} (a}_ = (ajq)_ = lim (a)n.
n#

In particular we showed (7] that if in (1.1) p (x) = pn(x;Y,ﬁlq) and

r (x) = pk(x;ﬂ,ﬁ|q)’ then

k k{k+1)/2
q (k+1)/

-1) req™™, (7™, (@),

(@), (va), (aB® ™y

-n+k n+k+1 k+1
q i gl »29 34,9

T 32 k1 2k+2
Y¢ ,aBq

{1.8) 2"
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Utilizing this result, we obtained a general transformation of basic hyper-
geometric series which allowed us to deduce (among other things) the Roger:

Ramanujan identities:

7 _‘Ln_z_ - 1

(1.9 1+ a .

ol Dy pe0 (-0 (127"
qnz-i‘n L2 1

(1.10) L+ Z - 0 Sot? Snt3,

1 @y om0 -2

These celebrated identities have a fascinating history (see [6; Ch. 7]) cor
nected with Ramanujan’'s meteoric rise to prominence, They first arose how
in a paper by L.J. Rogers [25] in 1894. Rogers had devised a technique fo:
establishing numerous series-product identitles. Subsequently W.N. Balley
[14] and L.J. Slater [31], [32] extended Rogers's work and gave many more se
product idemtities like (1.9) and (1.10). Recently, Askey and Iemail [11]
made an extensive study of a further work of Rogers [26]. In particular,

point out that the genmeralized Legendre polynomials incompletely treated b
Feldheim [19] and Lancevickiz [23] were actually discovered and investigat
L.J. Rogers in his Third Memoir on the Expansion of Certain Infinite Produ

{26]. These polynomials, Cn(x;ﬁ|q), are defined by

wetlry_(per)
(eie

(t1.11) ) Cn(x;B|q)rn - , where x = cos 8;

n=0 ) (e )

Askey and Ismail call them “continuous g-ultraspherical polynomials™ for q
compelling reasons, and they go on to relate these polynomials to many 1mp
tant results in the theory of orthogonal polynomials as well as to the num
q-series ildentities collected by Rogers (23] which have subsequently becom
important in the theory of partitions [1], {31, [6]. Among the many impor
results Rogers found for the Cn(x;Y!q) was a selution te (1.1) for this

of polynomials from which the Rogers-Ramanujan identities (1.9) and (1.10}
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fallow as Askey and Ismail indicate.

There are still, however, some aspects of the genmeral theory of these
q-series identities that have yet to fit Into the general comnectien coefficient
theorems of these g-orthogonal polynomials. 1In particular, this paper was
motivated as an attempt to fit the gemeral multiple series expansion of a very
well-poised basic hypergeometric series (see eq. (5.1) in Section 5) inte the
framework of connection coefficient theory. While we have not been totally
successful in fulfillinpg our original goal, we have managed to show that the
fundamental identities of Rogers [27}, Bailey [13], [14] and Slater [31], [32]
are in fact direct corollaries of (1.1) when pn(x} is an arbitrary polynomial
and rn(x) is pn(x;a,b|q) {see Lemma 1 of Section 2), As an immediate corol-
lary (Lemma 3 of Section 2),we find that the special case pn(x) = anxn allows
us to invert the so-called "Balley transform" which in turn allows us to pro-
duce a famlly of identities that are dual to the oumeroua results given by
Rogers, Bailey and Slater; this duslity is explored in Sections 4 and 5. Fer-
haps one of the most interesting new implications of lLemma 3 is the following

3F2 summation given 1in Section 4:

—k,a+k,~§-;3ﬂ-n 0 k £ 0 (mod 3)
.12) eap) “N omid+
a a1l 3 = X = 3n
2°272 nt [8+1] ’ :
3n

As we shall see the following pure connection coeffieient theorem is

essentially equivalent to Bailey's transform:

n
Theorem 1. If pn(x) = z bnkrk(x), where
k=0
-n
plspznq 9.%q
(1.13) Pn(x) = 3952 _

=1L
aq. Py Pyq fag

and
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(1.14) 1) = p (x3a,8l0),

then

(apa®/op) (aBa’/oy) (apaDy, ; (1-aa™* L) (o), (o), (™), 2

(1.15) b=
"k (ogq?) (aBa/ oy ,) (@), (a8’ o), (0B o), (a8 D)

Before continuing, let us exhibit the limiting case of Theorem 1 that
volves the Jacobl polynomials:
l-x
2

-n,r,tetntl,r,;
(1.16) 3?2 [ 1 L r e 2
i

Iyl lepeeor,] o [rx+B+1]k(a+B+2k+l)[rlﬂ-l-B-l-n+1}k[r2]{—n]kPéa’B)(x)
- lotp2] [r +r,1 Lo [a+l]k(a+ﬁ+1)[1—r1—n]k[a+ﬁ+2-r2]k[a+ﬁ+n+2]k

where [A}k = A{A+1)...{Atk-1). To obtain (1.16) from Theorem 1 we replace

r1+Cl+B+n+l I, 4 B
pl’ pz, a and B by g ,4 7,9 and q

respectively; we the
q + 1. This result containe as special or limiting cases the connection ct
efficient theorems for the Jacobi polynomials when only one parameter is a’
to vary (I : L, = yg, r, = a+l; IT : £y = BB, r, - =) (see [34; Ch. 9] :
[9; Ch. 71 for reference to the primary literature). Askey has pointed ow
me that (1.16} can alsc be derived by applying a B-integration to either o:

original connection coefficient theorems for Jacobi polynomizls.

In Section 2 we shall prove the fundamental lemmas and Theorem 1. In
Section 3, we consider the relationship of Theorem 1 to the work of Rogers.
Baliey and Slater. In Section 4 we discuss the identities dual to those of
Rogers, Bailey and Slater. 1In Section 5, the Implications of our work for
multiple series expansions of certain hypergeometric functiecns., We concluc

with a brief look at some of the combinatorial fmplications of this work.
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2. The Connection Coefficient Theorems. We begin with a lemma which

effectively determines the connection coefficlents a . in (1.1) when pn(x)

is arbitrary and rk(x) is the little g-Jacobl polynomial (1.4).

n Dj

lemma 1. Let & =

" .
=k {q)j_k(aﬁq )k+j
then
)
3 < o (1% 7 gy, 1-aga® e p, (xia i)
(2.1) = .
10 @ )y 2o (@)

Proof. ‘This result like [7: Th, 10] is easily deduced from the fcllowing

two orthogonality properties of the little g-Jaccbl polynomials:

-

11 i4l

(2.2) ¥ Ta . (ot lg)p ( t [9)

. ——— b _{(q7;a,piq)p_(q ;a,Blq
{=0 (Bq1+l) n m

0 if m#n

=@, (apa™h (@)

s if m=n,
™) _(aa)_(a)_(1-0pa®™*)

(equation (3.8) of [71};

ii, 141
= a4q (g

oo i im
R p_(a7;a,Bladq

(2.3

- )
(q),(aﬁqm+n+2),(q m)na“qn(m+1'

(Bqn+1),(aqm+1)m(aq)n

{corrected form of top line on page 14 of [71).

Now the coefficient of pk(x;a,8|q) in the expansion (2.1) of

i, -1 -1
D. X " is clearl
3 X (@) (@), clearly
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- ettty - ? b.qH
— "o (hasle T
=0 B ThH_ K jeo () (0a)y

(2.4)
- detq, e
—T— p, {4 ;a,B|q)
1=0 (pq'th_ 'k

Let us first evaluate the numerator in (2.4); it equals

14, 14+ 1 1
D © ag(q ) p, (q75a,8]a)q 1

§ h
=0 (q)j(aq)j 120 (qu+1}w

42 qu(j+1)

-3
= (0, % (q} 214} - k+1 )n(q'+ika
3=0 Yy e (e? ) (aa),

(by (2.3))
(k+l)
(@)_(apa’)_ n o0k 7 e

k+1 : 2
(@) (Ba ) (aq)y 3=k (@), (aBa®)

D 2 (@) tepa’) g,

(o), (80" _(ea),

Hence substituting (2.5} for the numerator of (2.4) and replacing the denomir
tor by the appropriate expression from (2,2) with m = n = k, we see that tt

coefficient of pk(x;c,BIq) in the expansion (2,1) must be

ktl
k ( 2 )

0¥ 2 @) (eBad) 6, (B (aa) (e, (1-apa )

(aq}m<ﬁqk+l)_(aq)kcqu(q),(aﬁqk+l},(q)k

k
&
1% 2 tape®y, _, (1-apa™*)s,

(a),

as desired. o
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Lemma 2.
&
2
o gk (DT epehy, e iapl)
.6) = .
(q)y (aq) - ?
k Kk §=0 (q)j(q)k_j (aBq )k+j
Proof. In Lemma 1 set Dj =0 for j<n, Dn = 1. Then clearly
Gk = L 5 , and our result follows immediately. o
(@) (@B 4y
k A
Letma 3. If Bk = I i 7 , then
i=0 (q)k_j(an )k+j
&
2 k- 2
k  (afq”) B,{(-1)" “q
2k+1 k+i-1"]
= (1-afq” ) ,
A 4=0 (q)k_j

and conversely.

Proof. The converse follows immediately from our first asmsertiom, since
the vector (AO,....Ak) is being transformed into the wvector (BO""’Bk) by
1
@, (aBad),,,
i-j 144
angular matrix; hence the converse is merely the application of the inverse

the nonsingular linear transformation , a lower tri-

mapping which is also a nonsingular linear transformation. In fact our theorem

is equivalent to the assertiom that

2141 2 g O
-1 i - 2
( . ') [ ey, DT
(2.7} 2 - [CY) %
(Q)i_j(uﬁq )i+j Kkxk i-] kxk
However (2.7) follows immediately from Lemma 2 since ( 1 7 )
(q}i_j(aﬂq )i+j kxk

carries the basis {AO,...,Ak} of the vector space of polynomials of degree

£ k over the complex numbers onto the basis {B ..,Bk}, where

0°°
%

B W ——
3 (ci)j (aq)j
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and
] (%) 2 24+1
. (-D'q ° (apg"), ; (1-aPq P (x;9,B{a)
. A, =

i (q}j

the inverse of this mapping is clearly the right side of (2.7) by {1.4).
Proof of Theorem 1. We apply Lemma 1 with
= -n, j -n-1 -1
D, (elij(sz)j(q }jq CHEX /aﬁ)j .

and our theorem follows ilmmediately once we observe that

-0 j
a (pl)j(pz)j(q )jq

2 —n—
37k (@) g (eFa0) (o 0y /o)

-n, Kk 0,0, 0,0% a7 ¥q,q
(:l)k(az)k(q )8 1 2
= 5 e 4%, C(thzk-u’D 5 q—n—l+k,aB
(afq ), (y0a — “/ap), 172
-n, k k+2 k+2
_ (o1 (20 (a " ha (afa™ /o)y (afa 0 )

2k+2
)

(anZ)Zk(olpzq_“_lfaB)k (aBq n_k(aﬁquplpz)n”k

{by the Pfaff-Saalschutz summation [12; p. 68, eq.(1)])

R R C N O P M e MU

(efa®y_(afa’ /o 0 (aBa’/o)), (aBa®/ 0y, (aBa™ ) (o 0,q7 " /ap

) , . a2k (5) .
(aBq™/p ) (ofq /oz)n(pl)k(oz)k(q 3 1) e (af/ o, Py

{(2.9) =

Z 2 2 2
(afa”)_(afa”/z 0,)_ (a8a°/ o) (6Ba” /o)), (aBa™ )

Substituring (2.9) into (2.1) we obtain Theorem 1. ©C
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Askey has pointed out to me that the main results in this section could
also be derived from [7; Th. 10] in that Lemma 2 is a limiting case of this re-
sult and Theorem 1 can be obtained from a q-beta integration of another special

case of the same result.

3. The Identitles of Rogers, Balley and Slater. In extending the work
of Rogers [25], [27], Bailey {13], (24] and Slater [31], [32] show that the
following result 1s a fundamental identity special cases of which Rogers

used to prove the vast majority of his series—product identities:

Theorem 2. (Bailey's Transform [33; p.58]1, [l4; p.1}). Subject to suit-
able convergence conditions
- X.n
(3.1) n’zo ONORRS

XY (K1), = (D)@ XD A

X)_(X/Yz) om0 (xir)n(xfmn ’
where
o
(3.2) B = .
? =0 (X)n+r(q)n-r

Derivation of Theorem 2 from Theorem 1.

2 - -
In Theorem 1 set oL Y, Py = Z, ofg =X and replace xj(q)jl(uq)j1
by Bj (a legitimate substitution since Theorem 1 is merely a polynomial

identity in x). Hence

-1l i
(Y)j (Z)j (g )jq Bi

420 vz -n+1
3

(3.3}

0N r—19
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k
n -0)
W @z, 0 ©O@ @™, ek 2

- k' YZ
(x)n(foZ)n k=0 (X/Y)k(xfz)k(an)k

k

i} &
a-xe*hHew, (D42 K

-k k-1 j
X .
(q)k . JZQ (g )j( q )ijq

Kow applying Lemma 3 to (3.2), we see that

- ko (X}, . -
(3.4) A = (1-Xq2k 1) y kti-1 j

a-x*hHeoo, co¥? kL

1 i
}ijq .

Hence replacing the expression on the right side of (3.4) by Ak in (3.3),

find that
-1 j
n (Y)j(z)j(q )jq Bj
RN ]
1=0 (ng )
X J

k
_ n -(,)
D o W@, 6@ DD Pa

_ k" YZ
X)_x/¥D) & n
n n k=0 (X!Y)k(xfz)k(Xq Yy

Theorem 2 fallows directly from (3.5) if we let n -+ =, al

Let us now observe that if we let n - = in (3.3) we obtain

(3.6) jEO (1) (@) (577,
)
WV, = (1), (@), (0, | 1-XgTKTy 1)k 2

(X)) (X/YZ) TS (X/Y)k(xfz)k(q)k

k
L (XK -k k-1 3
Gz jEO (q }j(Xq )ijq .
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For the remainder of this section I hope to show that (3.3} and (3.6) can
be used to simplify the derivations of some of the idemntities found by Rogers,

Bailey and Slater.

For example, set

(X/CD)j

i (Q)j(X/C)j(X!D)j !

(3.7) B

then

k .
(3.8) L@, b
340 3

- k-
¢ 11 k,Xq 1,XICD;q.q
¥2 X/C,%/D

=1 -k+1
(D), (C77q ™ )y
= {(by the Pfaff-Saalschutz summation

x/0), (x gy (125 p.68, eq. (L]

), (), (2"

T 7, X7y,

Applying (3.7) and (3.8) to (3.3) we cbtain Watson's q-analog of Whipple's

theorem [33: p.100, eq.(3.4.1.5}1:

q ",Y,2,X/CDsq,q
(3.9) b

673 ¥z -n+1
X/C,X/D =

2 n
-1 1/2.1/2  1/2.1/2 -n_ Xghk
(X{Y)n(x/z)n Xq »q X +—q X :Yszrcsniq ,q;(YZCD) \
= e —— &
(X)n(XIYZ)rl 87 q_lflefz,—q—lfz,Xliz,x/Y,X/Z,X/C,X/D,qu

Kotice that the derivation of (3.9) from (3.3) requires only a single applica-

tion of the Pfaff-Saalschutz summation while previously either a double applica-
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tion was necessary [7] or one had to rely on the more general Jackson-Dougal

summation [13].

4. The Dual Identities. Here we turn to an exploration of the implic:
tions of Lemma 3 whose original purpose was merely to allow us to recover
Bailley's transform (Theorem 2). 1In the final paper by Bailey [14] on extent
Rogers' work, Bailey conveniently lists for us five pairs (i)-(v) of ﬁh ar
Bn vwhich satisfy the initial identity of Lemma 3:

k A
(4.1) B =

)
=0 (q)k_j(atq)k_'__,l

where we have replaced aflq by a. Below we list Bailey's five pairs toget

with the identity implied by substituting the pair intc the second formula ¢

Lemma 3.
(_I)n(l_anH)(a)nanqlfzn(3n—l) 1
(1) A, S (-a)(a) ’ By = (@, -~
KKk2 Kk @™, ag® . ¢
%.2) aq = ) ‘““ng““i“ .
j=0 b

Identity (4.2) is merely a special case of the q-analog of the Chu-Vandermor

summation [33; .97, (3.3.]1.7)].

2
Changing a inte a and q inte q2 in {4.1), we next have

2n n n2
(1~aq™ ) (a} (b) a'q
(ii} A =
? (-a)(@) (aa/b) b*
(-aa"/b)
_ 1l
Bn =

(*;0%) (-aa),, (aq/b)_
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-1 @) Y ),
(4.3)

(aa/b), (1+aq” ) (addy

2 2k 2 2k 2 2
a“q" ,-agq/b,-aq /b,q ;4 ,9

- 8
2 22,12
-aq,+ag ,a q /b

This last identity 1 belive to be new; if we replace a by —qA and b by

A=
q B and then let g + 1, we find
B+l B
[A—B] —Eﬂ 3y Eﬂfl, ﬁ+k, “k; 1
k
(4.4) — = _F .
{A+21-t){ﬁ+1]k_1 473 A-;l , 321+1, B+l

a result apparently originally found by Cvetkovic and Simif {18] (see also
Carlitz [17] and Gasper [20}). An interesting study of this sum was given also

by Askey and Ismall [10].

Changing a 1nto a3 and gq Into q3 in {4.1), we next have

(_l)n (l-aqzn) (a)nanqn{Bn—l}IZ

(1ii) A= =IO .
(aq),,
BT i (),
qa”307) (a"q73a7)

2k kKk,3 3
(l—aq )(3q)k_la q (q ya )k

3 6k

4.5
3
(a3q3;q )k_l(q)k(l-q q )

3 3k 3, , =3 3, 33
_ % (aq)zi(a 9739 )j{q | )jq

33 53 3
i=0 : . (a : ,
] {q7:q )J q ;49 )23

23 33k -3k 3 3
ag,2q¢",2q7,a79" ,9 14 .9

5°4& “
3]’2 3,’2, 3}!2 3;"2, 3}’._ 3, 31"’2 3
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again a result that appears to be new.
Next we have Bailey's fourth pair:

2
2 2 4n. n 2n
(atq 1 (f3q7) (1~aq ja'q

{iv) A =0, A, =
20+ @il (ag E3qD)_(ma)
(aq!f;qz)n
B = .
n (q)n(aq;qz)n(aq»‘f)n
k (aqk)j(Cl_k)j(aq.d'f;qz).'Cl',I
(4.6) 1

. ]
=0 (q)j(aq.q )j(aqif)j

) aqk,q-k,(aq{f}lfz,-(aqff)lfz;q.q
43 a2, —(a)?,aq/t
0 k odd

(f;q)“a“qn(q;qz)n

(aquf;qz)nfn(aq;qz)n

This result has been given previously [5}; it is the q-analog of the termin

ting form of Watson's 3F2 summation [33; p.245, eq.(IIL.23)].

We now examine Bailey's fifth and final pair:

-1)/2
(-1)“(aq3;q3)n(l—aq6n)anq3n(Sn 1)/

33
(@397

{v) A

3 3
(aq™597) 4
P =
n (@ (@), 4
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3

k (q_k)j(aqk}j(a;qB) q
(4.7) 3

% @, @)

h|

qa*,aq%,a%/3 e a3 3 o344

54 172 Gtz /e iz 12,1/

2ni 4ni
3

€] k = Intl

3 2 3 0
(4;q )n(q | )na

- k = 3n
3 2 3 '
(agq;97) (aq 397

and if we replace a by qa and let g =1 we obtain

“k,atk, a/3;3/4 e kK #0 (mod 3)

@8 32 = Go)tla/3+1)
a/2, af2+1/2 __ET_T;;IT__Jl K = 3n.

’ in

Apparently neither (4.7) vnor (4.8) has appeared before although (4.8) resembl

recent summations discovered by W. Gosper [22].

There are of course numerous other applications of Lemma 3. In [32],
Slater collects approximately 130 identities, each preoduced from an (An,Bn)—
palr. Upon examination we see that many of these pairs are subsumed by speci
cases of those given above; however, it is clear that those identities arisin
from Slater's (and Rogers's) '"Group A" are not. Since these pairs include mno
variables other than ¢q, they appear to have less interest than the previous
examples. Hence we only consider the pair A(2) [25; p.463]. In Lemma 3 set

g =f =1, then A(2) gives the pair

2
6o -n k = 3n-1
2
A = S k = 3n
6n 454l 6no+Tn+2
& +5n ~q n +7n K = o+,
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Bk E ] -J..:-I'j)_ .
Doin
Hence

2

k_ -
K (q) ey C70 Q" " «

q -1)" g 2
4.9) a-**h § T:g @ g .
50 k-1 Y2441 _q6n2+5n+1_q6n2+7n+1 .

If we let q = 1 we obtain the identity:

k k+j+1 (_l)k_j 1 k1 {(mod 3
(4.10) (2k+1) ] 2541 ) R -
j=0 -2 k=1 (md 3) .,

Askey has pointed out to me that (4.10) also follows from straightforw

(1/2,-1/2)
k

properties of P (1/2); however, he notes that (4.9) does not seem

follow from the corresponding q-analogues,

5. Multiple Series Identities. As mentioned in the Introduction, the
original intent of this paper was to fit the following generalization of (3

{4; p.199] into general results on connection coefficient problems.

For k=1, N a nonnegative integer,

k _k+N
a

9y b [

-N
{5.1) a,qva,-qva,b_,c.,b.,c.,...,b ,c g
272 k' 'k 1 k1 %k

é 1*71?
2k+4 2k+3 N+1
Va,—Va,aq/bl,aq/cl,aqibz,aqfcz....,aquk,aqfck,aq

(aq)N(aq/bkck)N

(aq/blcl)ml(aquzcz)mz...(aq/b

)
> (q) {q) ...(q)
mpesomy 20 mmy ™1

e, .}
k-1"k-1 m

(aq/bk)N(aq!ck)N

(5, (ey)_ (b)) (e, (b, )

)] C ceud
2 By o, 3 ml+m2 3 ml+m2 k m1+...+mk_l

" Taq/b)_ (sa/c,)_ (aq/b,) (aga/c,) T (aq/b. )
1 my 1 my 2 m1+m2 2 ml+1n2 k-1 ml+...mk_l

x
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-N
(e ) {q

*“'“"k 1 myrmp ey )

{aqfck m,+. . (b ¢ q“NIa)
ey Btk mdm b A

mk_2+2mk_3+...+(k—2)m1qml+m2+...+nk_l

m, m_+m m +m +...+m
1 1 2 -2
(b2c2) (b2c3) "'(bk—lck—l)

(aq)

As was made clear in [&4], this identity has a number of elegant special
cases with applications in the theory of partitioms. Recently Bressoud [16],
[17] has found extensions and applications of (5.1) which further emphasize

the impact of such multiple series identities in the theory of partitioms.

Since (3.9) drops out of (3.6) merely by the invocation of the gy-amalog
of the Pfaff-Saalschutz summation, it becomes clear that to obtain (5.1) from
(3.6) all we need is to apply the multiple series generalization of the g-ana-
log of the Pfaff-Saalschutz summation. Unfortunately no such generalization
appears in the literature. Our duality theory allows us to preduce the
appropriate generalization ((5.2) below). Without an Independent proof of
(5.2) it would be circular reazsoning to deduce (5.1) from (5.2). Hence instea
cf a new proof of (5.1) we wind up with the miltiple series generalization of

the g-analog of the Pfaff-Ssalschutz summation.

To allow application of lLemma 3, we multiply (5.1) by (q);n(aq)al. As a
result we find that the first identity in Lemma 3 may be identified with (5.1)
provided afq = a:

r 2y rkrﬂ
(-1) (a)r(l-aq )(bl)r(cl) (bk) (c k) a 2

A = »
¥ (q)r(l-a)(aqul)r(aqfcl)r...(aqlbk)r(aq!c ) _(bycy e by k)'

while BN {s the right hand side of (53.1) multiplied by
-1 . -1 -1
(aqukck)N(q)N (aq;bk)N (aq/ck)N . We now fill this pair into the second

identity of Lemma 3.
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kr kr
(b)) Ce)p-- B () 3 g

(5.2) T

(aq/by)_ (aqa'cl)r— . (aq,*’bk)r (aq,/ck) ICIRN N )

r (q'r)j(aq‘)j(aqukck)jqj

(q}j(aquk)j(aq!ck)j

3=0

(aq!blcl)ml(aquzcz)mz...(aq!b

‘ (@) (@) ...(q)
mys M 20 R, Tl

€, )
k-1l "k-1 L]

() (e (b (e ...

) c )
2 m, m, 3 m1+m2 3 ml+m2 k 1:|1+...+1i'|k__l
(aq!bl)ml(aq/cl)ml(aquz)m1+m2(aqfcz)m1+m2...(aq!hk_l)ml+.._+mk_1

-3
(e, ) (q )
k m1+...+1nk_l m

(aqlck-l)ml+

l+...+|n] -1
-]
.. am (b,c,q ~fa)
-1 “kk m1+...+mk_1

+2 AL cen
aq)mk-z gteeHlk 2)mlq“‘1+ 'S

¢
o m1+m2 m1+...+mk_2
(byepd T(Bgeg) = oo (B g0y

In Section 5 we shall discuss a few of the implications of this formula.
To conclude this section, we turn to an (ﬁh,Bn)—pair obtained for the study
of Rogers-Ramanujan type identities related to the modulus 11 [3]. In Lemma
3 (with a = aPq) we replace a by a[4 and q by qa; then Theorem 5.1 of

[3] is merely the first identity of Lemma 3 with

(_1)n(1_aq2n)(a)nanqlen(Bn—l)

n (l-a)(q)n ’

{5.3) A

o (1y3aBgd 4 g

1 4n-2j

(5.4) BT e % ! 7 7
(a'q39),, =0 (439 )j(qa;qa)“_j
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RSO
Zn 22
(1-aq" ) (aq) ;9

4 8n
(l1-a q )(Ci)n

(5.5)

3L .
a4 BIHea, 4 4779 )+ (hen) (JHh)H

19 g h1 89 4 540m
. &4 2 2 4
j=0 h=0 (qa;q )n_j_h(q 19 ),4a ;qk)j

-1)a%Py

6. Applications. The types of identities treated here have numercus
implications for the theory of partitions. These have been explored at length
in [1], [21, [4], [6). We describe a few here that have not been touched upon

in previous expositions.

We begin by considering the cumbersome (5.2). Replace bi by aq.fbi,

Ci by aq/ci; then replace Ci by n:iq_r and a by aq“r. 1f we now let

the € +w agnd r + % we find that

1
(b)) - (o),

(6.1)

. 2
q'l{ml""’mk) '°2(m1""’mk)"ol(ml""’“k)bm1 bmk

1 k
20 @, @ @, B, By o By,

)
mls“'sm-k

where ci(ml,...,mk) is the ith elementary symmetric function of the ml""’mi

In {6.1) let us replace each bi by ql. then recalling MacMahon's for-
mula for nk(m) the number of plane partitions of m with k rows [243p.243

we see that

- Ul(ml, ves ,mk)z—oz (ml goue ,m.k}-I‘mz+2m3+. Lo (k=Ih
€D ] ome [ : s
m=0 my,eae,m 20 {q) {g)_ ...{q)_ {a}_ (q7) A

1 m'k ml , mk ml 1'nl+|112 m1+. ot

We should point out that (6.1) is relatively easy to derive from a multiple

application of Cauchy's generalization of Euler’s theorem (i.e. equation (5.1)
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with k = 1). However since Gordon [21] was successful in treating certain
two-towed plane partition problems by studying the case k = 1 of (6.1), it
not unreasonable to suggest that multiple series jdentities such as this may

prove useful in other plane partition problems especially in view of (6.2).

We close with an additlon te the 1literature of Rogers—Ramanujan type
identities. Since the full g-analog of Watson's theorem arose as (4.6), it 1
natural to ask what can be said if the q-analogue of Whipple's thesrem [5] is
employed. 1If we set ¢ =P =1 1in Lemma 3, then the second identity given

there is fust the gq-analog of Whipple's theorem for

2
- 2
™ e g fe;qz)n(eqfc;qz)n(l-q4n+l)

. k = 2
(eq39°) (e’ Vesa?) (1)

6.3 A |

-1Y{2n- -

_q(n }{2n l)cn(qfe;qz)n(efc;qz)n(l—qAn l)
> > . k = 2n-1,
(e;q) (ca/e;jq ), (1-9)
(c;qz)k
(6.4) B = z 2. "
(e)y (cafe), (q7;q e

The first identity in Lemma 3 with this pair asserts

2 2
(q™), (q), (c/q™)
(6.5) k k k

(&), (eare) (a750%),

(q_k)zj(que;qz)j(eqfc;qz)j(1_q43+1)q2jkcj

e (qk+2)2j(eqfq2) (cque;qz)j(l-q)

3

-k 2 2y en G310 (2§-1)k 3
(q )zj_l(qfe.q )j(e/c.q }j(l q )q c
& k+2 2 N

izl (g )zj_l(e,q )j(cqfe,q )j(l q)

If we let Y, Z and n —+ = in (3.5) with this (An,Bn) pair we obtain




22 GECRGE E. ANDREWS

2
= qJ +1(C;q2)j

(6.6) 2 2
i=0 {e)j(cqu}j(q ;9 )j

2
6k +k k., 2 2
1 = q c (g9 /e;q )k(eqfe;qz)k(l—qak+l)

1

(@D, k=0 (eq;qz)k(cque;qz)k(l—q)

2
6k +3k+3 k 2 2 -
1 = q H3, (a/e;q7), (efesq )ktl-qak 1)

(qz)m =0 (e;qz)k(cqle;qz)k{l-q)

This identity can be used to derive a theta function identitys with modulus 7

1/2
(let ¢ ~+~0, e =-q / ) [1; p.443] as well as one of the mock theta function

2 2
identities (¢ =q , € = —q:”r )y [28]. However {(6.6) does not fit in with the
pattern of identities given by Bailey in [14] where each result involves a

single very well-polsed basic hypergecmetric seriles.
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