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APPELL POLYNOMIALS AND THEIR RELATIVES I1. BOOLEAN THEORY

MICHAEL ANSHELEVICH

ABSTRACT. The Appell-type polynomial family corresponding to the simplest non-commutative
derivative operator turns out to be connected with the Boolean probability theory, the simplest of the
three universal non-commutative probability theories (the other two being free and tensor/classical
probability). The basic properties of the Boolean Appell polynomials are described. In particular,
their generating function turns out to have a resolvent-type form, just like the generating function for
the free Sheffer polynomials. It follows that the Meixner (that is, Sheffer plus orthogonal) polynomial
classes, in the Boolean and free theory, coincide. This is true even in the multivariate case. A number
of applications of this fact are described, to the Belinschi-Nica and Bercovici-Pata maps, conditional
freeness, and the Laha-Lukacs type characterization.

A number of properties which hold for the Meixner class in the free and classical cases turn out
to hold in general in the Boolean theory. Examples include the behavior of the Jacobi parameters
under convolution, the relationship between the Jacobi parameters and cumulants, and an operator
model for cumulants. Along the way, we obtain a multivariate version of the Stieltjes continued
fraction expansion for the moment generating function of an arbitrary state with monic orthogonal
polynomials.

1. INTRODUCTION

In 1880, Paul Appell [App80] investigated families of polynomials { A,,(x)} with the property that
Al (x) =nA,_1(x).

This recursion determines each A,, except for the constant term. One way to fix the constant terms
[Tho45] is to require that

1) WA, = / A (&) dule) = b,

where (4 is a probability measure (a positive measure of total integral 1), or a (not necessarily
positive) linear functional on polynomials such that ;4(1) = 1. The three most familiar examples of
Appell polynomials are

(a) A,(x) = x", corresponding to delta-measure i = dy,
(b) A,(x) = H,(x), the Hermite polynomials, corresponding to dj(z) = \/%_We_ﬁ/ 2 dzx, and
(¢) An(x) = By(x), the Bernoulli polynomials, corresponding to dy(x) = 1j9 1) dz.

Besides the importance of these and other specific examples, general Appell polynomials have nice
combinatorial properties. They also play a role in probability theory: it is easy to see that the Appell
polynomials are martingales for the corresponding Lévy processes [Sch00], but there are other more
surprising appearances of these polynomials, such as [GS86, AT87] or [KS05]. Here it is crucial
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2 M. ANSHELEVICH

that multivariate versions of the Appell polynomials exist (instead of the derivative operator, one
starts with a d-tuple of partial derivatives), and even a family of more “functorial” Appell maps,
which in this context are sometimes called Wick products.

An equivalent definition of the Appell polynomials corresponding to a functional y is via their
generating function

>~ Au(e)" = exp (w2 — ((2)),

n!

n=0

where
() = log 1 (e")

is the logarithm of the exponential moment generating function of 1, and is the generating function
for cumulants of 1. Allowing for general invertible changes of variable u(z) gives a larger class of
Sheffer polynomials, with generating functions of the form

(o)

S 1 Paln)e” = esp (ru(z) — ((u(2))).
n=0
which are the main objects in Rota’s umbral calculus [Rot75, Rom84]. Restricting now to positive
measures /i, Meixner polynomials are Sheffer polynomials which are also orthogonal, and Meixner
distributions are the measures whose orthogonal polynomials are Meixner. These measures are
known [Mei34], and consist of the normal, Poisson, Gamma, Binomial, negative binomial, and
hyperbolic secant distributions. Again, much of the analysis can be done in the multivariate case.
In that case, the description of the Meixner class is not complete, but there are partial classification

results due to Letac, Casalis, Feinsilver, Pommeret, and others.

In Part I [Ans04], I introduced the firee Appell polynomials. Here (in the single variable case) the
starting point is the difference quotient operator

_J@) - fy)
and the polynomials are defined recursively via
n—1
(OA) (2. y) =Y Ar(@)Aniar(y)
k=0

and the centering condition (1). Note that
n—1
(axn) _ Z$ky”_k_1,
k=0

so {x"} are also free Appell. Chebyshev polynomials of the second kind are another example.
These polynomials have been considered previously under the name of “sequences of interpolatory
type” [VS93]. Free Appell polynomials also turn out to have nice, similar but different, com-
binatorial properties, and probabilistic connections. This time, however, the connection is to free
probability theory. This is a non-commutative probability theory, initiated by Voiculescu in the early
1980s, whose main objects, rather than commuting random variables, are non-commuting operators
(see the next section). The theory is by now quite broad and has a number of results which parallel
theorems in the usual probability theory, as well as a number of applications and connections to
other fields, notably to the theories of operator algebras and random matrices. The connection of
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free Appell polynomials to free probability theory is not unexpected, since the importance of the
difference quotient was discovered by Voiculescu in his work on free entropy [ Vo198, Voi00].

Again, one can define multivariate free Appell polynomials, except in this case it is natural to con-
sider polynomials in multiple non-commuting variables. The extension of the class to free Sheffer,
and the restriction to the free Meixner class was carried out in [Ans08d, Ans07], and some of these
results are summarized in Section 4. They include conditions on the free cumulant generating func-
tion of a free Meixner state ( (a multivariate version of the measure 1) and an operator model for
it.

In this paper, we consider the program described above where the starting point is yet another
derivative operator
S(x) — f(0)

(D)) = 22
In other words, we define the Boolean Appell polynomials by the recursion
DA, (x) = A,_1(x)
(note that Dz™ = 2™~ ') and condition (1). D is the ¢ = 0 version of the g-derivative

D,fl) = LD =100,

and so the Boolean Appell polynomials in a single variable are a particular case of the g-Appell
polynomials of [AS67].

The probabilistic connection of the Boolean Appell polynomials is to a different non-commutative
probability theory, the so-called Boolean probability. The first examples from this theory date from
the 1970s [VW73, Boz86, Boz87]. The Boolean theory is much simpler than free probability theory,
and at this point lacks its depth, primarily because of the lack of the random matrix techniques.
Nevertheless, it has a number of crucial properties since it comes from a universal product; in
fact, by a theorem of Speicher [Spe97] (see also [BGS02, Mur03]), Boolean, free, and classical
theories are exactly the only ones which arise from universal products (respectively, Boolean, free,
and tensor) which do not depend on the order of the components. A sample of work on Boolean
probability theory includes [SW97, Pri01, Ora02, Fra03, K'Y 04, Mto04, Len05, Sto05, Ber06].

We start the paper by defining multivariate Boolean Appell polynomials and describing their gener-
ating functions, recursion relations, and other basic properties, which are analogous to the classical
and the free case. Then we use the generating function form to define the Boolean Sheffer class.
Here the analogy breaks down and a new phenomenon appears. Namely, while the free and Boolean
Appell classes differ, the free and Boolean Sheffer classes happen to coincide, even the multivariate
case. It follows that the free and Boolean Meixner classes (Sheffer + Orthogonal) coincide as well.
So for a free / Boolean Meixner state ¢, in addition to conditions on its free cumulant generating
function, we get similar conditions on its Boolean cumulant generating function. One consequence
of these relations is that the free / Boolean Meixner class is preserved under the transformation By
from [BNO8b, BNO7]. Another is the explanation of some limit theorems from the theory of con-
ditional freeness. A third is the observation that the Boolean-to-free version of the Bercovici-Pata
bijection [BP99, BN08a] takes the free Meixner class to itself, and has a simple explicit form on it.

Laha and Lukacs [LL60] characterized all the (classical) Meixner distributions using a quadratic
regression property, and Bozejko and Bryc [BB06] proved the corresponding free version. We prove
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a Boolean version of this property, which however holds not for the full free / Boolean Meixner
class, but only for a smaller class of Bernoulli distributions.

Another place where the analogy between classical and free theories on one hand, and Boolean on
the other, breaks down is in the relation between cumulants, convolution, and the Jacobi parameters.
If {11} is a convolution semigroup of Meixner distributions, and { P, (x,t)} are the corresponding
orthogonal polynomials, they satisfy recursion relations of the type

2P, (x,t) = Pyyi(x,t) + (t + nb)Py(x,t) + n(t + (n — 1)¢) Py (z, 1).

Similarly, if instead {1, } are a free convolution semigroup of free Meixner distributions, the corre-
sponding orthogonal polynomials satisfy

xPy(x,t) = Pi(x,t) + tPy(x,t),
xP(x,t) = Py(x,t) + (t + b) P (x,t) + tPy(x, t),
2Py (x,t) = Poyi(x,t) + (t+0) By, t) + (t + ¢) Poei(x, t).

In both cases, the Jacobi parameters are linear in ¢. This is certainly not the case for general (classi-
cal or free) convolution semigroups. Similarly, there is not in general a simple relation between the
(classical or free) cumulants of a measure and the Jacobi parameters of its orthogonal polynomials.

In contrast, in the Boolean case these special properties of the Meixner class actually hold for
all measures: Jacobi parameters are linear in the Boolean convolution parameter, and Boolean
cumulants have a simple expression in terms of the Jacobi parameters. The single-variable versions
of these statements are known [BWO01, Leh03], and we show that they hold for arbitrary states which
have monic orthogonal polynomials. Along the way, we construct a multivariate continued fraction
expansion for a moment generating function of any such state, a result which is of independent
mterest.

The paper is organized as follows. Section 2 sets out the notation and background results. Section 3
describes the Boolean Appell polynomials. Section 4 describes the coincidence of the Boolean and
free Meixner classes. Finally, the general results about the continued fraction expansion and the
operator representation of Boolean cumulants are contained in the appendix.

Acknowledgements. I thank Andu Nica, Serban Belinschi, and Wlodek Bryc for useful and enjoy-
able conversations. I am also grateful to the referee for comments which resulted in improvements
in Proposition 3.

2. PRELIMINARIES

Variables in this paper will typically come in d-tuples, which will be denoted using the bold font:
x = (21,22, ...,2q), and the same for z, S, etc.

2.1. Operations on power series. Let z = (zy,..., z;) be non-commuting indeterminates. For
a non-commutative power series G in z and ¢ = 1, ..., d, define the left non-commutative partial
derivative D;G by a linear extension of D;(1) = 0,

Denote by DG = (DG, ..., Dy(3) the left non-commutative gradient.
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For a non-commutative power series (&, denote by G~! its inverse with respect to multiplication.
For a d-tuple of non-commutative power series G = (G, . .., G4), denote by G{=1 its inverse with
respect to composition (which is also a d-tuple).

2.2. Polynomials. Let C(x) = C(x1, 2o, ..., x4) be all the polynomials with complex coefficients
in d non-commuting variables. Multi-indices are elements @ € {1,...,d}" for k > 0; for || = 0
denote % by (). Monomials in non-commuting variables (x1, ..., x4) are indexed by such multi-
indices:

Tag = Ty@) -+ - Tu(k)-
Note that our use of the term “multi-index” is different from the usual one, which is more suited for
indexing monomials in commuting variables.

For two multi-indices i, ¢, denote by (, ¥) their concatenation. For « with |i| = k, denote
(W) = (u(k),...,u(2),u(1)).
Define an involution on C(x) via the linear extension of
(axz)" = az@por,
so that each x; is self-adjoint.

A monic polynomial family in x is a family { Pz(x)} indexed by all multi-indices

(o)

U{ﬁe{l,...,d}k}

k=1
(with Py = 1 being understood) such that

Pz(x) = x4 + lower-order terms.
Note that P} # F)or in general.
2.3. Algebras and states. Let A be a complex x-algebra. Denote by
A ={X e A: X = X"}

its self-adjoint part. A state ¢ : A — C is a linear functional which is unital, thatis ¢ [1| = 1 if A
has a unit, compatible with the x-operation so that for any X € A,

¢ [XT] = ¢ [X],

and positive, that is for any X € A

P [X*X] > 0.
We will think of the pair (A4, ¢) as a non-commutative probability space, and refer to its elements
as (non-commutative) random variables.

A state ¢ induces the pre-inner product

(X,Yy=2=o [X*Y] = (Y, X)
|X] = VXX,

| XY ¢ VX X)Y]
X||, = sup ——— = sup .
Xl =28~ V8~ e

and the seminorm

We will also denote
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Most of the time we will be working with states on C(x) arising as joint distributions. For
X1, Xo, ..., Xy € A%
their joint distribution with respect to & is a state on C(x) determined by
o [P(xy, z2,...,xq4)] = P [P(X1, Xo,..., Xq)]

The numbers ¢ [xz] are called the moments of . More generally, for d non-commuting indetermi-
nates z = (z1,.. ., 24), the series

M(z) = Z@ [xa] 2a

is the moment generating function of ¢. In the remainder of the paper, except for the appendix, we
will assume that under the state ¢, the variables have zero mean and identity covariance,

¢lx:] =0, @ [2i15] = 045

A state ¢ on C(x) has a monic orthogonal polynomial system, or MOPS, if for any multi-index 1,
there is a monic polynomial F; with leading term x4, such that these polynomials are orthogonal
with respect to ¢, that is,

(Pa,Ps), =0

for @ # 7.

2.4. Partitions. A partition = of aset V' C Z is a collection of disjoint subsets of V' (classes of
7), m = (By, By, ..., Bg), whose union equals V. We denote the collection of all partitions by
P (V). Most of the time we will be interested in partitions P(n) of {1,2,...,n}. Partitions form a
partially ordered set (in fact a lattice) under the operation of refinement, so that the largest partition
is1 = ({1,2,...,n}) and the smallest partition is 0 = ({1},{2},...,{n}). We willuse i < j to
denote that 7, 7 lie in the same class of 7.

Let NC'(V') denote the collection of non-crossing partitions of V', which are partitions 7 such that
R A (Y B .. . N4 . ./ ./
i~ g~ < <i =i<j <.

Let Int(V') denote the collection of interval partitions of V', which are partitions 7 such that
ST . -/ LT T
1~ <<t >t~ ]~

For each n, let NC(n) (resp., Int(n)) denote the collection of non-crossing (interval) partitions of
theset {1,2,...,n}. Both NC(V) and Int(V') are sub-lattices of the lattice of all partitions; in fact,
they have an additional property of being self-dual. As a lattice, Int(n) is isomorphic to the lattice
of all subsets of a set of (n— 1) elements, and for this reason interval partitions are sometimes called
Boolean partitions.
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2.5. Cumulants. The Boolean (respectively, free) cumulant functional 7 (resp., /) corresponding
to a state  is the linear functional on C(x) defined recursively by R [1] = 5 [1] = 0 and for |&| = n,

2) n [aa] = - > I [quu] ,

welnt(n), Bew icB
a#£1
resp.

3) Rlxg] = - > Ik

WENC(TL ), Bem
a#£l

which expresses 7 [xz] and R [xz] in terms of the joint moments and sums of products of lower-
order cumulants. From these, we can form the Boolean (resp., free) cumulant generating function

n (resp., R) of v via
n(z1, 20, ..., 2q) = Z Z nlxg

i€B

resp.
[e.e]
R(z1,20,...,2q) = Z Z R [xg] za,
n=1 |id|=n
where z = (z1,...,z4) are non-commuting indeterminates. If A/(z) is the moment generating

function of ¢, then from definitions (2), (3) there follow the generating function relations
n(z)(1+ M(z)) = M(z),

which is equivalent to

4) n(z) =1—(1+M(z))"

and

R(21(1+ M(2)),....,2a(1+ M(2))) = M(2),

(%)
R((l 4 M(2))2,. .., (1+ M(z))zd> — M(2),

see [SW97] and Lecture 16 of [NS06]. Note that the generating function ¢ for the classical cumu-
lants can also be defined in a similar way, using the lattice of all partitions, commuting variables,
and an exponential moment generating function.

Lemma 1.
(a) For F, G power series in z,

Di(F(2)G(2)) = (DiF)(2)G(2) + F(0)DiGi(z),

where F(0) is the constant term of F.
(b) For z; = w;(1 4+ M(w)),

(©) Djn(w) = =D;(1+ M(w))~" = D;M(w )(1 +M( )~
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Proof. Part (a) is straightforward. Part (b) is Lemma 14 of [Ans08d]. For part (c),
Dyn(w) = =D;(1 = n(w)) = —=D;(1 + M(w))™"
=—D;[1-Mw)(1+Mw))™'] =D;M(w)(1+ M(w))™". O

For X1, Xo,..., X,y € (A% ®), we will also use notation
n[Xl,XQ,. .. ;Xd] = 77@ [.I'l.fCQ. . ..I'd],
where ¢ is the joint distribution of X, X, ..., X; with respect to .

2.6. Independence. {xy,xs,...,x4} are Boolean (resp., freely) independent with respect to ¢ if
1 (resp., R) [xg] =0
unless all u(1) = u(2) = . ... This is usually expressed as a “mixed cumulants are zero” condition.
The condition for free independence in terms of moments is more complicated: whenever u(1) #
u(2) #...#u(n)and P, ..., P, are polynomials with ¢ [ P;(2,;))] = 0, then
o [Pr(2un) Pe(@u@) - - - Pa(@um))] = 0.

In contrast, the definition of Boolean independence in terms of moments is more straightforward:
again whenever u(1) # w(2) # ... # u(n), forany v(1),v(2),...v(n) > 1

o(1) v(2) v(n) | _ u(1) v(2) v(n)
(6) ¥ [xua)xu(z) - 'xu(n):| =¥ |:xu(1):| ¥ |:xu(2):| R [xu(n)} .

Note that this definition does not¢ imply a property like free independence above for general poly-
nomials rather than monomials, since for example

(7) pleila] = ¢ [2]] # oln] e [1] @ ]

Remark 1. In Section 3.3, we will need the notion of Boolean independence for more general
algebras than just the polynomials. In a unital x-algebra (A, ®), non-unital x-subalgebras B, B,
are Boolean independent if for any X; € By, u(i) # u(i + 1)

(8) DXy Xy = B[N [X]... D[X,].
If Alg (1, B,) is the unital subalgebra of .4 generated by 1 and /5;, and similarly for Alg (1, 3,), for

elements of these subalgebras a factorization of the type (8) no longer needs to hold. Nevertheless,
the following decompositions remain true.

Lemma 2. For BBy, B, as in the preceding remark, let 7\, Z,, ... 7, € Alg(1,B1,B5), X € By,
X' eAlg(1,B,),Y € By, Y' € Alg (1, Bs). Then
OIXY) = B [X'| BV,
OZXY| = D2, X] V]
and

N Z1s o 2 XY, D, ] = 0.

Proof. See equation (3) and Proposition 3.1 of [Pop08]. An alternative proof is to use Theorem
4.2 of [Spe00], which describes Boolean cumulants with products as entries, and the fact that a

connected partition necessarily has to connect two consecutive singletons (corresponding to X and
Y above). [
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2.7. Convolutions and products. If ¢, are two unital linear functionals on C(x), then ¢ & 7
(resp., p H 1)), their Boolean (resp., free) convolution, is a unital linear functional on C(x) deter-
mined by 1,(z) + 74(2) = 1wy (z) (Tesp., Ry(z) + Ry (z) = R.my(2z)). See Lecture 12 of [NS06]
for the relation between free convolution and free independence; the relation in the Boolean case is
similar.

Unital linear functionals ¢! (resp., ¢®) form a Boolean (resp., free) convolution semigroup if
SOtdt W SOtds — SOtd(t—&-s) (resp., gOEEt H SOEEs — QOEE(H_S)).

If {¢1, 2, ..., @q} are unital linear functionals on Clx], their Boolean (resp., free) product is the
unital linear functional p = 1 © Y2 © ... © g (resp., p1 * Y2 * ... * pg) determined by

%(Z) = Ty (1) +...+ %d(zd);

resp.
R@(Z) = R@l (Zl) + ...+ RgOd(Zd)

Remark 2. Since we typically consider random variables with zero mean, many of our considera-
tions are valid, or perhaps even more appropriate, for the Fermi convolution of [Ora02].
3. BOOLEAN APPELL POLYNOMIALS

3.1. Single variable polynomials. We first summarize the properties of the single variable Boolean
Appell polynomials. The proofs are omitted, as the results follow from the more general multivari-
ate formulas.

Remark 3. If 1 is a positive measure on R, its Cauchy transform G, : C* — C~ is the function

Gu(2) = [ = duto)

Z—X

Then the function )

Gu(z)
has all the properties of the Boolean cumulant generating function. If all the moments of y are

finite, and so p is identified with a linear functional on polynomials, the relation between K, and
the Boolean cumulant generating function  of x is simply

n(z) = 2K, (1/2).
We will denote the actual Boolean cumulants of y by x,,, so that

n(z) = Z K2
n=1

Similarly, m,, = p(x™) are the moments of g,

M(z) = i mp2".
n=1

K, (z)=2—

Proposition 1. Boolean Appell polynomials corresponding to the unital linear functional 1 have
the following properties.

(a) (centering) Ao(x) =1, u(A,) =0forn > 0.
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(b) (differential recursion)
DA, =A,_1,
where
i) = LD =10
(c) (recursion)
rA, = Anp1 + Koy,

(d) (explicit formula)

k=1
(e) (generating function)
> 1 — 1_K(L
— 1—xz s —x

() (powers-of-x expansion)
2= mpAn_i(x).
k=0

Remark 4. Boolean Appell polynomials are polynomials of Brenke type [Chi68], that is, their
generating function has the form A(z)B(zz). Some of the properties in this proposition follow
from the results for this more general class. Recall also that, as mentioned in the Introduction,
Boolean Appell polynomials are a particular case of the ¢g-Appell polynomials considered by Al-
Salam. As such, they form a commutative group under the “Appell multiplication” of power series
[App80], like the classical Appell polynomials and unlike the free Appell polynomials. Another
property which holds in the Boolean and classical case but not in the free case is that the lowering
operator for the Sheffer class (see the next section) commutes with the lowering operator for the
Appell class: ©v=1(D)P, = B,_;. We will not pursue this approach further.

3.2. Multivariate Boolean Appell polynomials. Let A be a complex *-algebra with a unital *-
compatible linear functional ®. For any n € N, define a map

A (A" — A, (X1, Xo, ..., X)) — A(X, Xy, .., X))

by specifying that A(X;, X5, ..., X,,) is a polynomial in X, X5,..., X,
DXZ'A(XDX% “e ;Xn) - 6i1A(X2, “e 7Xn)
(with A(0) = 1), and
P[A(X1, X, ..., X,)] =0.

Since

P(X1, Xs,.. ., Xn) = Y XiDx, P(X1, Xs,..., X,) + const,

i=1

the maps A are determined uniquely (unlike in the free case [Ans04, Section 3.3], where an extra

order condition had to be specified). It is easy to see that each A is multilinear. By taking A =
C(xy,x2, ..., x4), we get the following definition.
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Definition 1. A Boolean Appell polynomial family { Az(x1, 29, ..., x4)} corresponding to a func-
tional ¢ on C(x) is a monic polynomial family determined by

and

Proposition 2. Let X1, X5, ..., Xy € (A%, ®), o theirjoint distribution, 1(z) its Boolean cumulant
generating function, and 1 ] its Boolean cumulant functional.

(a) The generating function for the Boolean Appell polynomials is
H(x,z _1+ZA (1-x-2)""(1=nz)=>0-x-2)" 1+ Mz)"

(b) The mutual expansions between monomials and Boolean Appell polynomials are

9 AX, Xy, X)) = X1 X, X, le X (Xt - X
and
n—1
XiXp. Xy = AXy, Xoy o X0) + ) AKX X (X - X
k=0

(¢) The Boolean Appell polynomials satisfy a recursion relation
XA(Xl,XQ, NN ,Xn) = A(X,Xl,XQ, NN ,Xn) + n [X,Xl,XQ, NN ,Xn] .

Proof. For (a), we note that

D, H(x,z) = D,, <1 + ngzg> (14 M(2))™' = zH(x,z)

and

e [H(x,2)] =

<1 + Zl’ﬁ2ﬁ> (1+ M(z))_1] =1+ M(z)(1+ M(z) ' =1

Since these conditions determine A; uniquely, the result follows.

For (b)
H(x,z) =1+ )  As(r)z <1 - me) (1 —n(z))
=1+ ngzu — Zn xg Zq — Zl“an 3377 ZaRi,

which implies
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Also
(1—x-2) _1+Zxﬁzu_ 1+ZAW)(1+M(Z))

—1—|—ZA~zu—|—Zg0 zu+ZAug0 [x7] zazz,

which implies

Finally, part (c) follows from the first expansion in part (b).

The proof of Proposition 1 now follows from the observation that

An(ai) = A1 1, 1(x).
3.3. Boolean martingales.
Proposition 3. (Boolean binomial properties).
(@) If the variables {x;} are Boolean independent and
k= min(i|Tu(is1) = Tuir2) = - - = Tum) = T),
then
Ag(X) = T(u),... u(k) An—k ().
More generally, if By, By C A are Boolean independent subalgebras,
{X;:1<i<n} CAlg(1,B,Bs,),
and X, € By, Xy1 € Bo, then
A(Xy, Xo, o X)) = X0 X X A(X g, -0, X)),
(b) If {X;},{Y:} € A are Boolean independent with respect to ®, then
AXG+Y, X+ Y5, X, 4+ Y,) = A(X, Xy, .., X)) + A(Y1L, Y., .. Y)

n—1

+Y (X Y1) (Kot + Yee)VeA(X i+
k=1

n—1
+Y (X Y1) (Kot + Yee) XeAYigr, -

k=1

Proof. Using the explicit form formula (9),

AXy, Xy, X)) = X Xa .. X, le Xin [Xisr, .- X
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The assumptions on {X;} and Lemma 2 imply that 5 [X,,1,..., X},] for i < k. So the expression
above equals

n—1
AXy, Xoy X)) = XX X = Y Xy X (X, X

i=k
n—1
= X1 Xo. . X = X0 X Y Xen o X [Xiga, -, X))
i=k

= X1 Xo.  XpA(Xpq1, ..., Xp).
Therefore, using the multi-linearity of the Boolean Appell polynomials
A(Xl +}/1,X2 —I—YQ,. . ,Xn—l—Yn) - A(Xl,XQ,. . ;Xn) —I—A(Yl,YQ,. . ;Yn)

n—1

+ ZA(XI + Yl) ce. 7Xk—1 + Yk—17YI€7XI€+17 ce. 7Xn)
k=1

n—1

+ ZA(X1 + Y1, Xt + Yie1, Xy Yy, -, Y0)
k=1
= A(X17X27 s 7Xn) + A(Y17Y27 s 7Yn)
n—1

Y (X Y1) (Kot + Yo YeA(Xir, -, Xo)
k=1

n—1
Y (X Y1) (Kot 4+ Yee) XeAYign, -, Vo).

k=1

O

Remark 5. Let A be a complex *-algebra, ¢ a state on it, and B C .4 a subalgebra. We can
form Hilbert spaces L*(B,®) C L*(A, ®), and let ® [-|B] denote the projection on the subspace
L*(B, ®). If A, B are von Neumann algebras and ® is a trace, this projection is a (state-preserving)
conditional expectation, however states in Boolean theory typically are not tracial. In any case, if ¢
is faithful on B, ® [Y'|B] is characterized by the property that

(10) PIXP[Y|B]] =P [XY]
forany X € B.

Proposition 4. [If ¢ is a faithful state, {X;,Y:|i =1,...,n} C (A% ®), {X,;} C Band{Y;} are
Boolean independent of the subalgebra B in the sense of Remark 1, then

PIAXT + Y1, Xo+ Yo, ..., X, + Y,)|B] = A(X1, Xo, ..., Xo).
In particular, Boolean Appell polynomials are Boolean martingales

and

1—(nx(2) +nv(2))| o] _ 1—nx(z)
¢ 1—(X+Y)z M_ 1-Xz '
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Proof. Using Proposition 3, Lemma 2, and the fact that the Boolean Appell polynomials are cen-
tered, for any X € B

PIXAX,+Y1,..., X, +Y,)] = PIXAX, Xoy ., X))+ PIXAY, Y, .., Y]
n—1

+ Z PIX(X1+Y1). o (Xt + Y1) YeA( Xy, - - -, X))

+ Z PIX(X:+Y1) oo (X1 + Y1) Xk A(Yies1, -, Yo
1

— O [XAXL, X, ..., X))
0

The preceding proposition is closely related to the Markov property for the processes with Boolean
independent increments (see Section 4.2 of [Fra03]).

Remark 6 (Fock space representation and the Kailath-Segall polynomials). While the Appell poly-
nomials are sometimes called Wick products, it is more appropriate to reserve that name for the
following objects. Let A, be a x-algebra with a state ¢b. The operators W ( f1, fa, ..., fr) in the
algebra of symbols generated by { X ()}, for f; € A", are defined via the relations

W(f) = X({/f),
(11) W h) = X(NOW (R =W f) =@ [fA
W S fa) = XOOW fase Jo) = WS oo )

for n > 2. Compare with Section 3.7 of [Ans04], and note the use of the Boolean annihilation
operator, acting only on the first level of the Fock space (see below), as in Section 4.5 and Proposi-
tion 15. W(f1, f2,- .., [n) 18 a polynomial in the variables

X(IIr)scfr2....n}p,
{ }

ies
called the (Boolean) Kailath-Segall polynomial. However,

Ao XU = > WTT for IT Feres T fi)

welnt(n) i(1)eB1 1(2)€B2 z(k €By,
n=(B1,Ba,...,Bi)

and in particular is a polynomial in {X(f1), X(f2),..., X(f.)} only. Note that this expansion is
exactly the same as in the free case [Ans04, Proposition 3.22], but of course in terms of different
polynomials. The expansions in Proposition 2 can now be derived from the more basic expansions
in terms of the Kailath-Segall polynomials.

Denote H = L?( Ay, ). Let
falg(H) == (CQ @D H D H®2 D
be its algebraic full Fock space. If we represent all these operators on F,,(H) via

(12) W(fl)fQ))fn)Q:fl®f2®®fn;
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and put an inner product on F,,(H) in such a way that different components of F,,(H) are or-
thogonal and each X (f) is symmetric, it follows from the relations (12) and (11) that ||{|| = 0 for
¢ € H®, k> 2. So in this case

4. BOOLEAN MEIXNER POLYNOMIALS

4.1. Boolean Meixner states. Since we have found Boolean Appell polynomials to have generat-
ing functions of the form (1 — x - z)~" (1 — 7(z)), we now define Boolean Sheffer polynomials to
be polynomial families with generating functions of the form

(1=x-V(z)™" (1 -n(V(2)
for some d-tuple of non-commutative power series V. Recall [Ans04] that free Sheffer polynomial
families have generating functions of the form

-1
(1 ~x-U(z) + R(U(z))) .
We now show that these are the same.

Proposition 5. Let @ be a functional, and R, n its free, respectively, Boolean, cumulant generating
functions. Then

(1-x U+ RW)) " =1 —x- V)" (1 (V).

where

(13) U=(1+M((V))V
and

(14) V= (1+R(U))'U

are two d-tuples of power series.
Proof. We first note that an application of the identity (5) shows that equation (13) is equivalent to
R(U) = M(V),
which is equivalent to (14) since
Vi=(1+MV)T 1+ M(V)Vi= (1+ R(U)) " (1 + M(V))V.

Therefore

(1-x-U+RU )

(1+R — (14 R(U) )

(1 (1+ R(U )l(x-U)) (1+ R(U))™!

( (14 MOV) e (14 MOV)V)) (1 4+ M(V))™
(1=x- V)™ (1=n(V)). =

It follows that the free and Boolean Meixner polynomial families coincide, and therefore so do
the classes of free and Boolean Meixner states. Recall the characterizations of the free Meixner
states. Theorem 3 of [Ans07] described such states on R(x). The following proposition is the
corresponding result for states on C(x). Its proof is a straightforward translation.
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Proposition 6. Let ¢ be a state on C(x) with a monic orthogonal polynomial system (MOPS), zero
means and identity covariance.  is a free Meixner state if and only if any one of the following
equivalent conditions holds.

(a) The polynomials with the generating function

-1
Z Py(x)zq = (1 —x-U(z) + R(U(Z)))
|@]>0
for some U are a MOPS for ¢, where R is the free cumulant generating function of ¢. In
this case necessarily

(DiR)(U(z)) = z,

so that U = (DR){!
(b) There exist Hermitian d x d matrices T; and a diagonal d? x d* matrix C with [ +C > 0 and
(T;01)C = C(T;@1) such that ¢ has a representation @ ¢ ¢,y as a Fock state in the sense of

Proposition 11. Here CY) = I, C%) = C @ 192 fork > 2, ’Z;(O) =0, ’Z;(k) =T, @ [9k-1)

fork > 1.
(¢) Denoting the entries of the matrices T, C by BU, C;;, respectively, the free cumulant gener-
ating function of  satisfies, for each 1, j, a (non-commutative) second-order partial differ-

ential equation
(15) D;D;R(z) = b;; + ZBk DyR(z) 4+ Ci;D;R(2z)D;R(z).

(d) There is a family of polynomials {Pg} such that o [Pg] = 0 for all i # () and they satisfy a
recursion relation

l"z':Pz',

d
2P = Pl + Y B P+ 65,

k=1

d
2P = Pagay + ) BiFPua + 851+ Cou) Pa
k=1
We now show that, while the Boolean and free Meixner states coincide, and so the free characteri-
zations above hold for the Boolean Meixner states, the Boolean versions of these properties hold as
well.
Proposition 7. The following are equivalent to the conditions in Propositions 6.
(a) The polynomials with the generating function
(1=x- V)" (1=n(V))
are a MOPS for ¢, where
(Din)(V(z)) = 2.
so that V. = (Dn)1.
(b) The Boolean cumulant generating function of v satisfies, for each 1, j,

DiDjn(w) = bi; + ZB Din(w) + (L + Cig) Din(w) Djn(w).
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Proof. For part (a), we use the known relation in the free case and the change of variables in Propo-
sition 5:
(D:R)(U) = 2

= Z Uiziy

is equivalent to

so that
M(V) = (14 M(V))Viz,
and
N(V)=1—(1+MV)™ =1+ MV)"'MV)=> Viz,
which finally is equivalent to
(Din)(V) = z.
For part (b), we start with the characterization

D;D;R(z) = 6;; + Z BEDyR(z) + Ci;D;R(2)D; R(z).

Multiplying by z; and summing over %,

=2+ ZBkz,DkR + Z Ci;zDiR(z)D;R(z).

Substituting z; = w;(1 + M(w)) and using Lemma 1,
(1+ M(w))"'D;M(w) = w;(1 + M(w ZBsz (1+ M)(1+ M) Dy M(w)

+ Z Ciywi(1 + M)(l + M) D;M(w)(1+ M(w))™ D; M(w)

wi(1+ M(w))+ Y BfwDp M (w)

ki

+ ) Ciywi DiM(w) (1 + M(w))™"D; M(w).

Multiplying by (1 + M (w))~! on the right, we get
(1+M(w))™'D;M(w)(1 + M( )~
—w]—I—ZB w; DM (w) (14 M(w))™

+ Z C’ijwiDiM(w)(l + M(w))""D; M (w)(1 4+ M(w))™!

so that, using Lemma 1 again,

(1+M(w))" Din(w) =w; + Zwasz + Z Ciywi Din(w) Djn(w).
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Applying D;, we finally get

Dy(1+ M(w))™'Dyn(w) + D;Dyn(w) = 655 + ZB Den(w) + Ci; Din(w) Djn(w),

or
D;D;n(w) = 6;; + ZB Din(w) + (14 Ciy) Din(w)Dyn(w). O

4.2. Belinschi-Nica transformation. Belinschi and Nica [BNO8b, BN07] have considered a “re-
markable transformation”

By(y1) = (uB0+0) /0
which has a number of surprising properties, for example the relation to the multiplicative free
convolution. Example 4.5 and especially Remark 4.6 in the first of these papers are very closely
related to the one-variable version of the following proposition.

)

Proposition 8.
(a) The free / Boolean Meixner class is closed under free and Boolean convolution powers, and
consequently under the operation B,. In fact,
Bilo 1)) = wuroqry

(b) Every one-dimensional free / Boolean Meixner distribution can be obtained from a Bernoulli
distribution by the application of an appropriate B.

Proof. Let ¢ = ¢ 1,y be a free Meixner state. As shown in Section 3.1 of [Ans07], the MOPS for
©™® satisfy the recursion relations

'xi:Pi)

2 P; = Puj) + Z BE B, + 61,

k=1

:Uzp(ju P(z]u ‘I’ZB P(ku +6z](t+czu(1 )P*

which shows that ¢ is a dilated free Meixner state (with covariance ¢/). On the other hand, it
follows from Corollary 13 that the MOPS for % satisfy the recursions relations

l"z':Pz',

2Py = Py +ZB’“Pk+6,]t,
k=1
d

2iPa) = Puja) + Z ijp(k,ﬁ) + 055 (1 + Csu1) Pa,
k=1
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so ¢ is also a dilated free Meixner state. Finally, it follows that B;[¢] = (ngE(Ht))w(l/ 1) als0

has a MOPS, and they satisfy recursion relations
r; = b

d
wiP; = Py + Y BiP+ 6y,

J
k=1

d
2iPa) = Puja + Z B Py + 05 (1 + t + Ciur)) Pa,
k=1
so that B;[y] = ©ir+o,¢1y» Which completes the proof of (a). For (b), we note that in the one-
dimensional case,

Bate) (916 = Pep

and the free Meixner distributions with ¢ = —1 are exactly the Bernoulli distributions, specifically
1 32
16 ) _
(16) 1+ﬂ25+1+ﬂ261/5
withb = 3 — 1/0. U

Remark 7. The same argument shows that every “simple quadratic” free / Boolean Meixner state
(a class of states with C;; = ¢, investigated at the end of [Ans07]) can be obtained by the application
of an appropriate B; from a free Meixner state with ¢’ = —/. Moreover, it is easy to deduce from
Proposition 9 of [Ans07] that a tracial state of the form ¢ _; 7, factors through to a multinomial
distribution on polynomials in commuting variables. Unfortunately, Boolean convolution, and so
the multivariate version of B;, does not preserve the trace property.

On the other hand, any tracial “simple quadratic” free Meixner state with ¢ < 0 (and, in the limit,
with ¢ = 0) can be obtained from a multinomial distribution by a free convolution power with
t = (—1/c) followed by a dilation by % A one-dimensional version of this statement was observed
in Proposition 2.1 of [BNOSb].

Remark 8 (Bercovici-Pata bijection). The classes of distributions infinitely divisible in the classi-
cal, free, and Boolean sense are all isomorphic, and (in the one-dimensional case) the corresponding
measures have the same domains of attraction [BP99]. In the multivariate combinatorial case we
are considering, the Boolean-to-free correspondence is simply

0, where 7,(z) = Ry(z)
(of course, the key issue is the infinite divisibility of , 7/, in the state rather than a linear functional
sense). In general, there is no simple formula for this correspondence (but see [BN08a]). However,
it follows from part (b) of Proposition 7 that this bijection takes the free / Boolean Meixner class to
itself, and maps
Yory 7 PI+o {1}

Note that all free Meixner states are infinitely divisible in the Boolean sense, and the ones infinitely
divisible in the free sense are exactly those for I + C' > 0.

Example 9 (Free and Boolean product states). Let ;, ¢ = 1,2,...,d be one-dimensional states
(measures), whose monic orthogonal polynomials satisfy the recursions

2 PO () = PO () + B9 PO () + 1O P, ()
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Their free product state

© = Q1% P2 X ... % Pg,

has a MOPS, which satisfy recursion relations with the following coefficients: for u(1) # ¢ and
k>0,

i )
B(ik,ﬁ),(ik,ﬁ) = Oy

(where in this example only, ¥ denotes (i,4,...,4) repeated k times) and the rest zero, and for
kE>1,
(4)
Cior,iy = Vo -
In particular, if each ¢, is a free Meixner state, so that 5, = 0, v, = 1,
pr=p=...=0
and
2= ==,
then

(G,), (k) = Oijk0q.53%

T =17

so that C;; = 6;;(vY — 1) and ¢ is also a free Meixner state.

and

The Boolean product
P=p1OPpO...0p

also has a MOPS, which satisfy recursion relations with coefficients

Bzzkﬂl»c - /6](;) 9

and the rest zero. More precisely (see the proof of Theorem 2 of [Ans08c]) C; j+) = 0 for ¢ # j,
and other C(; ;») and Bfﬁj k)7 for which some u(7) # j can be defined arbitrarily. For the product of
free Meixner states, we can therefore set

@ — 5 5. .70

(.),(k,5) = OijrOaal
and

Ciigay = 07",

so that C;; = 6ijfy(i) — 1, and 7 is a free Meixner state. Note that this is consistent with the results
in Remark 8, since that bijection takes Boolean products to free products.
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4.3. Conditional freeness. Another place where free Meixner distributions appear is the theory of
conditional freeness [BLS96]. The objects in this theory are algebras with pairs of functionals on
them. Conditionally free product induces a convolution on pairs of measures,

(1, v) = (g1, 1) B (2, 12),
so that v = v; HH 15 and p is determined via

C(MV)(Z) = C(m,m)(z) + C(M2,V2)(Z)7
where C|,, ) is a formal power series determined by

Cla(l+ My(2) [(1+ Mu(2)) = Mu(2)(1 + M, (2)).

Note that if 1, = 15, = d, then C(2) = n,(2) so p = 1 W po, and if 1y = 14, 1o = 15 then
C(z) = R,(2) so that o = 11 B peo.

In the central and Poisson limit theorems for the conditionally free convolution, the (first compo-
nents of the) limiting distributions are free Meixner distributions (see also [BWO07] for a related
result). Indeed, these theorems involve measures for which C', () is equal to R, (z) (= 2* in the

22

central and = T
—Z

case

in the Poisson cases), or more generally is a constant multiple of it. In the first

Ry | 2(1+ M, (2)) | (1 4+ Myu(2)) = My (2)(1 + Myu(2)) = My(2)(1 + M, (2)),

so that ;4 = v = the semicircle law in the central and the Marchenko-Pastur law in the Poisson limit
theorem. Note that both of these laws are free Meixner. In the more general case when

Clu)(2) = all,(2),

we get
aM,(2)(1 + Mu(2)) = M, (2)(1 4+ M, (2)),
whence
nu(2) = any(2),
so that

= V&Jox
It remains to note that Boolean convolution powers of the semicircle or the Marchenko-Pastur law
are free Meixner. Indeed, it follows that if C,, ,y(2) = aR,(2) and v is free Meixner, then so is /.

Similar calculations explain the appearance of the free Meixner laws as limit laws in [BWO01] and
[KYO04]. Further properties of the Appell and Sheffer-type objects in the theory of conditional
freeness are explored in [Ans08a] and [AnsO8b].

4.4. Laha-Lukacs property. Laha and Lukacs [LL60] proved that the classical Meixner distribu-
tions are characterized by a quadratic regression property. Bozejko and Bryc [BB06] proved that
the identical property, in the context of free probability, characterizes the free Meixner distribu-
tions. We now show that in the Boolean theory, this characterization fails. Instead, the Boolean
Laha-Lukacs property characterizes only the Bernoulli distributions. Notice that these can also be
interpreted as the Boolean versions of the Poisson distributions, with the symmetric Bernoulli dis-
tribution being the analog of the normal. Note also that, while conditional expectations in general
may not exist, the expressions below are well-defined. Denote

Var [X|B] = @ [(X s [X|B])2|B}
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if this expression makes sense. In the non-tracial case, it need not equal ® [X2|B] — & [X|B]”.

Proposition 9. Suppose X,Y are Boolean independent (with respect to ®), self-adjoint, non-
degenerate and there are numbers o, o, C, a,b € R such that

PIXIX+Y]=a(X+Y)+a
and
(17) Var [X[X +Y] = C<1+a(X+Y) +b(X+Y)2).

Then X,Y have Bernoulli distributions.

See [BBO0S8] for a generalization.

Proof. The proof of Theorem 3.2 in [BB06] goes through verbatim until Lemma 4.1. Briefly, we
may assume that ¢ [X] = ®[Y] = 0, and ® [X?] + ® [Y?] = 1, so that ay = 0 and o = P [X?].
Denote 3 = ® [Y?],S= X +Y and V = 3X — Y. Then

(18) Fn(X) = arn(S) and kn(Y) = Brn(S),
and
(19) n\S,....S,V,V| = afk,(S)

n—2 times

(note an order change from [BB06]) for n > 2. Also,
® [VZS] = @ [(X — aS)?|S] = @ [(X — & [X]S])*|S] = Var [X]S].
Finally, after putting in normalizations and using equation (10), it follows from equation (17) that

P [5"V?] = 1O‘—fb (@187 +a® [$"] +be [s+])

Now using equations (2) and (19),

O [S"V?] = @ [S"V]n [V] + @ [S"]n [V, V] + Z 1:[5|Bi|(S)n S,...,S,V,V

welnt(n) i=1

| By | times
n=(B1,Bs,...,By)

=af®[S"+aB > H K15 (S)A B2 (S) = afd [SH2].

welnt(n) i=1
n=(B1,Ba,...,By)
Thus 1
n+27 __ " n+1 n+2
P [Sn+2] ——1+b<<I>[S |+ a® [87] + b0 [57+2])
and

(o)

Zq) Sn+2 n+2 Zq) Sn n+2 + ach Sn—H n+2
n=0

Noting that ¢ [S] = 0,
Ms(2) = 22(1 + Ms(2)) + azMs(2),



APPELL POLYNOMIALS II. BOOLEAN THEORY 23

SO
Ms(2)(1 — az — 2*) = 22
and
Ma(2) = —=
SN T =2
Therefore )
1 1 1 — 2 Z—a
CRETEEY CRUTAE N el |
5(2) z<+ Sz) zl1-2—L  22—az-1
So the distribution of S, and from (18) also the distributions of X and Y, are Bernoulli distributions
(16), with a replacing b. U

4.5. Boolean Meixner process. A construction inspired by [Sni00] produces an infinite dimen-
sional Boolean Meixner (or, in the language of [Lyt03], Jacobi) field. Let A be a complex *-algebra,
A its self-adjoint part, and v a state on it, so that we can define the Hilbert space H = L*(A,v))
obtained via the GNS construction. We identify

LAY @ .. 9 LX(AY) ~ LPAX ... x A ®...0)
with I.?(A, v)) via the multiplication map
m:Ax...x A— A,
in other words we complete A x ... x A with respect to the inner product
(1L @fn1©g0®. ... Qg) =0 fn- fig1 . gn].

With this identification, the full Fock space of H

CQaHOH? & HP @
collapses to the extended Boolean Fock space

FH)=CQeHeHEeHS...,

whose elements are of the form

(o, 91,92, - - )
For f € A**, define operators on F(H)
a"(f)(e. g1, 92, -) = (0, af, far, fga, ...,
a®(f)(a.g1,92,--.) = (0, fqr,. qz,---),
a” (), 91,92, - .) = (@ [fn], 0,0,...),
a(f)(a,g1,92,--.) = (0, fga, fq3, fq4,---);

and

X(f)=a*(f) +ba’(f) +a(f) + calf),
where b € R, ¢ > 0. On F('H), put the inner product

<(Oé,gl,92, B ')7 (ﬂ) hl) h27 . )> - dﬂ + Z Ck_1¢ [glthk] :
k=1

This is the same inner product as considered in [BWO1], compare also with Section 5 of [KY04].
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Proposition 10.

@) lla* (NIl < max(L, /e[| flloer 10°()lloo < 1fllocr a°(f) is self-adjoint, and (a™(f)+a(f))
is the adjoint of a™ (f), so that for || f|| . < oo, X(f) is bounded and self-adjoint.

®) If{f1, f2, ..., fn} are pairwise orthogonal, meaning f;f; = 0 for i # j, then
{X(f1)7X(f2)7 s 7X(fn)}

are Boolean independent with respect to the vacuum state (), -Q)). In fact, the joint Boolean
cumulants of (X (f1), X(f2),..., X([fn)) are the same as the joint free cumulants of Theo-

rem 8 of [Sni00], so this is yet another implementation of the BP bijection.
(c) For (A,v) = (L>([0,1]), dx) and f = 1(oy), the distribution of X (f) is 23,

Remark 10. If ¢ = 0, which corresponds to the Gaussian / Poisson case, this “extended Boolean
Fock space” collapses to CS2 & 'H, which is a Boolean Fock space considered in [BGS04, Fra03].

APPENDIX A. OPERATOR MODEL, CONTINUED FRACTIONS, AND APPLICATIONS

A.l. Multivariate continued fractions. The purpose of this section is to prove Corollary 13,
which shows that the relation between recursion relations and the Boolean convolution used in
Proposition 8 holds in full generality. In the one variable case, this relation was observed in [BWO01],
and follows easily from a continued fraction expansion for the Cauchy transform of the measure.
We follow that proof, which requires an introduction of a multivariate continued fraction expansion
for a moment generating function of a general state (with a MOPS; see below). This result may be
of independent interest.

Remark 11 (General Fock space construction). Let H = C%, with the canonical orthonormal basis
€1, ..,eq. Define the (algebraic) full Fock space of H to be

Fus(H) = CQa P H>

k=1

Fori=1,2,...,d, define a; and a; to be the usual (left) free creation and annihilation operators,
CL?_ <6u(1) Qeyp)®... 0 eu(k)> = €; D ey1) @ ey2) @ ... O eyw),

a; (e5) = {es, €5) Q = 0590,

K2

a7 (euq) @ €uz) © - © euy) = (€, €u(1)) €u) @ - - @ Cupy-
For future reference, we also define the Boolean annihilation operator
b a; onH k<1,

0, onH® k>2

For each k& > 1 let C™*) be a diagonal non-negative d* x d* matrix, with entries
(20) C(eu(l) ®...Q eu(k)) = Cﬁeu(l) @D ... D eyk)-
Similarly, for each ¢ = 1,2,...,d and each k > 0, let ') be a d* x d* matrix, with entries

(21) Z(eu(l) ®...Q eu(k)) = Z Biﬂﬂew(l) .. D Ey(k)-

|@|=k
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We identify C*), ’Z;(k) with operators
ck) gk ek ok
Assume that ’Z;(k) and CY) satisfy a commutation relation

(7;(’@)> Kék) _ Icék)fzg(k))

where
KPP =(Iole.. . olacW). . (Ialoc*)Ieck)c®.

We will denote by 7; and C the operators on F,,(H) acting as ’Z;(k) and C**) on each component.
Finally, let a; = a; C and
With the appropriate choice of the inner product (-, )., on the completion F¢ () of the quotient of
Fag(H), all the operators a; , 7;, a; factor through to (), and each X; is a symmetric operator
on it.
Proposition 11. (Part of Theorem 2 of [Ans08c], modified for complex-values states) Let p be a
state on C(x). The following are equivalent:

(a) The state p has a monic orthogonal polynomial system.

(b) For some choice of the matrices C*) and ’Z;(k) as above, the state p has a Fock space repre-
sentation pc (T;} as

@[P($17$27---7$d)] = <Q7P(X17X27-“7Xd)9> :

(¢) There is a family of polynomials { Py} such that ¢ [Pg] = 0 for all i # () and they satisfy a
recursion relation

€Ty = Pz + Bi,@,@)
d
$zPu - P(z,u) + Z Bz’,w,upw + 6i,ucu;
w=1

||=ld]

Theorem 12. Let ¢ be a state with a MOPS, {Z(k),c(k)} the matrices in its Fock space repre-

sentation, whose entries are the coefficients in the recursion relation for the MOPS, and M (z) its
moment generating function. Then

1
>z B CY Y, By 2,y
1-> 2 7 ng ZJ2EJ2C(2)| Z/Q Ey 2k,
71 T -

g CB.C® B
(2) Zj_ 23, 15,C | Zk k3 ks
b= wely —— =

1+M(z) =

0

Here for matrices
A, B € Mgewgr ~ Maxa @ Maxq © ... © Mgxa,
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we use the notation

E;A|E;

5 = <ei®I®...®I,AB_1(6j®I®...®I)> € Mgr—1ygh—1.
Proof. First treating

{as = <Z stEjsC(s)> ybs = <Z Ekzk> )Cs = <Z Zz'STiES)> 5 € N}
s ks i

simply as non-commuting symbols, we can apply the main Theorem 1 of Flajolet [F1a80] to repre-
sent the continued fraction above as a sum over Motzkin paths, with . z; F;.C () the weight of a
falling step from level s to level s — 1, >, [, 2, the weight of a rising step from level s — 1 to

level s, and ), z;, ’Z;is) the weight of a horizontal step at level s. Then the coefficient of z; in the
expansion of this continued fraction is the sum over all Motzkin paths of length ||, with the weight
of the path p equal to

where
Eu»C®,  p(i) is a falling step on level s,
a; = < By, p(7) is a rising step on level s,
’Z;((Si)), p(7) is a horizontal step on level s.

|4
<Qy H /QZQ> )
=1

Gy C (8} p(i) is a falling step on level s,

But this product is equal to

where

B = ax(ig, p(7) is a rising step on level s,
7, ((SZ.), p(i) is a horizontal step on level s,

and the sum of such products over all Motzkin paths of length || is exactly
(Q, XuyXu@) - - - XugaQ) = ¢ [xa] - O

Example 12. If all ’Z;(k) = 0, the expansion takes a simpler (scalar) form

1

14 M(z) =
(Z) i |Zj1

Zja |Zj2

Zjs |Zj3

1— Zj_g Cj3j2j11_—

-y,
1=, Chi
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In particular, in the “simple quadratic” free Meixner case C;, = land Cj,5, ,.;, = 1+ Cj 5.,
Cs; = ¢, so that

1
Lt M=) = 25|25
Jil~n
b Zjl Zj2|zj2
L=2,(1+0) 2 |7
731~33
b Zj3(1 - C) Zj4|zj4
1—Zj4(1+c)1_
and
L= (14+M)™ =Y " z(1+ A)z,
J

where

1

L+ Alz) = 2| 25
1= 5,1 +0) A
731733
-2t te) "
1— Zj4(]‘ + C)l_—
satisfies
L= (1+A)7" =(1+0)> 71+ Az

J

Equivalently,
M=) " z(1+A)z(1+ M)
J

and

A=(1+0)> 21+ A)z(1+ A)

Note that in the one-dimensional case, the equations for A and M can be solved and give quadratic
formulas. In the multivariate case of a free semicircular system, corresponding to ¢ = 0, we get
M = A and so

M =" 21+ M)z(1+ M)

J
which also follows directly from 12(z) = . 27 and the transformation (5).

Example 13. In the free product free Meixner case, C;; = d;;5¢;, SO

1
Zjl Zj |2
1_ 22y %% _ ¢ %0 |20
Doy Fislzis cpzilen P e R N

1— - 1— -
1— ... 1— ... 1— ... 1— ...

1+ M(z) =
1—
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Example 14. For a general Boolean product

d
1—(1+ M)~ —77—277] (1= (1+ My
7j=1
Thus using the notation from Example 9,
1
L+ M(z) = 02
V1%
L=2 ﬂo %= 2 : () ,2
) sz
1 LT () 2
o sz

1—

T

A.2. General results in Boolean theory. In this section, we collect a number of results which,
while true for the Boolean Meixner class, in fact hold in general. Typically their free or classical
analogs, if any, hold only for the corresponding Meixner class.

Corollary 13. Let ©*" be the Boolean convolution power of a state  with a MOPS. The coefficients

in the recursion relation for the MOPS of ©*" are the same as for p, except that each ’Z;(O) and C
get multiplied by t.

Proof. From Theorem 12,
Moot = tn,(z) = t(1 — (1 + My(z))™")
. Z . ,2-(0 Zjl Zj1Ej1tC(1)| Zkl Elﬁ %k
iol E.C® Jo)
1) Z Z]QEJQC |Zk k2 %z
1 - Zzl 117;1 = :

B.C®) 1D
(2) Zj_ ZJ3EJ3C | Zk k3 Zks
b= 2 zTy == ——

The following relation between Boolean cumulants and Jacobi parameters was already noted by
Lehner in the single variable case (relation 4.9 in [Leh03]), if in rather different language.

Corollary 14. Let ¢ = ¢ 7,1 be a state with a MOPS. Using the terminology from Remark 11, let
Zi=X—aCV =af + T+

where
0O on H®* k<1,
~\aC, onHEF k> 2.
Then the Boolean cumulant functional 1 of ¢ is n [x;] = 7, @
nxizar;] = C; (e, Zae;) = <Q,ab_Z~a+Q>
Recall that for the free Meixner states, their free cumulant functional has a similar expression in
terms of the operators

but there is no such expansion for general states. Note also that the Boolean-to-free version of the
Bercovici-Pata on the free Meixner states, discussed in Remark 8, follows from these observations.
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Proposition 15. Let H be a complex Hilbert space with a distinguished unit vector ), so that
H = CQ @ Hy. Let {X1,Xo,..., X4} be symmetric operators on H with a common domain D
such that Q € D and for all i, X;(D) C D. Let p be the joint distribution of { X1, Xo, ..., X4} with
respect to §), that is

¥ [P($17$27 s 7$d)] = <Q7 P(X17X27 s 7Xd)Q> :
Then there exist numbers \; € R, vectors &; € H,, and symmetric operators 'T; on Hy with domain
Dy = HoND, T;(Dy) C Dy, such that each
(22) Xi=af +ag +T;+ \FPo
and the Boolean cumulant functional of v is

0[] = A; 0 wiwar] = (&, Taky) -
Here F,, is the projection onto ), and
ag,¢ = (&, ) Q

for ( € 'H are rank one operators, which are clearly adjoints of each other.
Pl’OOf Let )\z = <Q,XZQ>, Sz = (Xz — )\ZPQ)Q, and E = Xz — ag — a;, — )\zPQ Since Xz 1S
symmetric, A; € R and (§,2) = 0so & € Hy. Clearly & € D, and since X;, ag, ag, take D to
itself, so does 7;;. Moreover for ( € Hy N D,
so T;(¢) € Ho. Since ag + ag, is symmetric, so is 7;. It then easily follows that the Boolean
cumulants of ¢ are 5 [xz;] = A; and

N wsxqr;) = <Q,CL5_Z.T17&§].Q> = (&, Ta&;) - D

Note that there are bosonic and free versions of the operator decomposition (22) (see [Sch91] and
[GSS92]) but they only hold for operators with (freely) infinitely divisible joint distributions. The
preceding proposition reflects the fact that all states are infinitely divisible in the Boolean sense
[BNO8a, Proposition 4.8].
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