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Abstract

Motivated by a number of recent investigations, we de�ne and investigate the various
properties of a new family of the Eulerian polynomials. We derive useful results involving
these Eulerian polynomials including (for example) their generating functions, new series
and L-type functions.
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1. Preliminaries

The Eulerian polynomials have been studied from Euler�s time to the present, which have
been extensively investigated in many di¤erent contexts in the mathematics and computer
science literature (see [1-21] for a systematic work).
Recently, Kim et al have studied on some identities of the Eulerian polynomials in connec-

tion with Genocchi and Tangent numbers using the fermionic p-adic integral on Zp in [10].
Kim and Kim introduced a new de�nition of Eulerian polynomials and gave their symmetric
relations (for details, see [11], [12]). Araci et al also introduced the generalizations of the
Eulerian-type polynomials using the fermionic p-adic q-integral on Zp and derived some new
interesting identities cf. [1], [3], [4].
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Leonard Euler gave the Eulerian polynomials in 1749 by the rule:
1X

k=0

(k + 1)n xk =
An (x)

(1� x)n+1
. (1.1)

Euler introduced the Eulerian polynomials in an attempt to evaluate the Dirichlet eta
function

� (s) =

1X

n=1

(�1)n�1

ns
(1.2)

at negative integers. It is well known in [6] that Dirichlet eta functions are closely related to
Riemann zeta function as follows:

� (s) :=

� P1
n=1

1
ns
= 1

1�2�s

P
1

n=1
1

(2n�1)s
(< (s) > 1)

1
1�21�s

� (s) (< (s) > 0; s 6= 0) :
(1.3)

Combining the Eq. (1.1) with the Eq. (1.3), it reduces to

An (�1) =
�
2n+1 � 4n+1

�
� (�n) =

(4n+1 � 2n+1)Bn+1
n+ 1

(see [10])

where Bn are the Bernoulli numbers de�ned by

t

et � 1
=

1X

n=0

Bn
tn

n!
; jtj < 2�:

The Eulerian polynomials An (x) are de�ned by means of the following exponential gen-
erating series:

eA(x)t =

1X

n=0

An (x)
tn

n!
=

1� x

et(1�x) � x
(1.4)

in which the usual convention about replacing An (x) by An (x). Hereby, we note that
generating functions transform problems about sequences into problems about polynomials.
By this way, generating functions are important to solve all sorts of counting problems.
The Eulerian polynomials can be computed by the recurrence relation:

(A (x) + (x� 1))n � xAn (x) =

�
1� x; if n = 0
0; if n > 0

(1.5)

where the usual convention about replacing An (x) by An (x), (for more information, see [1],
[3], [4], [11], [10], [7]).
Let p be a �xed odd prime number. Throughout this paper, we always make use of

the following notations: Zp denotes the ring of p-adic rational integers, Q denotes the �eld
of rational numbers, Qp denotes the �eld of p-adic rational numbers, and Cp denotes the
completion of algebraic closure of Qp. Let N be the set of natural numbers and N

� = N[f0g.
Let �p be normalized exponential valuation of Cp such that

jpjp = p
��p(p) =

1

p
.

When one talks of q-extension, q-can be regarded as an indeterminate, a complex number
q 2 C, or a p-adic number q 2 Cp; it is always clear from the context. If q 2 C, then one
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usually assumes that jqj < 1. If q 2 Cp, then one usually assumes that jq � 1jp < 1; and

hence qx = exp (x log q) for x 2 Zp. In this work, we also use the notations:

[x]q =
1� qx

1� q
and [x]

�q =
1� (�q)x

1 + q
,

(see, for details, [1], [3], [8], [9], [15]). We note that limq!1 [x]q = x for any x with jxjp � 1
in the present p-adic case.
Let UD (Zp) be the space of uniformly di¤erentiable functions on Zp. For a positive integer

d with (d; p) = 1, set

X = Xd = lim
 �n
Z=dpnZ, X1 = Zp

X� = [
0<a<dp
(a;p)=1

a+ dpZp

and

a+ dpnZp = fx 2 X j x � a (mod dpn)g ,

where a 2 Z satis�es the condition 0 � a < dpn.
The p-adic q-Haar distribution is de�ned by Kim in [13] and [14], as follows:

�q(x+ p
nZp) =

qx

[pn]q
.

Thus, for f 2 UD (Zp), the p-adic q-integral on Zp is also de�ned by Kim as follows:

Iq (f) =

Z

Zp

f (x) d�q (x) = lim
n!1

pn�1X

x=0

f (x)�q(x+ p
nZp) = lim

n!1

1

[pn]q

pn�1X

x=0

f (x) qx. (1.6)

The bosonic integral is considered as the bosonic limit q ! 1; I1 (f) = limq!1 Iq (f). In
[16], similarly, the fermionic p-adic integration on Zp is de�ned by Kim as follows:

I�q (f) = lim
t!�q

It (f) =

Z

Zp

f (x) d��q (x) . (1.7)

From the Eq. (1.7), we have the known integral equation in [16]:

qnI�q (fn) + (�1)
n�1 I�q (f) = [2]q

n�1X

l=0

(�1)n�1�l qlf (l) , (1.8)

where fn (x) is a translation with f (x+ n). It follows from the Eq. (1.8) that
If n is odd, then

qnI�q (fn) + I�q (f) = [2]q

n�1X

l=0

(�1)l qlf (l) . (1.9)

If n is even, then we have

I�q (f)� q
nI�q (fn) = [2]q

n�1X

l=0

(�1)l qlf (l) . (1.10)
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Substituting n = 1 into the Eq. (1.9), then it becomes

qI�q (f1) + I�q (f) = [2]q f (0) . (1.11)

Replacing q by q�1 in the Eq. (1.11), we have

I�q�1 (f1) + qI�q�1 (f) = [2]q f (0) . (1.12)

In [10], Kim et al: is considered f(x) = e�x(1+q)t in the Eq. (1.12), then they gave Witt�s
formula of Eulerian polynomials as follows: for n 2 N�,

I�q�1 (x
n) =

(�1)n

(1 + q)n
An (�q) . (1.13)

In [11], the new generalization of the Eulerian polynomials on Zp was introduced by D.
Kim and M. S. Kim, as follows: for w 2 N�

I�q�1
�
q(1�w)xxn

�
=

(�1)n

wn (1 + q)n
An (�q; w) . (1.14)

It follows from the Eq. (1.14) that

lim
w!1

I�q�1
�
q(1�w)xxn

�
= I�q�1 (x

n) =
(�1)n

(1 + q)n
An (�q) .

By using the fermionic p-adic invariant q-integral on Zp, we consider a new generalization
of the Eulerian polynomials and give some intereting properties. Actually, we are motivated
from the papers of Kim et al [10] and Kim et al [11] to write this paper.

2. On the Dirichlet�s type of Eulerian polynomials

In this part, we assume that d is an odd natural number. Then we consider the following
equality by using the Eq. (1.9):

Z

Zp

f (x+ d) d��q�1 (x) + q
d

Z

Zp

f (x) d��q�1 (x) = [2]q

d�1X

l=0

(�1)l qd�l+1f (l) . (2.1)

Let � be a Dirichlet character with conductor d; by p j d. Then, substituting f(x) =
� (x) q(1�w)xe�x(1+q)wt in the Eq. (2.1), we have
Z

Zp

� (x+ d) q(1�w)(x+d)e�(x+d)(1+q)wtd��q�1 (x) + q
d

Z

Zp

� (x) q(1�w)xe�x(1+q)wtd��q�1 (x)

= [2]q

d�1X

l=0

(�1)l qd�l+1� (l) q(1�w)le�l(1+q)wt.

After some simpli�cations, we see that
Z

Zp

� (x) q(1�w)xe�x(1+q)wtd��q�1 (x) = [2]q

d�1X

l=0

(�1)l qd�l+1q(1�w)l� (l) e�l(1+q)wt

q(1�w)de�d(1+q)wt + qd
. (2.2)

Let Fw
q (t j �) =

P
1

n=0An;� (�q; w)
tn

n!
. Then, we state the following de�nition of generat-

ing function of the Dirichlet�s type of the generalized Eulerian polynomials.
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De�nition 1. For n;w 2 N�, we de�ne

1X

n=0

An;� (�q; w)
tn

n!
= [2]q

d�1X

l=0

(�1)l qd�l+1q(1�w)l� (l) e�l(1+q)wt

q(1�w)de�d(1+q)wt + qd
. (2.3)

From the expressions of the Eq. (2.2) and the Eq. (2.3), we give the following theo-
rem which seems to be Witt�s formula for the Dirichlet�s type of the generalized Eulerian
polynomials.

Theorem 1. The following equality holds:

I�q�1
�
� (x) q(1�w)xxn

�
=

(�1)n

wn (1 + q)n
An;� (�q; w) (2.4)

From the Eq. (2.3), we discover

1X

n=0

An;� (�q; w)
tn

n!
= [2]q

d�1X

l=0

(�1)l qd�l+1q(1�w)l� (l)
e�l(1+q)wt

q(1�w)de�d(1+q)wt + qd

= [2]q

d�1X

l=0

(�1)l q�l+1q(1�w)l� (l) e�l(1+q)wt
1X

m=0

(�1)m q�mwde�mwd(1+q)t

= q [2]q

1X

m=0

d�1X

l=0

(�1)l+md � (l +md)
�
q�w

�l+md
e�(l+md)(1+q)wt

= q [2]q

1X

m=0

(�1)m � (m) q�wme�m(1+q)wt.

Thus, we obtain the following theorem.

Theorem 2. For each w 2 N�, we have

Fw
q (t j �) =

1X

n=0

An;� (�q; w)
tn

n!
= q [2]q

1X

m=0

(�1)m � (m) q�wme�m(1+q)wt. (2.5)

By applying the de�nition of Taylor expansion of e�m(1+q)wt to the Eq. (2.5), we procure
the following theorem.

Theorem 3. For n;w 2 N�, we have

(�1)n

wn (1 + q)n+1
An;� (�q; w) =

1X

m=1

(�1)m � (m)mn

qwm�1
. (2.6)

Combining the Eq. (2.4) with the Eq. (2.6), we arrive at the following corollary:

Corollary 1. For n;w 2 N�, then we get

lim
n!1

pn�1X

m=1

(�1)m � (m)mn

qwm
= 2

1X

m=1

(�1)m � (m)mn

qwm�2
.
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We now derive a distribution formula for the Dirichlet�s type of the generalized Eulerian
polynomials using the fermionic p-adic q-integral on Zp, as follows:

Z

Zp

� (x) q(1�w)xxnd��q�1 (x)

= lim
m!1

1

[dpm]
�q�1

dpm�1X

x=0

(�1)x q(1�w)x� (x) xnq�x

=
dn

[d]
�q�1

d�1X

a=0

(�1)a � (a) q�wa

 

lim
m!1

1

[pm]
�q�d

pm�1X

x=0

(�1)x
�a
d
+ x
�n
q�dwx

!

=
dn

[d]
�q�1

d�1X

a=0

(�1)a � (a) q�wa
Z

Zp

�a
d
+ x
�n
q�dwxd��q�d (x)

=
dn

[d]
�q�1

d�1X

a=0

nX

j=0

�
n

j

�
(�1)a � (a) q�wa

�a
d

�n�j Z

Zp

q�dwxxjd��q�d (x) .

Thus, we state the following theorem.

Theorem 4. The following identity holds true:

(�1)n

wn (1 + q)n
An;� (�q; w) (2.7)

=
dn

[d]
�q�1

d�1X

a=0

nX

j=0

�
n

j

�
(�1)a+j � (a) q�wa

�
a
d

�n�j

(1 + q + dw + qdw)j
Aj (�q; dw + 1) .

3. On the L-type functions

The classical Bernoulli numbers are interpolated by the Riemann zeta functions, which
have profound e¤ect on Analytic numbers theory, complex analysis and other related topics.
The values of the negative integer points, also found by Euler, are rational numbers and
play a vital and important role in the theory of modular forms. Many generalization of the
Riemann zeta function, such as Dirichlet series, Dirichlet L-functions and L-functions, are
worked in [1], [15], [17], [18], [19], [20], [21].
In this �nal part, our objective is to introduce a new generalization of the Eulerian-L func-

tion applying Mellin transformation to the generating function of the Eulerian polynomials.
From the Eq. (2.5), for s 2 C, we consider

LwE (s j �) =
1

� (s)

Z
1

0

ts�1Fw
q (t j �) dt
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(� (s) is known as Gamma function) and compute as follows:

LwE (s j �) = q [2]q

1X

m=0

(�1)m � (m) q�wm
�

1

� (s)

Z
1

0

ts�1e�m(1+q)wtdt

�

=
q

(1 + q)s�1

1X

m=1

(�1)m � (m) q�wm

(wm)s
.

As a result of the above applications, we give de�nition of the generalized Eulerian L-
function as follows:

De�nition 2. For s 2 C, we have

LwE (s j �) =
q

(1 + q)s�1

1X

m=1

(�1)m � (m)

qwm (wm)s
. (3.1)

After substituting s = �n into (3.1), then the relation between the generalized Eulerian L-
function and Dirichlet�s type of the generalized Eulerian polynomials are given the following.

Theorem 5. The following equality holds true:

LwE (�n j �) = (�1)
nAn;� (�q; w) =

�
�An;� (�q; w) if n odd,
An;� (�q; w) if n even.
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