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Generalized Racah coefficimt, designated as U coefficient in this paper, !].as been defined as the 
transformation function between two differmt. coupling schemes in pairs of any four angular momenta, 
corresponding' to the Racah coefficient defined as the tt'ansformatlon function betw!)eD two different 
coupling schemes of any three angular momenta. Several simple properties of the U coefficient have' 
been derived, and the method of tensor operators made to be extended to more general problems. 
Transformation coefficients between LS" and.jj-coupling schemes in a many particle system can be 
evaluated by making use of these coefficients. 

§ 1. Introduction 

The lw:ah coefficient has proved to play a very important role in 'detailed theories of 
the atomic and nuclear spectroscopyl-S), and also to be useful for the studies of the nuclear 

radiations and reactions.4),t;) It is defined as the transformation function between two dif­

ferent coupling sChemes of any three angular momenta J;, j2 and J~' by 

where·j1+j2=Jw j2+jS=J23 and ~2+jS=J;.+J23=J. In a similar way, we can 
define the generalized - Racah . coefficient which- is designated as the U coefficient in this 

plJ.per, as the transformation function between two different coupling orders in. pairs of 

any four angular. momenta j1./2.;'8 and j~ by 

=(J;j2(J12)J~J~(J84)J I jdS(J1S)j2J~(J24 )j), (2) 

where .11 +.i2=J12,;jS+j1=J.'14,.i2+j4=~4J jl+jS=J;.S and J;.2+J.~4=JI3+.T£4=J, and 
the nine angular monenta as the arguments in the U coefficients are arranged in three 

. rows and columns in natural order. It is, therefore, expressed by a sum of the products 

of six Clebsch-Gordan coefficients of the vector additions as 

(J;J~{J12)f3J~(J 84) J I J;J~ (JIS) j2J~ (J 24) J ) = ~ (jlJ~ m1m2 I jd2h2M) 

. (fv~ 11Zgm4 IJ~J~J'14¥'14) Cfl?J'14 M;2 M:'14 I jlJ'14IM) (jll~ m1mS IjllJlsM;3) 

. (J~J~ m Z .m4 -U2/~ J24 M 24) (fJ!V24 M;s M24 l1ls J24!M)~ (3) 
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where the summation is extended over all possible values of m]> m 2, ms, m 1, ~2' ,Mw ~3 
and 111"~w restricted by obvious relations m1 +m2="~2' m3 +m4=fifs4' m1 + m3=~S' 
m2+m4=M~w and ~2+¥'w=lI1;3+~4=M 

It is shown in the next section, that the U coefficient can be expressed in terms of 

a sum of the products of three Racahcoefficients and that the Racah coefficient is a spe­

cial case of the U coefficient. Some other properties of the coefficient, also, will be 

derived there. In sec. 3, the method of tensor operators are extended to more general 

operators which are constructed as -tel1sor products of two tensor operators. It enables us 

to treat the spin-dependent interactions in a more general way. And in sec. 4, the method 

of the calculation of the transformation function between LS- and Jj"-coupling schemes is 
derived which seems very important in the treatment of nuclear shell model, especially for 

light nuclei. Finally some recurrence formulae for the coeffi~ients are given in the 

Appendix. 

§ 2. Properties of the U 'coefficients 

The U coefficient in (2) is defined for integral and half-integral values of the nine 

parameters, with the limitation that each of the six triads 

has an integral sum, and vanishes unless the elements of each triad (4) satisfy the" trian­

gular inequalities according to 'the definition (2) and (3). 
The summation in (3) can be carried out by making use of the Racah coefficients if 

we introduce the foHowing intermediate state characterised by Jl23=J~2+ ia. tha't is 

U, i2 ( h2 )f1J~ (J14)J I ids (h3)J~J~ (J24) J) 

=::s (J12.fd~(J14)J IJlda(Jl23)j4J) Ud2C J12)iJl23 Ijd3(J13)J~Jl23) 
J123 ' 

. (JIS/2(J12a) J~J !J13,iaJ~(J34) J), (5) 

where the summation .over J'23 is extended over all possible values compatible with the 

condition .~23=.T;2+j3=.~3 +;i2' Therefore the U c~efficient can be expressed in terms 

of Racah coefficients with RIll (4) and (5). In abbreviated notations for arguments, it is 

given by 

uC :, ; )~~(2'+1) W(fgbd; 1") W(cycd; c',) W(fcbc; fl'). (6) 

It is easily seen that the Racah coefficient can be obtained, as a special case of the 

U coefficient in which anyone of the six arguments b, c .. d, e,/ and" g appearing in any 

two W's in the right hand side is equal to zero. _ For example, if g= 0, e=e' and /=/' 
result for non-vanishing [l, which is ~iven by " 
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Generalized Racali Corfficicnt and its 'ApPlications 145 

Owing to the symmetry properties of the U coefficient which we can show in the following, 

the coefficient reduces always to the W coefficient if anyone of its nine arguments is 

eq~al to zero. 
We can immediately derive the following symmetry properties from those of the Racah 

coefficients (see RII (40a) and (40b» and the relations given by RII (43) and Bieden­

harn, Blatt and Rose's6) (17) . 
i) Transposition of ,-;' rows" and "columns": 

(8) 

ii) Interchanges of two "rows" or "columns"; 

U(:' ~ :')=(_l)OU(: : :~)=(-l)au(~ : :e~)' (9) 
/ J' g. f /' gab 

wheren=a+b+c+ d+e+ e' +/+/' +g (=integer). 
Combining (8) and (9), we obtain 72 different arrangements of the, nine parameters. 

For ex~mple, we can rewrite formula (6) into ~he following more symmetrical form: 

. (a b C) 
U c· d e' =(-1)a~(2A+1)W(bc'f; Aa)W(bcf'e'; U)W(efe'/'; A~), 

f I' g 
(10) 

where the" diagonal" elements of U appear as the, last arguments of the three W coeffi­

cients. We shalL prefer this form as the standard 'form.ula connecting the U and the W 
coefficients. Furthermore, it is easy to see that, if a=c, b=d and e=e', according to (9), 

U(: : : )=0, 

/ f' g 

(/+/' +g=odd). (11) 

Some identities 'can be derived from the definition . of the U coefficient as a trans­

formatio~ function between two different couplings in pairs of four angular momenta. Four 

angular momenta a, b, c and d can be combined into various pairs, as follows: 

g= (a+b) + (c +d) = (a+ c) + (b +d) = (a+d) + (b+c). (12) 
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It follows at once that 

~(ab(e)cd(e')g I ac(f) bd(f') g) (ac(f)bd(f)g I ab(e1)cd(eDg) 
If' . 

(13) 

In terms of U' s, this gives us from (2), the following orthogonality relation between them: 

ft;(2f+1)(2f'+I)U(: ; :,)u(: : ::') 
If'g ff'g 

=a(c, e1) aCt', 1'/) / [(2e+ 1 )(21"+ 1) J. (14) 

Since the transformation function between. the first and third coupling orders in pairs of 

(12) can be expressed, through the second one, as 

~(ab(e)cd(e')g I ac(f) bd(f') g) Cac(f)bd(f')g I ad(Jz) bc (h') g) 
If' 

= (ab(e)cd(e')g I ad(lz) bc(h') g) , 

we obtain, another useful relation between U's:* 

, (a be) (a #(-I)"'-/HO+l<~(2f+l)(2f'+I)U c de'; U d 

. ff'g h 

(15) 

(16) 

We can see without difficulties that (15) and (16) are the generalization of RII (42) 
and (43), if we put g equal to zero. Beside these relations we have obtained several other 

relations between U's and between U's and W's, some of which will be given in Appendix. 

We shall also show there how recurrence formulae, for U coefficients are obtained from one 

of them. 

§ 3. Application to the calculation of matrix elements 

of tensor operators 

(a) Tensor product of two tensor operators 

The tensor product of two tensor operators TCk,l and U Ck2l is defined in the usual 

way by an irreducible form 

*) The following relations are easily proved: 

(
a be) 

(ab(c)cd(el)gl"d(f)bcC.//)g)=(-l)c+,z-e' [(2e+l)(2el,!-1)(2'/+ 1) (2./I +l)1'/.lj d c el , 

.I /1 9 
and 

(a b e) 
(ab(e)al.(el)g!ad(f)cbC.//)g)=(-l),z-e'-I)+f' [(2e+l)(2el +l)(2'/+1)(2f'+1)jl/2lj d c el . 

./ f' 9 
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Cenfrati.f!ed Racah CoeJ/icient alld its Applications 14'7 

(17) 

In practical applications the most important tensor products are those in which two tensor 

operators operate on different parts of a composite system. The operator of this type 

. appears in many problems, for example, in the calculation of matrices of spin-dependent 

interactions7- 9), of multipole moments of radiations in the nuclear shell model10) , and of 

polarization of emerging particles in nuclear reactionsll). * 
When T(k,) operates on system 1 and U(k2) operates on system 2, the matrix element 

of a tensor product of T(k,) and U(k2) in (J;i2J M) scheme is given by 

( .. IMI [T(k,) U(k2) ](K) I ., "J'M') -"" ( .. j'Ml . . ) JJ}2_ X Q Jl12 -.L.J JJ}2 J,}2 1n1m2 

. Cf/J/m/m;' li/f/ J'M') (k1k2q]q21 k,k2](Q)· (18) 

And, if the double-barred element is defined iri accordance with RII (29) by 

«(j:fm I T~k)! lI.'lm')=«(~,i11 T(k) II a'J) (J'km'q lj'kjm)./(2j+1)1/., (19) 

it is easy to be shown that the double-barred elements of the tensor product [T(k l ) X U(k 2)]<K) 
are expressed in terms of those of T(k,) and U(k 2) and a U coefficient as follows: 

Cid2J II [T(k,) x' U(k2TK)IIJ~J~'J) =Cil II T<k l ) lIiI) U211 U(k2) IIJD 

(
il R kl) 

. [(2J + 1)(21' + 1) (2](+ 1) Jl/·U j2 .N k2 . 

J J' ]( 

(20) 

This simple and symmetrical formula is a natural generalization of RII ( 3 8 ), (44a) and 

(44b), First of all, noting that 

(21) 

where in the left-hand side (T(k)·U(k»=I](-1)qT~k)U~k) represents the scalar product 
q 

6f the, two tensor operators T(k) and U (k), and putting kJ=k2=k and ](=0 in (20), 
we obtain the relation RII (38) . 

(J~jJMI (T(k). Utk» \ib'/ 1M) =( _1)i,+i2'-J 

. (jIll T(k) 11;/) Ci211 U{k) liN) W(jdJb'/ ;Jk). (22) 

Putting further k2=0 and k1=](=k in (20), and noting that (JII1 II}) = (2i+1)'h, 
we get the relation given by RII (44a ) 

*) For the same .coefficient 'l.S our U's, U. Fano and G. Racah seem to have given the notation 
X(abe; cde'; .1.1' g) in their unpublished paper (cf. ref, 11). 
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(jdd II T ik) IIR/~J') = (_l)k+i z-i<-J 

. (J; II T(I,) Ili/) [(2J + 1) (2J' + l)T/'W(JJi/J'; i2k). (23) 

The relation RII (44b) can be obtained in a similar wayhy putting k1=0 and k2=K=k. 
It must be observed that for the double-barred elements of the tensor product, 

Ud2JII [rk,) X UCk2)]<Kl II it'i/J') = (_ly~JI+k,+k2-X 

. U/j/J' II [TCk1) X-UCkz)]<K) I!idd) , (24) 

corresponding to RII (31) _ As a special case of (24), the following formula is obtained, 

by putting jl =J~" i2 = i/ and J = J', 
(Jddl! [rkJ) x U C9]C1() !lJ;J~J) =0 

which can also be derived from (11) immediately. 

(b) Matrix elements of the scalar product of two 

irreducible composite tensors 

(25) 

In order to calculate the matrix of spin-dependent interactions, It 1S necesary to treat 

the scalar :product of two irreducible composite tensors. Hence we consider this quantity more 

in detail. Let TCk/<2; li) be an irreducible composite tensor of degree K with respect to 

J=j1 +j2 which behaves as an irreducible tensor of degree 1.:1 and k2 with respect to i1 
and J~ respectively (This may be considered as an abbreviation of the tensor product given 

in (17», and UCkJkZ ; X) have a similar meaning. By making use of (20) and BBR (1), 
the matrix elements of this scalar product ,in (i1J~J M) scheme are given by 

The summation over J" in (26) can be carrit;d out, using the relation between U and 

W coefficients and with RII (43) and BBR (17),so that (26) is written in an expected 

form as 

(r J;J~JMI (TCk,kz; li) _UCkI'kz' ; li» Ir'J/i/ jMJ 

= (2K + 1)~(-- 1)1,+iz,-J W(;~ioi,' l2' ; Ji.) 
). 

':8( -1)k,'+kz(rJd21! TCk" kz) II r"f," J~") (r"i/'i/' II UCk/,kz') if r'J;' jz') 
i·" 1/'1 21.' 

. W(jli/ 1.:1 k/; i. it) wU2Jl k2 ka'; i.i/') W(!.:l k2!.:/ k/; K).). (27) 

This formula is useful, especially, in the treatment of the spin-dependent interactions7.-m, 
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in which this reduction has been done in a more straightforward way. For example, in the 

case of the spin-spin interaction between electrons, the angular momenta.11 and.12 are the 

total spin and the total orbital angular momenta respectively, and k1=k,' = 1 and k/ =k2+ 2 

(k=o, 2, .. -), ,so that only .1.=2 appears in this equation. 

( c) Coefficients of the exchange integrals of a many partide system 

Racah has given a general method for obtaining the coefficient of exchange integrals 

ill the case of electrostatic interactions RlI, sec. 5. We shall extend this method to 

spin-dependent interactions, making use of, the result in this section. The spin-dependent 

interaction can be- represented as a scalar product of two irreducible tensors which have 

degree K (K =+= 0) in the spin and the ordinary space, respectively; for example, in the 

tensor' or the spin-spin interaction f{ = 2 and in the spin-orbit interaction l~ = 1. 

First, we consider only the orbital part and assume that the irreducible tensor is a 

tensor product of two tensor operators of degree kl and k2' the former operating on particle 

1 and the latter on particle 2. Then we obtain the orbital part of coefficients of exchange 

integrals in terms of double-barred elements as 

(_1)Z,+z2- M (l]/2 L II [T/k,l x U2(k2)]CK) 11/21] L') 

= (_1)l'+Z2-[;I (/] [I TCk1) [1/2)(/2 [1 U Ck 2) II 11)[(2L+1) (2L'+1)(2K+l)y" 

( 
IJ 12 L) 

. U 11 12 L' , 

kl k2 K 

and owing to (1'5) and RII (31), it follows that 

(-l)11+12-L (/1 12 L II [T_Ck1) X UCk2l J<K) il/2 11 L') 

=(/] [I T<k,) 11/2)(1] [I UCk2) II 12) [(2L+I)(2L'+1)(2K+1)]'/. 

11 r) (11 !2 
12 S U 11 12 

k2 K r S 

Futhe~more, if we define the unit tensor U,(k) by 

(I II it(k) Ill') =a(l, I'), 

and'take (20) into account, we may also write 

(28) 

(29) 

(30 ) 
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Therefore, the calculation of the coefficients of the exchange integrals can be carried out 
in the same way as for obtaining those ·of direct integrals with respect to the operator 

r.B. 

(31) 

in place of [T(k 1) X U(k2)]. In a similar way, another irreducible tensor of degree K can 

be obtained as the spin part, which becomes usually much simpler; Therefore, the complete 
operator necessary for the calc~lation of coefficients of exchange integrals is given· by 
contructing scalar products of these two irreducible tehsors of degree K with respect to 
the ord~ary and spin spaces and reversing the total sign due to the antisymmetry of the 

• wave functions. 

As a trivial example of this procedure, the formula RII (59) of the co~fficient 

'1k (ll2L) for the electrostatic interaction is derived by putting K = 0 and T(kl ) = U (k~ = e(k) 

in: (31) where qk) =[ 41r/ (21.'+ 1) J'/2 8 (kq) IP(q). Another trivial example is given by the 
construction of Dirac's exchange operator with (30). Letting 11=/2= 1/2, T(O) = UfO) = I, 
and noting that I = ( 2) l/o,U (0) and s = (3/2) l/OU (1), we. immediately have Dirac's exchange 

operator 

(32) 

The simplest example of the spin-dependent interactions is given by the spin-spin 
interaction between electrons.7),S) In this case, we need not change the form of the spin 

part since it is symmetrical with respect to the spin variables of two electrons. This holds 

also for the tensor interaction with arbitrary radial dependence. The coefficients of exchange 
integrals of the spin-spin in~eraction between electrons 

. J JRe (r]) Re (1'2) rk·1
k
a R e'(1'2)R j (1'l)dr1dr:2 

1 2 1'1 + 1 2 

are given by the matrix elements of the operator 

-- 2/,.(/] II C(k) 11/2 ) (tIll Ck+2 11/2) 2::' C---l )k-S(2r + 1) (25 + 1) 
... s 

(33) 

where the prime on the summation symbol denotes that the summation is extended only 

over those values of l' and s which satisfy r + s = even andtbe coefficients /k is given by 
( __ 1)k+14 [(k + 1) (k +2)(2k + 1) (2k+3) (2k+ 5) /5],/2 •. 
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§ 4. Transformation coefficie"Qtsbetween Ll;- and jj-coupling 

schemes' in Z'" configuration 

15i 

The transform~tion coefficient between LS- and J/coupling schmes of two particle 

system can be obtained at once from the general expression for the transformation function 

between two different cou'plings in pairs of four ~gular momenta given in sec. 1 and 2. 

For two equivalent particles (Identical particles which are contained in the same shell), 

however, the formula does not hold· without modification on account of the Pauli exclusion 
principle as will be seen in the following. Here we consider the case in which there are 

1l equivalent particles in the same shell with azimuthal quantum number I. The states 

of t" configuration are characterized by aSLJ M in LS-oupling scheme, where II. is the 

quantum number other than 5, L. J and Jlf. On the other hand, the states with the 

same J and M are characterized by itl (/11 J1 )it'z (/12 ]2) J M in licoupling scheme, where 

i,=1+1/2.i2=1-1/2 and n1 +1l2=n, /1'S being the quantum number other thanJ and 

M The quantum number of the isotopic spin employed sometimes in nuclear shell model 

can be included ina and in /1. Taking into account the antisymmetry property of 

wave functions, the transformation function between LS- and Jj'-coupling schemes for 1l 

equivalent particles can be obtained in terms of those for (11-1) equivalent particles, the 

coefficients of fractional parentages, and the U and UT coefficients: 

U"'uSL J M I R'l (/11Jl)itz (/12J2)J M) 

= (-l)"z(nl/n)'/'~(l"(jSL{ I r-1(o.'S'L') tsL) ( S' ~ (S)L'I(L)J I S'L'(J') .~ l(1)J) 

. (/,-10.'5' L'J' IR'l-l (/1/ J/)R'z (fJ2J2)J') (J/J2 (./') jJ I J/J; (JI)J?J) 

. (R'l-l(~/Jn il J1 I} R'1/11JI) + (n2/n)'/·~(raSL{lln-l(o.' S'L')tSL) 

. (S'~(S)L'I(L)J IS' L' (]')~t(j2)J)(r-Ia' S'L']' IJ/l(/1IJl)R'z-l(/1z'Jz')J') 
2 2 . 

(34) 

The tables of the coefficients of fractional parentages were given by RIll for the atomic 

p" and d n configurations. by Jahn and van Wieringen2) for the nuclear pn, by Jahn2) for 

d S and d 4 configurations in LS-coupling, and Edmond and FlowersS) for (3/2)3, (3/2)4, 

(5/2)5 (7/2)3 and(7/2l configurations. The tables of W coefficients were given by 

Biedenharn12) and Obi et at. IS) 
For two equivalent particles which have only states with 5 + L= even in LS-coupling 

scheme, eq. .< 34) reduces to 

(t2 SLJ M IP JlYI) =(~ ~(S)II(L)J[ ~t(j) ~ 1(j)J), 
. 2 2 . 2 2 
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Appendix. Identities and recurrence formulae for the U coefficients 

The values of the U coefficients can be obtained by inserting the values of the W 
coef!icients in the formula (6). However, there are also some recurrence formulae between 

the U coefficients which' may be available for the evaluation of the coefficients. 

In order to obtain an identity from which recurrence formulae can be. derived, we 

consider the following two different coupling schemes of five angular momenta and the 

transformation function between them. It is evident that 

(jlj~ (112 !J~J~ (J"A) ( ];234 )J~J I i1 j; (JI3) ,i9j~ (J24)j~ (J245)J) 

= Ul}2(J12)id4 C.!:14)J1234 IJ'tJ;(J13)f2J~ (/24 Vl234) 

. (J1J24(;;234)j~J IJ13,.J24j~(J245V)· (A. 1) 

But this transformation function can be expressed in another way by employing two inter­

mediate state as 

. Ud2 (];2) i3J45 (J345) J I J~i3 (JI3) i2J45 (J 245) J) 

~ (J~,J~ j~C.~5)J245 1J9J~ (J 24)JJ245) . (A. 2) 

Equating this with (A. 1) and expressing the result by the U and' W ~oefficients, we 

obtain the relation between them as follows; 

(a be) 
U c d e' WCff'gh; gl',)=~C2A+1)(2,u+1)W(ee'gh; gA) 

AI'-

f J' g 

CA. 3) 

Applications of this identity to give recurrence formulae are immediate. Take, for ex­

ample, 1;=1/2. Then in the summation on the right hand side of CA. 3} A and ,u take 

only two values A=e' ± 1/2 and p.=d±1/2 respectively .. Then, we can choose the 

values of l I and g as l' = f' ± 1/2 and g = g ± 1/2. Therefore, the values of 

u(: d-1/2 e'~1/2 ), for example, can be evaluatedin'ter~s of four U.coefficients· 
f /,-1/2 g-1/2 
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Coefficients of the relation which come from the W coefficients with one variable equal to 
1/2, are 'simple algebraic' functicins. ' In a similar. way, we can have a relation betwen the 
following nine (j co~ffic_ients :' -, , 

t be) t' 'b e), ( abe ) ( abe ) 
U,-c d e' ,U c d c'±1, U c d±l c"and l/ c d±1 e'±1 . 

, I' ,g I I' g I I' g' - f I' g' 

Furthermore, it is easily sh~wn ,that 

(ab(e)c(c')dg I ad(/)c(I')eij) 

~(-1)'-'-'V'[(2<+1)(2'+t)(2f+l)(2/'+lH,.ue ~ ~). (A .• ) 

Using the ckfinition (10) and (A,4), we can find 

; :) u(~ ~ :) u(: : :), 
p. /J d h g f I' g 

(A. 5) 

and 

d e') 
e' g . 

Tl e 

(A6) 
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