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Generalized Racah coefficient, designated as U coeficient in this paper, has been defined as the
‘transformation function between two different coupling schemes in pairs of any four angular momenta,
corresponding to the Racah coefficient defined as the transformation function between two different
coupling schemes of any three angular momenta. Several simple properties of the {’ coefficient have
been derived, and the method of tensor operators made to be extended to more general problems.
Transformation coefficients between Z.S- and.jj-coupling schemes in a many particle system can be
evaluated by making use of these coefficients.

§ 1. Introduction

The Racah coefficient has proved to play a very important role in detailed theories of
the atomic and nuclear spectroscopy’™, and also to be useful for the studies of the nuclear
radiations and reactions.”® It is defined as the transformation function between two dif-

ferent coupling schemes of any three angular momenta 7, 7, and sy by

[(2f1+ 1) (2t D)W (Gije S s Jie Ses) =(J17e(J12) J5 / | Jv 7258(Jw) J) s (1)
where J, +Jy=eJ s, Jo+Js=eJ 5 and Jotdi=J+Jyu=eJ. In a similar way, we can
define the generalized Racah coefficient which is designated as the U/ coefficient in this
paper, as the transformation function between two different coupling orders in. pairs of
any four angular momenta ji, /5 75 and j, by

: Ji Je Jw
[(2/e4 1) (2/a+1) (2/1s+1) (2] + DIPU js Ju Ju
JsJu J
=(117:(Js2) 757 S T | 117:(Jss) Joda( S ) ] )s (2)

whete J, +j,=J 0 Js+Ji=J o, JotTi=J o, Ji+Js=eJy3 and Jp+ 'I24=J13+'724=J’ and
the nine angular monenta as the arguments in the U coefficients are atranged in three
‘rows and columns in natural order. It is, therefore, expressed by a sum of the products
of six Clebsch-Gordan coefficients of the vector additions as

(172(J)fs 7 Js) T | 1172 J13) JaJs(Se) T ) =22 (s Je1m0ums | J17e S 1o )
« (Jsls msmy | s JuS s Mag) (JroSoa Mog Mos | JroJ s JM) (715 moms | 7 JoS 15 Ms)
: (]-2].4 Mg 124 l]e]«; S Moy) (/13/24 My My L[]s ]MJM),’ " (3)
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where the summation is extended over all' possible values of #2,, 7y, 75, 14 Migy My, M,
and M, restricted by obvious relations e, +me,= My, my+my=My, mi+ ms=M;,
Mo+ my= My, and Mg+ My= M5+ Moy= M.

It is shown in the next section, that the {/ coefficient can be expressed in terms of
a sum of the products of three Racah coefficients and that the Racah coefficient is a spe-
cial case of the U coefficient. Some other propetties of the coefficient, also, will be
detived there. In sec. 3, the method of tensor operators are extended to more general
operators which are constructed as tensor products of two tensor operators. It enables us
to treat the spin-dependent interactions in a more general way. And in sec. 4, the method
" of the calculation of the transformation function between ZS- and jj-coupling schemes is
derived which seems very important in the treatment of nuclear shell model, -especially for
light nuclei. Finally some recutrence formulae for the coefficients are given in the

Appendix.

§ 2. Properties of the U “coefficients

The U coefficient in (2) is defined for integral and half-integral values of the nine
parametets, with the limitation that each of the six triads

(/'1-]}:_/12): (JsJoSs)s (Jias s /) (7.1’]:-3’ 1) (Jos Jo 24)] (Jw S ) (4)

has an integral sum, and vanishes unless the elements of each triad (4) satisfy the trian-
gular inequalities according to the definition (2) and (3).

The summation in (3) can be carried out by makmg use of the Racah coefficients if
we introduce the following intermediate state characterised by Jp= ot T that is

(1 7o Se)fada (s | J17s (i) Jeda(Jed J)
*5 (‘/m]"ﬁ(fft)j|./12]3(/m)/4/) (717 /12)]1/1% | 7175(J1s) 72 J1es)
(_/10/_(_/123)]4/ |j13v]9]4(]°4)])' - (5)

where the summation over /,,, is extended over all possible values compatible with the
condition oJ,y=eJiy4Js=eli;+7F,. Therefore the (/ coefficient can be expressed in terms
of Racah coefficients with RIII (4) and (5). In abbreviated notations for arguments, it is

given by
a b e ] :
Ule d ¢ |=S3(22+1) W(fyed; 1) Weged ; &'A) W(febe; al). (6)
Fry |

It is easily seen that the Racah coefficient can be obtained. as a special case of the
U coefficient in which any one of the six arguments &,¢,d, ¢, f and ¢ appearing in any
two W’s in the right hand side is equal to zero. For example, if =0, ¢=¢' and S=r

result for non-vanishing U/, which is given by
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a 6 e-
Ulc d e |=(=0) "t W(abeds ef) [[(2+1)(F+DT% ()
VARV '

Owing to the symmetry properties of the U/ coefficient which we can show in the following,
the coefficient reduces always to the J#/ coefficient if any one of its nine arguments is
equal to zero.

We can immediately derive ‘the following symmetry properties from those of ‘the Racah
coefficients (see RII (40a) and (40b)) and the relations given by RII (43) and Bieden-
harn, Blatt and Rose’s” (17)

i) Transposition of ““rows’ and “ columns”

a b ¢ a c f
Ule d & |=U|& d f). (8)
\7 /9 e ¢ g
ii) Interchanges of two *rows” or * columns” ;
a b ¢ fc d ¢ f ry
: _U,c"d 4 =(———1)':"Ul‘. a b6 e)=(—1°U|c & ¢ | 9
o s Fr g a b e

where a——a+é+c+ dte+e +f+f +9 (=integer).
Combining (8) and (9), we obtain 72 different arrangements of the .nine parameters.
For example, we can rewrite formula (6) into the following more symmetrical form :

a b ¢
Ul e d & |=(=1)"S1(2A+1) Wbeef 5 2a) Woef'e 5 dd) W(efef' 5 Ag),
A

£y
(10)
where the * diagonal ” elements of U/ appear as the last arguments of the three /¥ coeffi-
cients. We shall prefer this form as the standard “formula connecting the U/ and the W/
coefficients.  Furthermore, it is easy to see that, if a=¢, 6=4d and ¢=¢/, according to (9),

a 6 ¢
Ula & ¢ |=0, (f+Sf"+g9=0dd). (11)
S Iy

Some - identities can be derived from the definition of the {/ coefficient as a trans-
formation function between two different couplings in pairs of four angular momenta. Four
. -angular momenta a, 4, ¢ and & can be combined into various pairs, as follows :

g=(@+b) +(c+d)=(a+c) +(b+d)=(a+d) +(b+0). (12)
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It follows at once that N
S ab(@ed(€)g | ac(F)6d(F)g) (ac(£)od(£) | abler)ed(el))
=0(e,)0(¢, &)). : (13)
In terms of U's, this gives us from (2), the following orthogonality relation between them :
a b6 ¢\ [a & ¢
fXﬂ_‘,(Zf+1)(2f’+1)U c d ¢ \U|lc d ¢
Sy rroel
=0(c,e) (/s e) /[(2e+1) (27 +1)].  (14)

Since the transformation function between. the first. and thlrd coupling -otders in pairs of
(12) can be expressed, through the second one, as :

L(aé(f)ta’(e”)g l M(f)éd(f')y) (ﬂc(f)éa’(f’)g lad (%) bc (/) 9) A
=(ab(e)ed () g | ad () be(H)g), (15)

we obtain, another useful relation between (’s :*

la 6 ¢ a ¢ [\ a 6 e _

SU(—1)~/"=2 (24 1) (2 +1)U| ¢ d dNUd &6 f|=Ud ¢ ¢
I )
rFry

\z Xy V4

' (16)
We can see without difficulties that (15) and (16) are the generalization of RII (42)
and (43), if we put ¢ equal to zero. Beside these relations we have obtained several other
relations between {/’s and between {/’s and 1#’s, some of which will be given in Appendix.

We shall also show there how recurrence formulae for U/ coefficients are obtained from one
of them. :

§ 3. Application to the calculation of matrix elements

of tensor operators

(a) Tensor product of two tensor operaiors

The tensor product of two tensor operators T'*Y and U*? is defined in the usual
way by an irreducible form

*) The following relations are easily proved :

. a b e
(ab(c)cd(e”) glad(f)bc(f7) g) = (—1) e+ e’ [(2e+1)(2f’--1—1)(2/+1)(2f’+1.)1‘/=U(d ¢ e’),
£ ry

and

a b e
(@b (e)cd(e') glad( F)cb(F7) g) = (—1) 4= ' =b+1" [(@e1) (26/+1) @ f+1) (24/41) 13U ( 4 ¢ o )
VAN
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(Ic)

[T(k‘) < U ](If) E T(k’) g (/f, Bagigs | Bty KO) (17)

In practical applications the most important tensor products are those in which two tensor
operators operate on different parts of a composite system. The operator of this type
" appears in many problems, for example, in the calculation of matrices of spin-dependent

interactions’”, of multipole moments of radiations in the nuclear shell model'”, and of

polarization of emerging particles in nuclear reactions™.*

When T'*? operates on system 1 and U %2 operates on system 2, the matrix element
of a tensor product of T'*) and U*? in (7, /M) scheme is given by

(/e M| [TH x T | FET M) =32 (fs e JM | Ji jormimns)
“(Jumy | T? v |/ ") (Jams | Uq ? | /'my)
<(J Jimimd | Ji7s J M) (Rtesgngs | 2 KQ). (18)
And, if the double-barred element is defined ifi accordance with RII (29) by
(wpm | TP | )= (g | T® || d' 7)) (j'llq | J lim) /(27 + 1), (19)

it is easy to be shown that the double-barred elements of the tensor product [T'*? x U *2]"
are expressed in terms of those of 7'’ and U®? and a U coefficient as follows :

Uid N [T® x U*]®) 71757 ) =G ll T4 |70 (el O % 1 7)
J1
[@/+1) @/ +1)QK+1)TRU | 7y 74 % | (20).
JJ K
This simple and symmetrical -formula is a natural generalization of RII (38), (44a) and
(44b). First of all, noting that

(TP . UD) = (—1)*(2£+1)*2[T® x U ®]O, (21)

(kg) ~ (&)
1o

where in the left-hand side (7'®-U ®)= Z‘( 1)?7PUP represents the scalar product

of the two tensor operators '® and U("), and putting £,=/4,=% and K=0 in (20),
we obtain the relation RII (38)

G/ M| (XP-T D) | 57 JM) =(—1)"h*7'7
SN TOUFD Gl UP NG WG jeild s T8 (22)

Putting further £,=0 and A/=K=4# in (20), and notmg that (/||1]/)=(27+1)"2,
we get the relation given by RII (44a)

. *) For the same .coefficient as our U’s, U. Fano and G. Racah seem to have given the notation
X(abe; cde’ 5 ff’g) in their unpublished paper (cf. ref. 11).
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(ATS N TPV Ale T = (—1) %4770~
(AIFT®N(2/+1) (2/’+1)]"’Wu]fj1f’ Jzé) (23)

The relation RII (44b) can be obtained in a similar way by putting £, =0 and £y=K=4.
It must be observed that for the double-batred elements of the tensor product,

GideJILT® X USRI | f i J7) = (= 1)7 7 hithios
G N TS X USRI 7,7, (24)
corresponding to RII (31). As a special case of (24), the following formula is obtained,
by putting =71, j,=j and /=/',
G NT® x UE]® Y 7 J)=0 (A +k—K=0dd), (25)

which can also be derived from (11) immediately.

(b) Matrix elements of the scalar product of two

irreducible composite tensors

In order to calculate the matrix of spin-dependent interactions, it is necesary to treat -

the scalar product of two irreducible composite tensors. Hence we consider this quantity more
in detail. Let 7'%* % be an irreducible composite tensor of degree K with respect to
J=j,+J, which behaves as an irreducible tensor of degree /Z; and %, with respect. to j;
and , respectively (This may be considered as an abbreviation of the tensor product given
in (17)), and U** % have a similar meaning. By making use of (20) and BBR (1),
the matrix elements of this scalar product in (7,7, /M) scheme are given by
(1M1 (T80 0450 | 75 00
=GR+ 1S3/ | T %2 11775054 G55 0% 20 7 51 )
'
# A T
by [UL 7 &) (26)
K J" J K
- The summation over /”/ in (26) can be carried out, using the relation between U and
W coefficients and -with RII (43) and BBR (17),so that (26) is- written in an expected
form as
(r Ao M| (T 8k 20 - U &0 [ o 5 7 M)
=QK+1)3(= 1) TW(fgogy 14 5 TA)
X
(=D (G S g N T % 227" 77 77 G 70 7 1N OS2 5 7))

19 11y 11
LR P

W (i jd fey #od A7) W(].QJ.Z, teg g 5 1].2”) Wty ey e 5 K2). (27)

This formula is useful, especially, in the treatment of the spin-dependent interactions* ?,
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in which this reduction has been done in a more straightforward way. For example, in the
case of the spin-spin interaction between electrons, the angular momenta j, and j, are the
total spin and the total orbital angular momenta respectively, and 2,=/4,/=1 and £/=/4,+2
(#=0, 2, ---), so that only A=2 appears in this equation.

(¢) Coeflicienis of the exchange integrals of a many particle system

Racah has given a general method for obtaining the coefficient of exchange integrals
in the case of electrostatic interactions RII, sec. 5. We shall extend this method to
spin-dependent interactions, making use of .the result in this section. The spin-dependent
interaction can be represented as a scalar product of two irreducible tensors which have
degree X (K =F0) in the spin and the ordinary space respectively ; for example, in the
tensor” or the spin-spin interaction A =2 and in the spin-orbit interaction K=1.

First, we consider only the orbital part and assume that the irreducible tensor is a
tensor product of two tensor operators of degree 4, and 4, the former operating on particle
" 1 and the latter on particle 2. Then we obtain the orbital part of coefficients of exchange
integrals in terms of double-barred elements as

(_1)1114-!2—],/ (l] IZL ” [Tl(kl)'x U’z(kz):,(K) H 12 /] LI)
= (=D (G| TR ([ ) Gl 0% [ B)[(2L+1) 22/ +1) @K +1) ]

L5, L
UL L L),
by ky K

and owing to (15) and RII (31), it follows that
(=) P (LG L [TW X U |9 || L4 L)
=GN T® L) G U | &) [L+1)(2L+1) 2K+1) T
, L L L 4 L
S =1k () (2S+V)U N L L, s (UL L, L. (28)
bk Kl \r s K
Futhermore, if we define the unit tensor %® by _
NP y=0(1), (29)
and' take (20) into account, we may also write
(=) (LG L [T® x U] | 45 L)
=Gl T® (L) ) U ZQ)TZSI(—l>"f"(27+1) (2s+1)
L L7
~UV ly s (G by LY [, X ]| 10, L) (30)
ki ky K
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Therefore, the calculation of the coefficients of the exchange integrals can be carried out
in the same way as for obtaining those of direct integrals with respect to the operator

GITE NG GO () S(=1)57 (2 + 1) (25+1)

A
UV, L5 |[u,® x w9, (31)
by ky K

in place of [T*) x U®]. In a similar way, another irreducible tensor of degree X can
be obtained as the spin part, which becomes usually much simpler. Therefore, the complete
operator necessary for the calculation of coefficients of exchange integrals is given by
contructing scalar products of these two irreducible tensors of degree K with respect to
the ordinary and spin spaces and reversing the total sign due to the antisymmetry of the
“wave functions. , ‘

As a trivial example of this procedure, the formula RII (59) of the coefficient
9 (l4,L) for the electrostatic interaction is derived by putting K=0 and 7* =7 *) = C®
in (31) whete C'{"=[4n/(2441)]/26(kg) @?(g). Another trivial example is given by the
construction of Dirac’s exchange operator with (30). Letting /,=/=1/2, TV =U"=1,
and noting that 1=(2)"24” and 8= (3/2)"*u®, we immediately have Dirac’s exchange
operator

(—1)=5=1/2-[142(8,-8,)]. (32)

The simplest example of the spin-dependent interactions is given by the spin-spin
interaction between electrons.””® In this case, we need not change the form of the spin
part since it is symmetrical with respect to the .spin variables of two electrons. This holds
also for the tensor interaction with arbitrary radial dependence. The coefficients of exchange
integrals of the spin-spin interaction between electrons

&
) jjkzl(?'l)ng(”z) r+3 Rzl'(”2)Rzg'(’1)d7’1d’2

ri

are given by the matrix elements of the operator

=2/GITCP L) (L) C* 1) B (—1)*7' (27 +1) (25 +1)

L Lo
Uty s |([8% 8] [4,® x ), (33)
b k2 2

where the prime on the summation symbol denotes that the summation is extended only
over those values of » and s which satisfy » +s= even and the coefficients f, is given by

(=14 [(+1) (£+2)(2£+1)(2£43) 2£+5) /5],
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§ 4. Transformation coeflicients between LS§- and j)’-coupiing

schemes in 7" configuration

The transformation coefficient between LS- and jj-coupling schmes of two particle
system can be obtained at once from the general expression for the transformation function
" between two different couplings in pairs of four angular momenta given in sec. 1 and 2.
For two equivalent particles (identical particles which are contained in the same shell),
however; the formula does not hold- without modification on account of the Pauli exclusion
principle as will be seen in the following. Here we consider the case in which there are
7 equivalent particles in ‘the same shell with azimuthal quantum number /. The states
of (™ configuration are characterized by «SZ/M in LS-oupling scheme, where « is the
quantum number other than S, Z, / and M. On the other hand, the states with the
same / and M are characterized by 7,"1(B; /1)7s"(Bs./3) /M in jj-coupling scheme, where
J1=1+1/2, j,=[—1/2 and n,+n,=n, 's being the quantum number other than / and
M. The quantum number of the isotopic spin employed sometimes in nuclear shell model
can be included in « and in 3. Taking into account the antisymmetry property of
wave functions, the transformation function between LS- and jj-coupling schemes for 7
equivalent particles can be obtained in terms of those for (#—1) equivalent patticles, the
coefficients of fractional parentages, and the U and ¥ coefficients :

(@aSL M s (B /)7 (B ) T M)

= (=1)"s (/) WS (CuSLY| 2 WS LY L) (S (Y LULY | S L)1 )
G AV AV VAV VAOY YAV ATAN Y

G BT BTN GBI + (r/m) S (PaSLA| 7 S L) ISE)

(ST ZUD TISL PV G T e SL T | B fes™ B ST
<UL UGS Vo F G G BT 52 V7B ). (34)

The tables of the coefficients of fractional parentages were given by RIII for the atomic
2" and d" configurations, by Jahn and van Wieringen® for the nuclear #", by Jahn® for
d® and d* configurations in ZS-coupling, and Edmond and Flowers® for (3/2)° (3/2)*
(5/2)* (7/2)® and(7/2)* configurations. The tables of /¥ coefficients were given by
Biedenharn® and Obi ef al'®

For two equivalent particles which have only states with S+ L= even in LS- couplmg
scheme, eq. (34) reduces to

@SLIB P = (5 S DY\ G L1 ) =i o

eSLM i) =@ L) U | 1) 5 16 )
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Appendix. Identities and recurrence formulae for the U coefficients

The values of the U coefficients can be obtained by inserting the values of the I/
coefficients in the formula (6). However, there are also some recurrence formulae between
the {/ coefficients which may be available for the evaluation of the coefficients.

In order to obtain an identity from which recurrence formulae can be derived, we
consider the following two different coupling schemes of five angular momenta and the
transformation function between them. It is evident that : '

(].1].2 (S Vs 7a(Js) /1234)]::/ | /175 (V1) vJeJ (./;4)]'5 (,/24;:)])
= (].1]2:(/12)]'3].4 (V30 S1mi | 1175 S15) 2 7s( Sos Vi)
(S S Srs)fs T Jiss JuuJs(Saas) ) - ' (A. 1)

But this transformation function can be expressed in another way by employing two inter-

mediate state as

Jm;f 12 J3a (s )5/ | J19 /3475(J35) ) (s Ju(Jsa) Js S a5 Ij?nj&ljs(./ 15) Js15)
(N172Ue) JoS 5 (Ssss) TN 7175( 1) JoS s S as) T )
2 Gedi 55T fass | 1oe(Sadsaas) - - (A2)

Equating this with (A.1) and expressing the result by the U and I coefficients, we
obtain the relation between them as follows ; -

Ja 6 e
Ule d ¢ |\W(ff'9/%; gfﬂ)=§(2/1+1)(2,u+1)_W(ee’g7/z; gh)
Sy '
a b e
W (cdMe; ) W(bdf'hs flp)U|lc 1 2 | (A.3)
e
Applications of this identity to give recurrence formulae are immediate. Take: for ex-

ample, s=1/2. Then in the summation on the right hand side of (A.3) 4 and ¢ take

<

only two values A=¢'+1/2 and p=d+1/2 respectively. Then, we can choose the '
values of /' and § as /'=f'+1/2 and g=g+1/2. Therefore, the values of

a 0. 4 .
Ulcd—1/2 ¢—1/2 |, for example, can be evaluated in terms of four U/ coefficients -

fr—=1/29—1/2
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a b e a b ¢ a b6 e a b €
Ule d ¢ |\ Ulc dd=1|,U|cd=1¢ |and U|cd—1 -1
VAV VA S Sy S g

Coefficients of the relation which come from the /¥ coefficients with one variable equal to
1/2, are simple algebraic’ functions. In a similar way, we can have a relation betwen the
following nine U coefficients : ’

a b e a b e\ a b e a b e
Ule d ¢ |,U|lc d+1),U| c d+1 e"'and[[ cd+l d+1
g VA VA VA

Furthermore, it ‘is easily shown .that

(ab(e)e(e)dy | ad(f)e(f)eg)

a ¢ &
=(—=1)7¢"[(2e+1) 2 +1) 2f+1) (2 + 1)U f ¢ f'|. (A4)
4 ¢ g
Using the definition (10) and (A, 4), we can find
a b e
Ule d ¢ =(2g+1)§522+1)(2/1-}—1)(2u+1)
79 h ’
a b e A v e © b6 d
Ule d 2| Ule d ¢ | U|lv & &), (A5
fou v d7% g rryg
and
a b e a b ¢
Ulc & Ul a4 ¢ fTZ?&(:l)e'+a*f"a(271+1)(2n+1)(25+1)(25+1)
sral \rraltTT '
@ b e\ [a b e\ |cdd\ [zd?
Ulc € 0 |Ule d 1,|Ule 1,d|U|e ¢ ¢ (A6)
fa @ 6 fd d ¢ 7 CA
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