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Abstract

Some aspects of duality for the classical orthogonal polynomials are explained. Duality deals with the similarity
of these functions as functions of the orthogonality variable and of the degree of the polynomials.
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1. Introduction

The classical orthogonal polynomials are Jacobi, Laguerre and Hermite polynomials, which are or-
thogonal with respect to the beta, gamma and normal distributions, respectively. They can be given in
many forms. The most useful one here is as a hypergeometric series.
Jacobi polynomials are

P (�,�)
n (x) = (� + 1)n

n! 2F1
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, (1.1)

where

(a)k =
{
a(a + 1) · · · (a + k − 1), k = 1,2, . . . ,
1, k = 0,

(1.2)
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Laguerre polynomials are

L�
n(x) = (� + 1)n

n! 1F1

( −n
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; x

)
. (1.4)

Hermite polynomials are

Hn(x) = (2x)n 2F0

(−n/2,−(n − 1)/2
− ; − 1

x2

)
. (1.5)

The following identities are known:

∞∑
n=0

L�
n(x)r

n = (1− r)−�−1 exp(−xr/(1− r)), |r|<1, (1.6)

L�
n(x) =

n∑
k=0

(� − �)n−k

(n − k)! L�
k(x), (1.7)
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dy, (1.8)

P (a,b)
n (x) =
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k=0

g(n, k)P
(�,�)
k (x), (1.9)

with

g(n, k) = �(n + � + 1)�(k + � + � + 1)�(n + k + a + b + 1)
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·3F2

(
k − n, n + k + a + b + 1, k + � + 1

k + a + 1,2k + � + � + 2
;1

)
, (1.10)
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All of these formulas hold for the obvious conditions on the variables and parameters. Integrals must
exist and that is the only unstated restriction. See[2] for a derivation of the Jacobi polynomial formulas.
One just uses the series representation and the evaluation of a beta integral along with one of the standard
transformations of a2F1 to obtain the integral identities. The generating function (1.6) can be found in
many books, say in[5]; the sum (1.7) is an immediate consequence of (1.6). Series (1.9) has also been
derived a number of times. See[1] for one way to obtain this identity.
Otherorthogonal polynomialswill beused tohelpexplain someof these formulas.Meixnerpolynomials

are

Mn(x; �, c)=2F1

(−n,−x

�
;1− 1

c

)
. (1.14)

Hahn polynomials are

Qn(x; �, �, N)=3F2

(−n, n + � + � + 1,−x

� + 1,−N
;1

)
, (1.15)

whenx, n = 0,1, . . . , N , and dual Hahn polynomials are

Rn(�(x); �, �, N)=3F2

(−n,−x, x + � + � + 1
� + 1,−N

;1
)
, (1.16)

when�(x) = x(x + � + � + 1) andx, n = 0,1, . . . , N .
The series in (1.16) are considered as sums fromk=0, tok=n, and sincen�N this avoids the problem

of dividing by the zero caused by(−N)k whenk >N . The restriction thatx = 0,1, . . . , N is made to
keep the series from restarting whenk >N , as it would in certain identities.
See[4] for some of the basic formulas for all of these polynomials.

2. Laguerre and Meixner polynomials

Identities (1.7) and (1.8) share a common property. In (1.7) the sum is onk = 0,1, . . . , n, rather than
k=0,1, . . . . This is obvious since the left-hand side is a polynomial of degreen, and the right-hand side is
a sum of polynomials of degreek, so the summust stop atk=n. The integral in (1.8) is on 0�y�x rather
than 0�y <∞, and it is not obvious that this must happen, so it should be explained. One explanation
is that this is what the formula is, but as we will see when we get to Jacobi polynomials, this is not a
completely satisfactory explanation. A better explanation comes from Meixner polynomials.
Meixner polynomials satisfy the following generating function.

∞∑
n=0

(�)n
n! Mn(x; �, c)rn = (1− r)−�−x

(
1− r

c

)x

. (2.1)
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To derive (2.1), use (1.14), reverse the order of summation, and sum the inner series by the binomial
theorem. From (2.1), it follows immediately that

(�)n
n! Mn(x; �, c) =

n∑
k=0

(� − �)n−k

(n − k)!
(�)k
k! Mk(x; �, c). (2.2)

One can obtain (1.7) as a limiting result from (2.2), using

L�
n(x) = (� + 1)n

n! lim
c→1

Mn

(
x

(1− c)
; � + 1, c

)
. (2.3)

For (2.2), just as for (1.7), it is clear that the sum in (2.2) stops whenk = n.
It is not as obvious how to obtain (1.8) as a limit from (2.2), but it is possible. First rewrite (2.2) as

(� + 1)n
n! 2F1

(−n,−m

� + 1
; c − 1

c

)
=

n∑
k=0

(� − �)n−k

(n − k)!
(� + 1)k

k! 2F1

(−k,−m

� + 1
; c − 1

c

)
. (2.4)

Next replacen by x/(1− c), and on the right considerk asy/(1− c), soy runs through a uniformly
distributed discrete set of points on[0, x].
Use the limit

lim
n→∞

(� + 1)n
n! n−� = 1

�(� + 1)
. (2.5)

Multiply (2.4) by (1− c)� and letc → 1, orn → ∞. The left-hand side of (2.4) is

y�

�(� + 1)
1F1

( −m

� + 1
; y

)
. (2.6)

On the right-hand side we have 1/�(� − �)�(� + 1) times

lim
c→1

(1− c)�
∑
x

(
y − x

1− c

)�−�−1(
x

1− c

)�

2F

(−x/(1− c),−m

� + 1
; c − 1

c

)

=
∫ y

0
(y − x)�−�−1x�

1F1

( −m

� + 1
; x

)
dx. (2.7)

Formula (1.8) then follows from (2.6) and (2.7).
Laguerre polynomials satisfy the differential equation

xy′′ + (� + 1− x)y′ + ny = 0. (2.8)

The three-term recurrence relation for Laguerre polynomials is

−xL�
n(x) = (n + 1)L�

n+1(x) − (2n + � + 1)L�
n(x) + (n + �)L�

n−1(x). (2.9)

These two equations are dual to each other. One interesting question is whether one can show that the
kernel in the integral representation (1.8) is supported on 0�x�y using the differential equation (2.9).
The interest in this question is more important in the case of Jacobi polynomials, since there are more
formulas for Jacobi polynomials with the integration kernel supported on a smaller set and not all of them
currently have explanations similar to the one above.
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3. Jacobi polynomials

Jacobi polynomials satisfy the differential equation

(1− x2)y′′ + [� − � − (� + � + 2)x]y′ + n(n + � + � + 1)y = 0. (3.1)

All sets of polynomials which are orthogonal with respect to a positive measure on the real line satisfy

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), (3.2)

an, bn, cn real,an−1cn >0, n = 1,2, . . . .
The positivity ofan−1 cn holds forn = 1,2, . . . , when the measure has infinitely many points of

support. When there are only finitely many mass points as the full set of support, the positivity holds for
finitely many values ofn.
For Hahn polynomials, one has

Qn(x; a, b,N) =
n∑

k=0
C(k, n)Qk(x; �, �, N), (3.3)

n = 0,1, . . . , N . This can be derived directly and as above, get (1.9) from it, or derived by integrating
(1.9) with respect to a beta distribution.
To obtain (1.11) with the kernel supported on[x,1] from another formula which just involves polyno-

mials written as the sum of other polynomials it suffices to argue as in Section 2. Recall that the argument
involved interchangingn andx in (2.2). When this is done for Hahn polynomials, we get dual Hahn
polynomials (1.16) and the polynomial variable is�(x) = x(x + � + � + 1). To have an expansion

Rn(�(x); a, b,N) =
n∑

k=0
a(k, n)Rk(�(x); �, �, N), (3.4)

with �(x) = x(x + a + b + 1), �(x) = x(x + � + � + 1), we need to havea + b = � + �. Otherwise,
the two sides are not polynomials in the same variable and the sum will go fromk = 0 tok = N and the
identity will only hold forx = 0,1, . . . , N .
To find the coefficients in (3.4) whena + b= �+�, it is easier to work them out directly than to search

the literature. An equivalent way of writing (2.2) is

(a)n

n! 2F1

(−n,−x

a
; t

)
=

n∑
k=0

(a − �)n−k

(n − k)!
(�)k
k! 2F1

(−k,−x

�
; t

)
. (3.5)

Multiply both sides of (3.5) bytb−1(1− t)c−b−1 and integrate on[0,1]. The result is
(a)n

n! 3F2

(−n,−x, b

a, c
;1

)
=

n∑
k=0

(a − �)n−k

(n − k)!
(�)k
k! 3F2

(−k,−x, b

�, c
;1

)
. (3.6)

Since both sides of (3.6) are polynomials inx, we can relax the restriction onbandcneeded for integration.
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Takeb = x + � + � + 1 andc = −N , getting

(� + �)n
n! Rn(�(x); � + �, � − �, N) =

n∑
k=0

(�)n−k

(n − k)!
(�)k
k! Rk(�(x); �, �, N). (3.7)

To derive (1.11) from (3.7), we can argue as above. Letx = m, and take the same type of limit with
n = xN , k = yN , and then letN go to infinity.
Formula (1.11) is useful, but formula (1.13) is not very useful as it stands.What is useful is an integral

with a nonnegative kernel which does not depend onn, i.e.

P
(�+�,�)
n (x)

P
(�+�,�)
n (1)

=
∫ 1

−1
K�(x, y)

P
(�,�)
n (y)

P
(�,�)
n (1)

dy (3.8)

with K�(x, y)�0,−1�x, y�1, with the possibility that sets of measure zero can be removed from this
square.
Here is one way to show that (3.8) follows from (1.13). Let

f (x) =
∞∑
n=0

anP
(�,�)
n (x)/P (�,�)

n (1), (3.9)

and

g(x) =
∞∑
k=0

anP
(�+�,�)
n (x)/P (�+�,�+�)

n (1). (3.10)

By orthogonality

an = P
(�,�)
n (1)

∫ 1
−1 f (t)P

(�,�)
n (t)(1− t)�(1− t)� dt∫ 1

−1 [P (�,�)
n (t)]2(1− t)�(1+ t)�dt

. (3.11)

Use (1.13) and (3.11) in (3.10) to get

g(x) =
∫ 1

−1

∫ 1

x

f (z)K(x, t, z)dy(1− z)�(1+ z)� dz, (3.12)

with

K(x, t, z) =
∞∑
n=0

Gn(x, t)P
(�,�)
n (t)P (�,�)

n (z)

/ ∫ 1

−1
[P (�,�)

n (x)]2(1− x)�(1+ x)� dx, (3.13)

and

Gn(x, t) = 2��(� + � + 1)(1− t)�(1+ x)n+�+1(t − x)�−1

�(� + 1)�(�)(1− x)�+�(1+ t)n+�+�+1 . (3.14)

In [3] it was shown that
∞∑
n=0

rnP (�,�)
n (x)P (�,�)

n (y)

/ ∫ 1

−1
[P (�,�)

n (x)]2(1− x)�(1+ x)� dx >0, (3.15)
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when−1�x, y�1, 0�r <1. Thus,

g(x) =
∫ 1

−1
f (z)K�(x, z)(1− z)�(1+ z)� dz, (3.16)

with K�(x, z)�0 when�>0. Whenak = 0, k 
= n, an = 1, we have (3.8).
I do not know how to find the coefficients in the extension of (3.7) whena+b 
= �+� in a nice enough

form which allows us to obtain either (1.12) or (1.13) from a polynomial sum identity.
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