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Abstract

We derive discrete dnbgonality relations for polynorals, dual to little and bigy-Jacobi poly-
nomials. This derivation essentially requires use of bases, consisting of eigenvectors of certain
self-adjoint operators, which are representable by a Jacobi matrix. Recurrence relations for these
polynomials are also given.
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1. Introduction

Properties ofj-orthogonal polynomials are closely related to operators, which can be
represented by a Jacobi matrix [1-3]. In the case under consideration we diagonalize cer-
tain self-adjoint bounded operas with the aid of big or little-Jacobi polynomials. An
explicit form of all eigenvectors of these operators is found. Since their spectra are sim-
ple, eigenvectors of each such operatonfan orthogonal bas in a Hilbert space. One
can normalize this basis. As a result, for each operator (one of them is related tg-little
Jacobi polynomials and another to lgiglacobi polynomials) two orthonormal bases in the
Hilbert space emerge: the initial basis and the basis of eigenvectors of this operator. They
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are interrelated by a unitary matrix, whose entries,,;,, are explicitly expressed in terms
of little or big ¢-Jacobi polynomials. Since the matiikis unitary (and in fact real in our
case), there are two orthogonalitations for its elements:

Z UmnUm'n = Smm’» Z UmnUmn' = Oy’ - 1)
n m

The first relation expresses thghogonality réation for little or bigg-Jacobi polynomials.
In order to interpret the second relation, we consider little and;bigcobi polynomials
P,(g—™) as functions ofi. In this way one obtains two sets of orthogonal functions (one
for little and another for big-Jacobi polynomials), which can be expressed in terms of
orthogonal polynomials. These two setgjebrthogonal polynomials differ from the initial
ones and they can be considered as dual sets of polynomials with respect to little and big
g-Jacobi polynomials. The second formula i) thus naturally leads to the orthogonality
relations for thesg-orthogonal polynomials onon-uniform lattices.

In fact, this idea extends the notiofitbe duality of polynomials, orthogonal on a finite
set, to the case of polynomials, orthogonal on an infinite set of points. We have already
employed this idea in [4] to show thatMeixner polynomials are dual to big-Laguerre
polynomials. Itis worth noting at this point that there are known theorems on dual orthogo-
nality properties of;-polynomials, whose weight functions are supported on a discrete set
of points (see, for example, [5] and [6]). However, they are formulated in terms of orthog-
onal functions (see (9) and (23)—(24) below for their explicit forms in the case of little and
big ¢g-Jacobi polynomials, respectively) as dual objects with respect to given orthogonal
polynomials. Therefore, one still needs to makne step further in order to single out an
appropriate family of dual polynomials from these functions. So, our main motif in this
paper is to show explicitly how to accomplish that for little and &idacobi polynomials.

The orthogonality measure fgolynomials, dual to little;-Jacobi polynomials, is ex-
tremal (for the values of parameters, for which the corresponding moment problem is
indeterminate), that is, these polynomials form a complete set in the gpawéth re-
spect to their orthogonality measure. The orthogonality measure for polynomials, dual to
big ¢g-Jacobi polynomials, is not extremal: these polynomials do not form a complete set in
the corresponding spad#. We have found the complementary set of orthogonal functions
in this spacd.2. These functions are expressed in terms of the same polynomials but with
different values of parameters.

Throughout the sequel we always assume that a fixed positive number such that
g < 1. We use (without additionakelanation) notatins of the theory of special functions
(see, for example, [7] and [8]).

2. Theoperator Iy

Let £2(N) be the Hilbert space with the orthonormalbadsisn =0, 1, 2, .... We define
on¢2(N) the symmetric operatdi, acting on the basig),n =0, 1, 2, ..., by the formula
I1ln) = —ap|n + 1) — ap—1ln — 1) + by|n), (2)

where
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= qL/2gn+12 V(@ =g (1 — ag™t 1) (1 — bg"t1) (1 — abg"th)
(1 —abq?*2)/(1 — abq?+1)(1 — abq?'+3)

q" (1—ag"th@ —abg"h  (1—g"(1—bg"
l—abq2"+l( 1—abq2"+2 1—abq2” )
In order to assure that expressionsdprandb,, are well defined, we suppose that@ <
g tandb < ¢~

Sincea, — 0 andb,, — 0 whenn — oo, the operatoi; is bounded. Therefore, we
assume that it is defined on the whole sp&®@Y). For this reason/; is a self-adjoint
operator. Let us show thdf is a trace class operator (we remind that a bounded self-
adjoint operator is a trace class operator if a sum of its matrix elements in an orthonormal
basis is finite; a spectrum of such an operasatiscrete, with a single accumulation point
at 0). For the coefficients,, andb,, from (2), we haves,+1/a, — q andb,1/b, — q
whenn — oo. Therefore, for the sum of all matrix elements of the operatan our basis
we have)_, (2a, +b,) < co. This means thaly is a trace class operator. Thus, a spectrum
of I is discrete. Moreover, a spectrumigfis simple, sincd is representable by a Jacobi
matrix with a, # 0 (see [2, Chapter VII]).

Let us find eigenvectoiss, of the operatoly, I1&, = A§,. We set5;, =Y 7 o B (M) |n).
Acting by the operator; upon both sides of this relation and then collecting all factors,
which multiply |r) with fixed n, one derives thas,1(A)a, + Br—1(MNan—1 — Bn(M)b, =
—AB, (A). Making the substitution

(abq.aq: q)n (1= abg®+hH\*/?
ﬁnm:( 9. 94929 ) o0
(bq.q:q)n (1 —abg)(aq)

one reduces this relation to the following one:

AnBri1() + Cufpy_1 (M) — (An + Cn) B, (1) = =18, (M)

an

b, =

with

_ q"(1—aq"™H(A—abg"th) _aq"(L—g") A —bg"

T (1—abg?tYy(1— abg?+2)’ "Ta- abg?)(1— abg?+1)’
This is the recurrence relation for the litjeJacobi polynomials

Ap

pn(ria,blq) :=201(q¢ ™", abq"*; ag; g, 1) ©)

(see, for example, formula (7.3.1) in [7]). Therefofé(r) = p,(%; a, blg) and
(abq, aq; q)n (1 — abg®™ 1)
(bq.q; 9)n (L—abq)(aq)"
For the eigenvectorg, of the operator; we thus have the expression

1/2
Bn(A) = < ) pu(X;a,b|q). (4)

<~ (abg.aq; q)n (1 — abg® Y
= Z( (bq, q; @n (L — abq)(aq)"

Since the spectrum of the operafgiis discrete, only a discrete set of these vectors belongs
to the Hilbert spacé?(N). This discrete set of vectedetermines a spectrum bf.

1/2
> pn(X; a, blg)|n). (5)
n=0
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Recall that the séladjoint operator is represented by a Jacobi matrix in the basis
n=0,12,.... According to the theory of operators of such type (see [2, Chapter VII]),
eigenvectors, of /1 are expanded into series in the basis vectoysn =0,1,2, ...,
with coefficients, which are polynomials in These polynomials are orthogonal with re-
spect to some positive measute (1) (moreover, for self-adjoint operators this measure is
unique). The set (a subsetR}, on which the polynomials are orthogonal, coincides with
the spectrum of the operator under consideration and the spectrum is simple.

The orthogonalityelation for the littleg-Jacobi polynomialp,, (¢™) = p.(¢"; a, blq)
is of the form
i (bq: q)n (aq)"

P @ Dn Pm(q") P (q")

_ (abg? q)oe (1—abq)(@q)"(bq.4:@m )
(g @) (L—abq? V) (abg.aq; @)m

Taking into account this orthogonality relatiome arrive at the following statemerithe

spectrum of the operator 75 coincides with the set of points ¢”, n =0, 1, 2, ..., and this
spectrumis simple.
According to this statement the eigenvectgys(x), n =0,1,2,..., form a basis in

the Hilbert spacé?(N). Since these vectors belong to pasedifferent eigenvalues, they
are orthogonal to each other. But they ai@ normalized. They can be normalized by
multiplying each of these vectors by corresponding constantséqhet) = ca&yn (x) be
normalized basis vectors. In order to find constapisote that according to (5) one has

Ep ()= cuPmlq™Im), (7

m

whereg,, (¢") are given by (4). It follows from (7) tha,n, £,n) = 3, ¢2Bm(¢")?. Taking
into account the expression (4) 164, (¢™) and orthogonality relation (6), we find that

_ :( (aq: oo (bq: @) (aq)”)l/2
" \@bg e (@ Dn '

The equality (7) connects two orthonormal bases in the sp&@®®. This means that
the matrix(a,,,), m,n=0,1, 2, ..., with entries
Amn = CnPm (CI")

_ ( (aq: q)oo (bq;q)n (abq,aq; q)m (1 —abg
(abq; @)oo (q; q@)n (aq)™"(bq,q; q)m (1—abq)

2m+1)

1/2
) Pm(q";a,bm)
is unitary and real, that is,

E Annlm'n = O’ E AmnGmn’ = Opp (8)

n m

The first relation in (8) is equivalent to the orthogonality relation (6).
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3. Dual little g-Jacobi polynomials

Now we consider the second identity in (&hich gives the ottogonality relation for
the matrix elements,,,,, considered as functions of. Up to multiplicative factors these
functions coincide with the functions

Fu(x;a,blq) =2¢1(x,abq/x;aq; q,q" ™), 9)
considered on the sete {¢ =™ |m =0, 1, 2,...}. Consequently,
. ( (aq; @)oo (bq; q)n (abq, aq; q@)m (L — abg®™ 1)

"\ (abg; oo (@5 @n (@q)""(bq., q; Qm
and the second identity in (8) gives theghlmgonality relation for the functions (9),

1/2
) F.(qg"";a,blq)

[e.¢]

5 (1 —abg® N (abq, aq; ¢)m
= (I—abq)(aq)"(bq,q; q)m
bq?; ; "
_(a q. 9o (q q)n.(aq) S (10)
(aq; @)oo (bg; q)n
The functionsF), (x; a, b|g) can be represented in another form. Indeed, one can use the
relation (111.8) of Appendix Il in [7] in order to obtain that

Fu(qg7™ Fy(@™™)

_ (_a)m(b('L q)m m(m+1)/2
(aq; @)m
x 3¢1(q ™™, abq™ ", q7"; bq q. " /a). (11)

The basic hypergeometric functigp, in (11) is a polynomial of degree in the variable
wu(m) :=q~"™ + abg™*1, which represents @-quadratic lattice; we denote it as

dn(1e(m); a, blq) = 3¢1(g ™", abq" 1. 7" bq: q. 9" /a). (12)
Then formula (10) yields the orthogonality relation

Fo(g™";a,blq)

,abq

o0

5 (1—abg?"*YY(abq, bq; @)m
(1—abg)aq,q; g)ma"g™"

sdy (1(m))dy (1 (m))
m=0
_ (@bg% @)oo (@1 q)n (ag) ™"
(aq;@)oc  (bq; qIn
for the polynomials (12). We call the polynomialg(w(m); a, b|q) dual little g-Jacobi
polynomials. Note that these polynomials can be expressed in terms of the Al-Salam—
Chihara polynomial®, (x; a, b|q) (see formula (3.8.1) in [9]) with the parametger 1.
An explicit relation between them is

dn (1 (x); B/, LaBqlq) = ¢" " D2(= )™ (1/aB; @)y On (it (x)/2; o, Blg Y.

Ch. Berg and M.E.H. Ismail studied this type of Al-Salam—Chihara polynomials in [10] and
derived continuous complex orthogonality meses for them. But [10] does not contain
any discussion of the duality of this family of polynomials with respect to ligtidacobi
polynomials.

Snn (13)
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A recurrence relation for the polynomials(w(m); a, b|q) is derived fromy -difference
formula for little g-Jacobi polynomials, given by formula (3.12.5) in [9]. It has the form

(g™ + abq" ™ Hd, (1t (m)) = — Apdys1(n(m)) + ¢ 7" (L+ a)dy (1 (m))
- Cndn—l(ﬂ(m))a

whereA, = aq™"(1 — bg"™Y) andC, = ¢ 7" (1 — ¢"). Comparing this relation with the
recurrence relation (3.69) in [11], we see ttia polynomials (12) are multiple to the poly-
nomials (3.67) in [11]. Moreover, if one takes into account this multiplicative factor, the
orthogonality relation (13) for polynomials (18)rns into relation (3.82) for the polyno-
mials (3.67) in [11], although the derivati®f the orthogonality relation in [11] is more
complicated than our derivation of (13). The authors of [11] do not give an explicit form of
their polynomials in the form similar to (12). Note that connection of Al-Salam—Chihara
polynomials in basg —* with polynomials (3.67) in [11ind their connection with littlg-
Jacobi polynomials is considered in [12, Section 3.1]. The author of [12] states that the dual
orthogonality relation fothe Al-Salam—Chihara polynomials in bage! is the orthogo-
nality relation for the littleg-Jacobi polynomials. However, this assertion can be accepted
only for those values of the parameterandb for the Al-Salam—-Chihara polynomials in
baseg —1, for which the corresponding moment problem is determined. We move from the
little ¢g-Jacobi polynomials to their duals. For this reason, our orthogonality relation (13) is
proved for all values ofi andb, for which the orthogonality relation (6) is true. Besides,
the paper [12] does not contain the expression (12) for giilelcobi polynomials.

Let [? be the Hilbert space of functions on the e 0, 1, 2, . .. with the scalar product

(e.¢]

1—abq®*Y(abq, bq; Dm ,y m S
(f1, f2)=2( (f_qabq)zg; Z_q‘; Dn g™ fi(m) fa(m).

m=0

The polynomials (12) are in one-to-one correspondence with the columns of the uni-
tary matrix (a,,,) and the orthogonality relation (13) is equivalent to the orthogonality
of these columns. Due to (8) the columns of the matiiy,) form an orthonormal ba-

sis in the Hilbert space of sequences- {a, | n = 0,1, 2,...} with the scalar product

(@ &) =), ana,. Therefore, the set of polynomiads (u(m); a,blq), n =0,1,2,...,

form an orthogonal basis in the Hilbert spaée This means thathe point measure in

(13) is extremal for those sets of the dual little ¢g-Jacobi polynomials, for which the cor-
responding moment problem is indeterminate (for the values of the parameters, for which
the moment problem is indeterminate, see [11]).

Remark. For those values of parameters of dual litfldacobi polynomials, for which the
associated moment problem is determinate, it is possible to invert our reasoning. Namely,
one can take a self-adjoint operathr(representable by a Jacobi matrix), diagonalization

of which leads to dual littley-Jacobi polynomials. This operator is unbounded and has a
discrete spectrum. Nevertheless, we $tdlve two orthogonal bases in the Hilbert space:
the initial one and the basis of eigenfunctiong/ofIf one normalizes the latter basis, then
these two bases are interconnected by a unitary matrix. Orthogonalities by rows and by
columns of this matrix are equilent to orhogonality réations for little g-Jacobi poly-
nomials and their duals. However, it is not possible to carry out this reasoning for those
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values of parameters, for which the associated moment problem is indeterminate, since in
this case the operatdy is not self-adjoint. That is why we find it more convenient to start
with orthogonal polynomials, which are related to a bounded self-adjoint operator (with a
discrete spectrum), for in this case all values of parameters of these orthogonal polynomials
correspond to determinate moment problem.

Of course, the above procedure can be alserited when we deal with indeterminate
moment problem, but one has to find first self-adjoint extensions of the corresponding
symmetric operator and this is always a very complicated problem.

4. Theoperator I,

Let a, b andc be real numbers such thatfa < ¢, 0<b < g~ ! andc < 0. We
consider the bounded self-adjoint operafpron the Hilbert spac&?(N), which in the
basis{|n)} has a form

Lln) = ay|n + 1) + ay—1|n — 1) — by|n), (14)
where

V@ =g" (A —ag™)(1—bg")(1—abg")(1—cq")(1— abc=1q")

(—acq""‘l)_l/z(l _ aqu’l)\/(l _ aqu’i_l)(l _ abq2”+1)
_ (1—ag"™H(A —abg"tH (1 —cq"™)
B (1 — abg?+1)(1 — abg?'+2)

acqmtt (1—-¢"A—bg")(A—abg"/c)

(1 —abg?)(1 — abg?'+1)

Actually, I> is a trace class operator. To show this we note that for the coefficigatsd
b, from (14) one obtains that, . 1/a, — ¢%/? andb,1/b, — ¢ whenn — co. Therefore,
> .(2a, +b,) < oo and this means thdp is a trace class operator. Thus, the spectrum of
I, is simple (since it is representable by a Jacobi matrix wjtk: 0) and discrete.

In order to find eigenvectorg;, of the operatorlz, Iy, = Ay, we sety, =
Y o o Ban(M)n). Acting by the operator, on both sides of this relation and then col-
lecting factors, which multiplyn) with fixed n, we arrive at the relatiom,, 8,+1(}) +
an—1Bn—1(A) — by B, (M) = AB,(1). Making the substitution

1/2
- 3)/4
) g "L,

ap-1=

by

(abq,aq, cq; @)n (1 — abg®*1)

)= <
P (abg/c,bq, q; q)n(1— abg)(—ac)"
we reduce this relation to the following one:

AnBri1 ) + Cufy 1 () = (A + Cp — D p, (1) = 1B, (1)

with
4 - A=ag"™™hA—cq" (L —abg"*h
n— (1-— abq2”+l)(l _ abq2n+2) ’
c, — —ac(1— g™ (1 —bg™)(1—abc™ g™

q_”_l(l _ aqu’l)(l _ aqu’l"'l)
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This is the recurrence relation for the kjglacobi polynomials
Pu(Aia,b,c;q):=3p2(q ", abg" "t i aq. cq: q, ), (15)
introduced by G.E. Andrews and R. Askey [13]. Theref@gA) = P,(A; a, b, ¢; g) and

ﬁn()\):< (abq, aq,cq; @)n (1 — abg? Y )1/2

(abg/c,bq,q;q)n(L—abg)(—ac)"
x g "I (% a, b, ¢ q). (16)

So, for the eigenvectorg, (x) we have the expansion

v _i (abq,aq,cq; @n(1—abg?*l) \¥2
» = 2\ (abg /e.bg. 4 q)n (1 — abg)(—ac)"

Xqfn(n+3)/4pn()t;a,b,C;Q)m)' (17)

n=0

Since the spectrum of the operatbris discrete, only a discrete set of these functions
belongs to the Hilbert spadé(N) and this discrete set determines a spectruth of

In order to find a spectrum db explicitly, we act as in the previous case. Namely, we
take into account that the diegonality relation for the polynomials (15) is of the form

o (aq,abq/c; )nq"
ra,b,0)y Galc.q: T Pn(ag" ™) P (ag™"™)
n=0 q 1q7q n

o (bq.cq; @)nq"
+r(b,a,ab/c)z(c’/07’.”)
n=0 4q 245 9)n

_ (1—abq)(bg,abq/c,q; q)m
(1—abq?®*t1)(aq,abq, cq; qQ)m

P (cq"™ Py (cq™™)

(—ac)"q" " 3128,,, (18)

wherer(a, b, ¢) = (bq, cq; q)oo/(abg?, c/a; ). Thus, the spectrum of the operator I
is simple and consists of two sets of pointsag”t! and c¢”"*1, n=0,1,2,....

The above assertion means that the veciors andy.,», n =1,2,..., are linearly
independent elements of the Hilbert sp&ae@Y) and constitute a basis 64(IN). Moreover,
these vectors are orthogonal (but not normalized). In order to normalized these vector, we
have to multiply them by corresponding constants. Let the veq&ggs = cpPaqn and
1/}an =c, Ve, n=12,..., be normalized. Then due to the orthogonality relation for big
g-Jacobi polynomials we derive (as in the previous case) that

=< (bq, ¢q; s (abq/c,aq;qm")”z
" \(abg? c/a: @)oo (ag/c.q:q)n

;o <(aq,abq/c;q)oo (bq,cq;q)nq”)l/z

" \(abg? a/c; @)oo (cq/a.q: q)n '
In the expansions
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l/faq” —chﬁm(aq )m) = Zamn|m
Veqr —Z B (cq™)m) = Zam,, (19)

whereg,, (1) is given by (16), the matri®d/ := (ap, a,,,) with entries
Amn = CnPm (aqn), ar/nn = C;;,Bm (an) (20)

is unitary and real. (Note that the matrik is formed by adding the columns of the matrix
(a,,,) to the columns of the matri¢a,,,).) The orthogonality of the matri¥d = (a,, a,,,)
means that

o /
E AmnAmp’ = Opp E Ayn@ mn' = Sunt s E Aun@ my =0, (21)
m m m
r
E (@mn@pn + a,,a m'n) = Smm’ - (22)
n

The relation (22) is equivalent to the orthogonality relation (18).

5. Dual big g-Jacobi polynomials

Now we consider the relations (21). Thelygthe orthogonality relations for the set of
matrix elements,, anda,,,, viewed as functions of:. Up to multiplicative factors, they
coincide with the functions

F,(x;a,b,c; q):= 3¢2(x,abq/x,aq”+1; aq,cq;q,q9), n=0,12, ..., (23)
F,/,(x; a,b,c; q) =3¢2(x,abq/x, cq"+1; aq,cq;q,q)= Fy(x;c,abj/c,a),
n=0,1,2, ..., (24)

considered on the corresponding sets of points. Namely, we have
Amn = amp(a, b, c) = AFn(q_m; a,b,c;q),
wn =A'Fy (g7 a,b,c; q) =amn(c,ab/c, a),

where A and A’ are expressions, which multiplg,, (ag"*Y; a, b, c; ¢) and P, (cq"t1;
a,b,c; q) in formulas (20) fora,,, anda,,,, respectively. The relations (21) lead to the
orthogonality relations for thRunctions (23) and (24),

(bq, cq; 9) o _ (aq/c.q; @n
_ A A F m F m s 25
@ba? cjara)n ;)p(m> (" Flq ") = (25)
(aq.abg/c: q)oo roomy g —my €4/ G5 @)n
b L LA s F, F, =D, 26
(abg? a/c; q)oo mzzop(m) W@ @) (bq,cq; 9nq" (20)
> p(m)Fulg™) Fr(g™™) =0, (27)

m=0
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where
(1—abg® N (aq,abq, cq; Dm  _pimiz)2
(1—abq)(bq,abq/c,q; q)m(—ac)™

There is another form for the functiorfs,(¢—"; a, b, ¢; ¢). Indeed, one can use the
relation (111.12) of Appendix Il in [7] to obtain that

p(m) =

Fag™; a,b, c; q) = S04/ Dm oy gmintayj2
(cq; @m
—m b m+1’ —-n
ngbz(q abq q q,aqn+1/6>.
aq,abq/c

The basic hypergeometric functigts in this formula is a polynomial ip(m) := ¢~ +
abg™*1. So if we introduce the notation

fm’ab erl7 —n
Dy (u(m); a,b,clq):= 3¢2(q 0 qu/cq q,aq”“/c): (28)
then
_ (abg/c; q)
Fu(g ™ a,b,¢;q) = #(—c)mqm(m“)/an ((m);a, b, clg).
b m

Formula (25) directly leads to the adgonality relation for the polynomials (28):

oo

Z (1 —abq®*tY(aq, abg, abq/c; @)m
(1—abq)(bq.cq.q:q)m

(—c/a)"q" " P2 Dy (1 (m)) Dy (1(m))
m=0
_(abg® cla: @) (aq/c.q: q)n
(bg,cq; oo (aq,abq/c;q)nq
We call the polynomial®, (1 (m); a, b, c|q) dual big g-Jacobi polynomials. It is nat-
ural to ask whether they can be identified with some known and thoroughly studied
set of polynomials. The answer is: they can be obtained fromytRacah polynomi-
als R, (u(x); a, b, ¢, d|q) of Askey and Wilson [14] by setting = ¢~V ~1 and sending
N — o0, that is,

Dy(u(x):a.b.clg)= lim Ry(u(x):q~""" a/c.a.blg).

S (29)

Observe that the orthogonality relation (29) can be also derived from formula (4.16) in [15].
But the derivation of this formula (4.16) is rather complicated.

It is easy to show that the polynomials (28) can be expressed in terms of continuous
g~1-Hahn polynomials. A more complicated case than our is considered in [16], where
the authors study duality connection betweendigacobi functions and continuogs?-

Hahn polynomials (a paper [17] also dealghathe duality on the non-polynomial level).
It is shown in [16] that the orthogonality relation, dual to that for bigacobi functions,
is continuous.

It is worth noting here that in the limit as— 0 the dual bigg-Jacobi polynomials
D, (u(x); a, b, c|q) coincide with the dual littleg-Jacobi polynomialsl, (u(x); b, alq),
defined in Section 3. The dual little-Jacobi polynomialsi, (i (x); a, blg) reduce, in
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turn, to the Al-Salam—Carlitz Il polynomiaIB’,f“)(s; q) on theg-linear lattices = ¢—*
(see [9, p. 114]) in the case when the paramétganishes, that isg, (u(x); a, 0lg) =
(—a)g"=D/2y @ 4=x. 4). This means that we have a complete chain of reductions

Ry (u(x); a,b,¢,dlq) —> Da(n();b,c,dlg) — dn(p(x); ¢, blg)

—0
V(c) 7x;
b—=0) n (q Q)
from the four-parameter family af-Racah polynomials, which occupy the upper level
in the Askey-scheme of basic hypergeometric polynomials (see [9, p. 62]), down to the
one-parameter set of Al-Salam—Carlitz Il polynomials from the second level in the same
scheme.
The recurrence relations fap, (u(m); a, b, c|q) are obtained from the-difference
equation for bigg-Jacobi polynomials, given by formula (3.5.5) in [9]. They are of the
form

(g™ =1)(1~abg"™ ™) D, (n(m)) = Ay Dy (s (m)) — (Ay+Cy) Dy (1 (m))
+ Cnanl(H«(m)),
whereA, = ¢=2""Y(1—ag" ™) (c/a — bg"™) andC, = ¢2"(1 — ¢")(c/a — q").
The relation (27) leads to an interesting equality
o0

(=1 (1 — abq®*YY(abgq; q)»
> 4 O b ((m); a., b, clq)
(1—abq)(q; @Q)mgqg—mm=D/

m=0
x Dy (12(m); b, a,abq/c|q) =0.

Observe also that from the expression (28) for the duagbigcobi polynomials it follows
that they possess the symmetry propedy(i(m); a, b, c|q) = D, (u(m); ab/c, c, blq).

The set of functions (23) and (24) form an orthogonal basis in the Hilbert dparfe
functions, defined on the set of poinis= 0, 1, 2, . .., with the scalar produatfi, f2) =
Y o _op(m) fi(m) fo(m), wherep(m) is the same as in formulas (25)—(27). Consequently,
the dual big ¢-Jacaobi polynomials D, ((m); a, b, c|q) correspond to indeterminate mo-
ment problem and the orthogonality measure for them, given by formula (29), is not
extremal.

Note that in [16] a set of functions, dual to bigJacobi functions, is found, which
contains as a subset the family of continugu$-Hahn polynomials. Of course, as in our
case, the whole dual set does not exhausted by continudublahn polynomials (which
means that these polynomials correspond to indeterminate moment problem).

Acknowledgments

Discussions with Ch. Berg, J. Christiansen, M. Ismail, T. Koornwinder, H. Rosengren, and P. Terwilliger are
gratefully acknowledged. This research has begperted in part by the SEP-CONACYT project 41051-F and
the DGAPA-UNAM project IN112300 “Optica Matematica.” A.U. Klimyk acknowledges the Consejo Nacional
de Ciencia y Technologia (Méxicodifa Catedra Patrimonial Nivel II.



N.M. Atakishiyev, A.U. Klimyk / J. Math. Anal. Appl. 294 (2004) 246257 257

References

[1] N.I. Akhiezer, The Classical Moment Problem, Hafner, New York, 1965.
[2] Ju.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, American Mathematical Society,
Providence, RI, 1968.
[3] B. Simon, The classical moment problem and a sdjbiat finite difference operators, Adv. Math. 137
(1998) 82-203.
[4] M.N. Atakishiyev, N.M. Atakishiyev, A.U. Klimyk, Bigg-Laguerre and-Meixner polynomials and repre-
sentations of the quantum algel#rg(su 1), J. Phys. A 36 (2003) 10335-10347.
[5] Ch. Berg, J.P.R. Christiansen, Density questionshe classical theory of moments, Ann. Inst. Fourier
(Grenoble) 31 (1981) 99-114.
[6] M.E.H. Ismail, Orthogonality and completeness pfrourier type systems, Z. Anal. Anwendungen 20
(2001) 761-775.
[7] G. Gasper, M. Rahman, Basic Hypergeomefimctions, Cambridge Un Press, Cambridge, 1990.
[8] G.E. Andrews, R. Askey, R. Roy, Special Ftinoas, Cambridge Univ. Press, Cambridge, 1999.
[9] R. Koekoek, R.F. Swarttouw, The Askey-sahe of hypergeometric orthogonal polynomials andgts
analogue, Delft University of Technology, part 98-17, available from ftp.tudelft.nl.
[10] Ch. Berg, M.E.H. Ismailg-Hermite polynomials and classical orthogonal polynomials, Canad. J. Math. 48
(1996) 43-63.
[11] R. Askey, M.E.H. Ismail, Recurrence relatiprsontinued fractions and orthogonal polynomials, Mem.
Amer. Math. Soc. 300 (1984) 1-108.
[12] W. Groenevelt, Bilinear summation formulasinauantum algebra rementations, math.QA/0201272.
[13] G.E. Andrews, R. Askey, Classical orthogbpalynomials, Lecture Notes in Math. 1171 (1985) 36—63.
[14] R. Askey, J.A. Wilson, A set of orthogonal polynats that generalize the Racah coefficients or 6
symbols, SIAM J. Math. Anal. 10 (1979) 1008-1016.
[15] H. Rosengren, A new quantum algebraic iptetation of the Askey—Wilson polynomials, Contemp.
Math. 254 (2000) 371-394.
[16] E. Koelink, J.V. Stokman, The big-Jacobi functions transform, Constr. Approx. 19 (2003) 191-235.
[17] E. Koelink, J.V. Stokman, The Askey-Wilson functid¢ransform scheme, in: J. Bustoz, M.E.H. Ismail,
S.K. Suslov (Eds.), Special Functions 2000: Currentp&tive and Future Directions, Kluwer Academic,
Dordrecht, 2001, pp. 221-241.



