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Abstract

We derive discrete orthogonality relations for polynomials, dual to little and bigq-Jacobi poly-
nomials. This derivation essentially requires use of bases, consisting of eigenvectors of
self-adjoint operators, which are representable by a Jacobi matrix. Recurrence relations fo
polynomials are also given.
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1. Introduction

Properties ofq-orthogonal polynomials are closely related to operators, which ca
represented by a Jacobi matrix [1–3]. In the case under consideration we diagonal
tain self-adjoint bounded operators with the aid of big or littleq-Jacobi polynomials. An
explicit form of all eigenvectors of these operators is found. Since their spectra are
ple, eigenvectors of each such operator form an orthogonal basis in a Hilbert space. On
can normalize this basis. As a result, for each operator (one of them is related to liq-
Jacobi polynomials and another to bigq-Jacobi polynomials) two orthonormal bases in
Hilbert space emerge: the initial basis and the basis of eigenvectors of this operato
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are interrelated by a unitary matrixU , whose entriesumn are explicitly expressed in term
of little or big q-Jacobi polynomials. Since the matrixU is unitary (and in fact real in ou
case), there are two orthogonalityrelations for its elements:∑

n

umnum′n = δmm′ ,
∑
m

umnumn′ = δnn′ . (1)

The first relation expresses theorthogonality relation for little or bigq-Jacobi polynomials
In order to interpret the second relation, we consider little and bigq-Jacobi polynomials
Pn(q

−m) as functions ofn. In this way one obtains two sets of orthogonal functions (
for little and another for bigq-Jacobi polynomials), which can be expressed in terms oq-
orthogonal polynomials. These two sets ofq-orthogonal polynomials differ from the initia
ones and they can be considered as dual sets of polynomials with respect to little a
q-Jacobi polynomials. The second formula in (1) thus naturally leads to the orthogonal
relations for theseq-orthogonal polynomials onnon-uniform lattices.

In fact, this idea extends the notion of the duality of polynomials, orthogonal on a fini
set, to the case of polynomials, orthogonal on an infinite set of points. We have a
employed this idea in [4] to show thatq-Meixner polynomials are dual to bigq-Laguerre
polynomials. It is worth noting at this point that there are known theorems on dual ort
nality properties ofq-polynomials, whose weight functions are supported on a discre
of points (see, for example, [5] and [6]). However, they are formulated in terms of or
onal functions (see (9) and (23)–(24) below for their explicit forms in the case of little
big q-Jacobi polynomials, respectively) as dual objects with respect to given ortho
polynomials. Therefore, one still needs to make one step further in order to single out
appropriate family of dual polynomials from these functions. So, our main motif in
paper is to show explicitly how to accomplish that for little and bigq-Jacobi polynomials

The orthogonality measure forpolynomials, dual to littleq-Jacobi polynomials, is ex
tremal (for the values of parameters, for which the corresponding moment probl
indeterminate), that is, these polynomials form a complete set in the spaceL2 with re-
spect to their orthogonality measure. The orthogonality measure for polynomials, d
big q-Jacobi polynomials, is not extremal: these polynomials do not form a complete
the corresponding spaceL2. We have found the complementary set of orthogonal funct
in this spaceL2. These functions are expressed in terms of the same polynomials bu
different values of parameters.

Throughout the sequel we always assume thatq is a fixed positive number such th
q < 1. We use (without additional explanation) notations of the theory of special function
(see, for example, [7] and [8]).

2. The operator I1

Let�2(N) be the Hilbert space with the orthonormal basis|n〉, n = 0,1,2, . . . . We define
on�2(N) the symmetric operatorI1, acting on the basis|n〉, n = 0,1,2, . . . , by the formula

I1|n〉 = −an|n + 1〉 − an−1|n − 1〉 + bn|n〉, (2)

where
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an = a1/2qn+1/2

√
(1− qn+1)(1− aqn+1)(1− bqn+1)(1− abqn+1)

(1− abq2n+2)
√

(1− abq2n+1)(1− abq2n+3)
,

bn = qn

1− abq2n+1

(
(1− aqn+1)(1− abqn+1)

1− abq2n+2
+ a

(1− qn)(1− bqn)

1− abq2n

)
.

In order to assure that expressions foran andbn are well defined, we suppose that 0< a <

q−1 andb < q−1.
Sincean → 0 andbn → 0 whenn → ∞, the operatorI1 is bounded. Therefore, w

assume that it is defined on the whole space�2(N). For this reason,I1 is a self-adjoint
operator. Let us show thatI1 is a trace class operator (we remind that a bounded
adjoint operator is a trace class operator if a sum of its matrix elements in an orthon
basis is finite; a spectrum of such an operator is discrete, with a single accumulation po
at 0). For the coefficientsan andbn from (2), we havean+1/an → q andbn+1/bn → q

whenn → ∞. Therefore, for the sum of all matrix elements of the operatorI1 in our basis
we have

∑
n(2an +bn) < ∞. This means thatI1 is a trace class operator. Thus, a spectr

of I1 is discrete. Moreover, a spectrum ofI1 is simple, sinceI1 is representable by a Jaco
matrix with an �= 0 (see [2, Chapter VII]).

Let us find eigenvectorsξλ of the operatorI1, I1ξλ = λξλ. We setξλ = ∑∞
n=0 βn(λ)|n〉.

Acting by the operatorI1 upon both sides of this relation and then collecting all fact
which multiply |n〉 with fixed n, one derives thatβn+1(λ)an + βn−1(λ)an−1 − βn(λ)bn =
−λβn(λ). Making the substitution

βn(λ) =
(

(abq, aq;q)n (1− abq2n+1)

(bq, q;q)n (1− abq)(aq)n

)1/2

β ′
n(λ),

one reduces this relation to the following one:

Anβ
′
n+1(λ) + Cnβ

′
n−1(λ) − (An + Cn)β

′
n(λ) = −λβ ′

n(λ)

with

An = qn(1− aqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
, Cn = aqn(1− qn)(1− bqn)

(1− abq2n)(1− abq2n+1)
.

This is the recurrence relation for the littleq-Jacobi polynomials

pn(λ;a, b|q) := 2φ1(q
−n, abqn+1;aq;q, qλ) (3)

(see, for example, formula (7.3.1) in [7]). Therefore,β ′
n(λ) = pn(λ;a, b|q) and

βn(λ) =
(

(abq, aq;q)n (1− abq2n+1)

(bq, q;q)n (1− abq)(aq)n

)1/2

pn(λ;a, b|q). (4)

For the eigenvectorsξλ of the operatorI1 we thus have the expression

ξλ =
∞∑

n=0

(
(abq, aq;q)n (1− abq2n+1)

(bq, q;q)n (1− abq)(aq)n

)1/2

pn(λ;a, b|q)|n〉. (5)

Since the spectrum of the operatorI1 is discrete, only a discrete set of these vectors belo
to the Hilbert space�2(N). This discrete set of vectors determines a spectrum ofI1.
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Recall that the self-adjoint operatorI1 is represented by a Jacobi matrix in the basis|n〉,
n = 0,1,2, . . . . According to the theory of operators of such type (see [2, Chapter V
eigenvectorsξλ of I1 are expanded into series in the basis vectors|n〉, n = 0,1,2, . . . ,

with coefficients, which are polynomials inλ. These polynomials are orthogonal with r
spect to some positive measuredµ(λ) (moreover, for self-adjoint operators this measur
unique). The set (a subset ofR), on which the polynomials are orthogonal, coincides w
the spectrum of the operator under consideration and the spectrum is simple.

The orthogonalityrelation for the littleq-Jacobi polynomialspm(qn) ≡ pm(qn;a, b|q)

is of the form

∞∑
n=0

(bq;q)n (aq)n

(q;q)n
pm(qn)pm′(qn)

= (abq2;q)∞
(aq;q)∞

(1− abq)(aq)m(bq, q;q)m

(1− abq2m+1)(abq, aq;q)m
δmm′ . (6)

Taking into account this orthogonality relation,we arrive at the following statement:The
spectrum of the operator I1 coincides with the set of points qn, n = 0,1,2, . . . , and this
spectrum is simple.

According to this statement the eigenvectorsξqn(x), n = 0,1,2, . . . , form a basis in
the Hilbert space�2(N). Since these vectors belong to pairwise different eigenvalues, the
are orthogonal to each other. But they arenot normalized. They can be normalized
multiplying each of these vectors by corresponding constants. Letξ̂qn (x) = cnξqn(x) be
normalized basis vectors. In order to find constantscn, note that according to (5) one ha

ξ̂qn (x) =
∑
m

cnβm(qn)|m〉, (7)

whereβm(qn) are given by (4). It follows from (7) that〈ξ̂qn , ξ̂qn〉 = ∑
m c2

nβm(qn)2. Taking
into account the expression (4) forβm(qn) and orthogonality relation (6), we find that

cn =
(

(aq;q)∞
(abq;q)∞

(bq;q)n (aq)n

(q;q)n

)1/2

.

The equality (7) connects two orthonormal bases in the space�2(N). This means tha
the matrix(amn), m,n = 0,1,2, . . . , with entries

amn = cnβm(qn)

=
(

(aq;q)∞
(abq;q)∞

(bq;q)n

(q;q)n

(abq, aq;q)m(1− abq2m+1)

(aq)m−n(bq, q;q)m (1− abq)

)1/2

pm(qn;a, b|q)

is unitary and real, that is,
∑
n

amnam′n = δmm′ ,
∑
m

amnamn′ = δnn′ . (8)

The first relation in (8) is equivalent to the orthogonality relation (6).
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3. Dual little q-Jacobi polynomials

Now we consider the second identity in (8),which gives the orthogonality relation for
the matrix elementsamn, considered as functions ofm. Up to multiplicative factors thes
functions coincide with the functions

Fn(x;a, b|q) = 2φ1(x, abq/x;aq;q, qn+1), (9)

considered on the setx ∈ {q−m | m = 0,1,2, . . .}. Consequently,

amn =
(

(aq;q)∞
(abq;q)∞

(bq;q)n

(q;q)n

(abq, aq;q)m(1− abq2m+1)

(aq)m−n(bq, q;q)m

)1/2

Fn(q
−m;a, b|q)

and the second identity in (8) gives the orthogonality relation for the functions (9),

∞∑
m=0

(1− abq2m+1)(abq, aq;q)m

(1− abq)(aq)m(bq, q;q)m
Fn(q

−m)Fn′(q−m)

= (abq2;q)∞
(aq;q)∞

(q;q)n (aq)−n

(bq;q)n
δnn′ . (10)

The functionsFn(x;a, b|q) can be represented in another form. Indeed, one can us
relation (III.8) of Appendix III in [7] in order to obtain that

Fn(q
−m;a, b|q) = (−a)m(bq;q)m

(aq;q)m
qm(m+1)/2

× 3φ1(q
−m,abqm+1, q−n;bq;q, qn/a). (11)

The basic hypergeometric function3φ1 in (11) is a polynomial of degreen in the variable
µ(m) := q−m + abqm+1, which represents aq-quadratic lattice; we denote it as

dn

(
µ(m);a, b|q) := 3φ1(q

−m,abqm+1, q−n;bq;q, qn/a). (12)

Then formula (10) yields the orthogonality relation

∞∑
m=0

(1− abq2m+1)(abq, bq;q)m

(1− abq)(aq, q;q)ma−mq−m2 dn

(
µ(m)

)
dn′

(
µ(m)

)

= (abq2;q)∞
(aq;q)∞

(q;q)n (aq)−n

(bq;q)n
δnn′ (13)

for the polynomials (12). We call the polynomialsdn(µ(m);a, b|q) dual little q-Jacobi
polynomials. Note that these polynomials can be expressed in terms of the Al-Sa
Chihara polynomialsQn(x;a, b|q) (see formula (3.8.1) in [9]) with the parameterq > 1.
An explicit relation between them is

dn

(
µ(x);β/α,1/αβq|q)= qn(n−1)/2(−β)−n(1/αβ;q)−1

n Qn

(
αµ(x)/2;α,β|q−1).

Ch. Berg and M.E.H. Ismail studied this type of Al-Salam–Chihara polynomials in [10
derived continuous complex orthogonality measures for them. But [10] does not conta
any discussion of the duality of this family of polynomials with respect to littleq-Jacobi
polynomials.
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A recurrence relation for the polynomialsdn(µ(m);a, b|q) is derived fromq-difference
formula for little q-Jacobi polynomials, given by formula (3.12.5) in [9]. It has the form

(q−m + abqm+1)dn

(
µ(m)

) = −Andn+1
(
µ(m)

) + q−n(1+ a)dn

(
µ(m)

)
− Cndn−1

(
µ(m)

)
,

whereAn = aq−n(1 − bqn+1) andCn = q−n(1 − qn). Comparing this relation with th
recurrence relation (3.69) in [11], we see thatthe polynomials (12) are multiple to the pol
nomials (3.67) in [11]. Moreover, if one takes into account this multiplicative factor
orthogonality relation (13) for polynomials (12)turns into relation (3.82) for the polyno
mials (3.67) in [11], although the derivation of the orthogonality relation in [11] is mor
complicated than our derivation of (13). The authors of [11] do not give an explicit for
their polynomials in the form similar to (12). Note that connection of Al-Salam–Chi
polynomials in baseq−1 with polynomials (3.67) in [11]and their connection with littleq-
Jacobi polynomials is considered in [12, Section 3.1]. The author of [12] states that th
orthogonality relation forthe Al-Salam–Chihara polynomials in baseq−1 is the orthogo-
nality relation for the littleq-Jacobi polynomials. However, this assertion can be acce
only for those values of the parametersa andb for the Al-Salam–Chihara polynomials
baseq−1, for which the corresponding moment problem is determined. We move from
little q-Jacobi polynomials to their duals. For this reason, our orthogonality relation (1
proved for all values ofa andb, for which the orthogonality relation (6) is true. Besid
the paper [12] does not contain the expression (12) for dualq-Jacobi polynomials.

Let l2 be the Hilbert space of functions on the setm = 0,1,2, . . . with the scalar produc

〈f1, f2〉 =
∞∑

m=0

(1− abq2m+1)(abq, bq;q)m

(1− abq)(aq, q;q)m
amqm2

f1(m)f2(m).

The polynomials (12) are in one-to-one correspondence with the columns of th
tary matrix (amn) and the orthogonality relation (13) is equivalent to the orthogon
of these columns. Due to (8) the columns of the matrix(amn) form an orthonormal ba
sis in the Hilbert space of sequencesa = {an | n = 0,1,2, . . .} with the scalar produc
〈a,a′〉 = ∑

n ana
′
n. Therefore, the set of polynomialsdn(µ(m);a, b|q), n = 0,1,2, . . . ,

form an orthogonal basis in the Hilbert spacel2. This means thatthe point measure in
(13) is extremal for those sets of the dual little q-Jacobi polynomials, for which the cor-
responding moment problem is indeterminate (for the values of the parameters, for whi
the moment problem is indeterminate, see [11]).

Remark. For those values of parameters of dual littleq-Jacobi polynomials, for which th
associated moment problem is determinate, it is possible to invert our reasoning. N
one can take a self-adjoint operatorJ1 (representable by a Jacobi matrix), diagonaliza
of which leads to dual littleq-Jacobi polynomials. This operator is unbounded and h
discrete spectrum. Nevertheless, we stillhave two orthogonal bases in the Hilbert spa
the initial one and the basis of eigenfunctions ofJ1. If one normalizes the latter basis, th
these two bases are interconnected by a unitary matrix. Orthogonalities by rows a
columns of this matrix are equivalent to orthogonality relations for little q-Jacobi poly-
nomials and their duals. However, it is not possible to carry out this reasoning for
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values of parameters, for which the associated moment problem is indeterminate, s
this case the operatorJ1 is not self-adjoint. That is why we find it more convenient to s
with orthogonal polynomials, which are related to a bounded self-adjoint operator (w
discrete spectrum), for in this case all values of parameters of these orthogonal polyn
correspond to determinate moment problem.

Of course, the above procedure can be also inverted when we deal with indetermina
moment problem, but one has to find first self-adjoint extensions of the correspo
symmetric operator and this is always a very complicated problem.

4. The operator I2

Let a, b andc be real numbers such that 0< a < q−1, 0 < b < q−1 andc < 0. We
consider the bounded self-adjoint operatorI2 on the Hilbert space�2(N), which in the
basis{|n〉} has a form

I2|n〉 = an|n + 1〉 + an−1|n − 1〉 − bn|n〉, (14)

where

an−1 =
√

(1− qn)(1− aqn)(1− bqn)(1− abqn)(1− cqn)(1− abc−1qn)

(−acqn+1)−1/2(1− abq2n)
√

(1− abq2n−1)(1− abq2n+1)
,

bn = (1− aqn+1)(1− abqn+1)(1− cqn+1)

(1− abq2n+1)(1− abq2n+2)

− acqn+1 (1− qn)(1− bqn)(1− abqn/c)

(1− abq2n)(1− abq2n+1)
− 1.

Actually,I2 is a trace class operator. To show this we note that for the coefficientsan and
bn from (14) one obtains thatan+1/an → q1/2 andbn+1/bn → q whenn → ∞. Therefore,∑

n(2an + bn) < ∞ and this means thatI2 is a trace class operator. Thus, the spectrum
I2 is simple (since it is representable by a Jacobi matrix withan �= 0) and discrete.

In order to find eigenvectorsψλ of the operatorI2, I2ψλ = λψλ, we set ψλ =∑∞
n=0 βn(λ)|n〉. Acting by the operatorI2 on both sides of this relation and then c

lecting factors, which multiply|n〉 with fixed n, we arrive at the relationanβn+1(λ) +
an−1βn−1(λ) − bnβn(λ) = λβn(λ). Making the substitution

βn(λ) =
(

(abq, aq, cq;q)n(1− abq2n+1)

(abq/c, bq, q;q)n(1− abq)(−ac)n

)1/2

q−n(n+3)/4β ′
n(λ),

we reduce this relation to the following one:

Anβ
′
n+1(λ) + Cnβ

′
n−1(λ) − (An + Cn − 1)p′

n(λ) = λβ ′
n(λ)

with

An = (1− aqn+1)(1− cqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
,

Cn = −ac(1− qn)(1− bqn)(1− abc−1qn)

−n−1 2n 2n+1
.

q (1− abq )(1− abq )
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This is the recurrence relation for the bigq-Jacobi polynomials

Pn(λ;a, b, c;q) := 3φ2(q
−n, abqn+1, λ;aq, cq;q, q), (15)

introduced by G.E. Andrews and R. Askey [13]. Therefore,β ′
n(λ) = Pn(λ;a, b, c;q) and

βn(λ) =
(

(abq, aq, cq;q)n(1− abq2n+1)

(abq/c, bq, q;q)n(1− abq)(−ac)n

)1/2

× q−n(n+3)/4Pn(λ;a, b, c;q). (16)

So, for the eigenvectorsψλ(x) we have the expansion

ψλ =
∞∑

n=0

(
(abq, aq, cq;q)n(1− abq2n+1)

(abq/c, bq, q;q)n(1− abq)(−ac)n

)1/2

× q−n(n+3)/4Pn(λ;a, b, c;q)|n〉. (17)

Since the spectrum of the operatorI2 is discrete, only a discrete set of these functi
belongs to the Hilbert space�2(N) and this discrete set determines a spectrum ofI2.

In order to find a spectrum ofI2 explicitly, we act as in the previous case. Namely,
take into account that the orthogonality relation for the polynomials (15) is of the form

r(a, b, c)

∞∑
n=0

(aq, abq/c;q)nqn

(aq/c, q;q)n
Pm(aqn+1)Pm′(aqn+1)

+ r(b, a, ab/c)

∞∑
n=0

(bq, cq;q)nqn

(cq/a, q;q)n
Pm(cqn+1)Pm′ (cqn+1)

= (1− abq)(bq, abq/c, q;q)m

(1− abq2m+1)(aq, abq, cq;q)m
(−ac)mqm(m+3)/2δmm′ , (18)

wherer(a, b, c) = (bq, cq;q)∞/(abq2, c/a;q)∞. Thus, the spectrum of the operator I2
is simple and consists of two sets of points aqn+1 and cqn+1, n = 0,1,2, . . . .

The above assertion means that the vectorsψaqn andψcqn , n = 1,2, . . . , are linearly
independent elements of the Hilbert space�2(N) and constitute a basis of�2(N). Moreover,
these vectors are orthogonal (but not normalized). In order to normalized these vec
have to multiply them by corresponding constants. Let the vectorsψ̂aqn = cnψaqn and
ψ̂cqn = c′

nψcqn , n = 1,2, . . . , be normalized. Then due to the orthogonality relation for
q-Jacobi polynomials we derive (as in the previous case) that

cn =
(

(bq, cq;q)∞
(abq2, c/a;q)∞

(abq/c, aq;q)nqn

(aq/c, q;q)n

)1/2

,

c′
n =

(
(aq, abq/c;q)∞
(abq2, a/c;q)∞

(bq, cq;q)n qn

(cq/a, q;q)n

)1/2

.

In the expansions
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ψ̂aqn =
∑
m

cnβm(aqn)|m〉 =
∑
m

amn|m〉,

ψ̂cqn =
∑
m

c′
nβm(cqn)|m〉 =

∑
m

a′
mn|m〉, (19)

whereβm(λ) is given by (16), the matrixM := (amn a′
mn) with entries

amn = cnβm(aqn), a′
mn = c′

nβm(cqn) (20)

is unitary and real. (Note that the matrixM is formed by adding the columns of the mat
(a′

mn) to the columns of the matrix(amn).) The orthogonality of the matrixM ≡ (amn a′
mn)

means that∑
m

amnamn′ = δnn′ ,
∑
m

a′
mna

′
mn′ = δnn′ ,

∑
m

amna
′
mn′ = 0, (21)

∑
n

(amnam′n + a′
mna

′
m′n) = δmm′ . (22)

The relation (22) is equivalent to the orthogonality relation (18).

5. Dual big q-Jacobi polynomials

Now we consider the relations (21). They give the orthogonality relations for the set
matrix elementsamn anda′

mn, viewed as functions ofm. Up to multiplicative factors, they
coincide with the functions

Fn(x;a, b, c;q) := 3φ2(x, abq/x, aqn+1;aq, cq;q, q), n = 0,1,2, . . . , (23)

F ′
n(x;a, b, c;q) := 3φ2(x, abq/x, cqn+1;aq, cq;q, q)≡ Fn(x; c, ab/c, a),

n = 0,1,2, . . . , (24)

considered on the corresponding sets of points. Namely, we have

amn ≡ amn(a, b, c) = AFn(q
−m;a, b, c;q),

a′
mn = A′F ′

n(q
−m;a, b, c;q)≡ amn(c, ab/c, a),

whereA and A′ are expressions, which multiplyPm(aqn+1;a, b, c;q) and Pm(cqn+1;
a, b, c;q) in formulas (20) foramn anda′

mn, respectively. The relations (21) lead to t
orthogonality relations for thefunctions (23) and (24),

(bq, cq;q)∞
(abq2, c/a;q)∞

∞∑
m=0

ρ(m)Fn(q
−m)Fn′(q−m) = (aq/c, q;q)n

(aq, abq/c;q)nqn
δnn′ , (25)

(aq, abq/c;q)∞
(abq2, a/c;q)∞

∞∑
m=0

ρ(m)F ′
n(q

−m)F ′
n′(q−m) = (cq/a, q;q)n

(bq, cq;q)n qn
δnn′ , (26)

∞∑
ρ(m)Fn(q

−m)F ′
n′(q−m) = 0, (27)
m=0
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nuous
here

).
,

where

ρ(m) := (1− abq2m+1)(aq, abq, cq;q)m

(1− abq)(bq, abq/c, q;q)m(−ac)m
q−m(m+3)/2.

There is another form for the functionsFn(q
−m;a, b, c;q). Indeed, one can use th

relation (III.12) of Appendix III in [7] to obtain that

Fn(q
−m;a, b, c;q)= (abq/c;q)m

(cq;q)m
(−c)mqm(m+1)/2

× 3φ2

(
q−m,abqm+1, q−n

aq, abq/c
q, aqn+1/c

)
.

The basic hypergeometric function3φ2 in this formula is a polynomial inµ(m) := q−m +
abqm+1. So if we introduce the notation

Dn

(
µ(m);a, b, c|q) := 3φ2

(
q−m,abqm+1, q−n

aq, abq/c
q, aqn+1/c

)
, (28)

then

Fn(q
−m;a, b, c;q)= (abq/c;q)m

(cq;q)m
(−c)mqm(m+1)/2Dn

(
µ(m);a, b, c|q)

.

Formula (25) directly leads to the orthogonality relation for the polynomials (28):

∞∑
m=0

(1− abq2m+1)(aq, abq, abq/c;q)m

(1− abq)(bq, cq, q;q)m
(−c/a)mqm(m−1)/2Dn

(
µ(m)

)
Dn′

(
µ(m)

)

= (abq2, c/a;q)∞
(bq, cq;q)∞

(aq/c, q;q)n

(aq, abq/c;q)nqn
δnn′ . (29)

We call the polynomialsDn(µ(m);a, b, c|q) dual big q-Jacobi polynomials. It is nat-
ural to ask whether they can be identified with some known and thoroughly st
set of polynomials. The answer is: they can be obtained from theq-Racah polynomi-
als Rn(µ(x);a, b, c, d|q) of Askey and Wilson [14] by settinga = q−N−1 and sending
N → ∞, that is,

Dn

(
µ(x);a, b, c|q)= lim

N→∞ Rn

(
µ(x);q−N−1, a/c, a, b|q)

.

Observe that the orthogonality relation (29) can be also derived from formula (4.16) in
But the derivation of this formula (4.16) is rather complicated.

It is easy to show that the polynomials (28) can be expressed in terms of conti
q−1-Hahn polynomials. A more complicated case than our is considered in [16], w
the authors study duality connection between bigq-Jacobi functions and continuousq−1-
Hahn polynomials (a paper [17] also deals with the duality on the non-polynomial level
It is shown in [16] that the orthogonality relation, dual to that for bigq-Jacobi functions
is continuous.

It is worth noting here that in the limit asc → 0 the dual bigq-Jacobi polynomials
Dn(µ(x);a, b, c|q) coincide with the dual littleq-Jacobi polynomialsdn(µ(x);b, a|q),
defined in Section 3. The dual littleq-Jacobi polynomialsdn(µ(x);a, b|q) reduce, in
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turn, to the Al-Salam–Carlitz II polynomialsV (a)
n (s;q) on theq-linear lattices = q−x

(see [9, p. 114]) in the case when the parameterb vanishes, that is,dn(µ(x);a,0|q) =
(−a)−nqn(n−1)/2V

(a)
n (q−x;q). This means that we have a complete chain of reductio

Rn

(
µ(x);a, b, c, d|q) −→

a→∞ Dn

(
µ(x);b, c, d|q) −→

d→0
dn

(
µ(x); c, b|q)

−→
b=0

V (c)
n (q−x;q)

from the four-parameter family ofq-Racah polynomials, which occupy the upper le
in the Askey-scheme of basic hypergeometric polynomials (see [9, p. 62]), down
one-parameter set of Al-Salam–Carlitz II polynomials from the second level in the
scheme.

The recurrence relations forDn(µ(m);a, b, c|q) are obtained from theq-difference
equation for bigq-Jacobi polynomials, given by formula (3.5.5) in [9]. They are of
form

(q−m−1)(1−abqm+1)Dn

(
µ(m)

) = AnDn+1
(
µ(m)

) − (An+Cn)Dn

(
µ(m)

)
+ CnDn−1

(
µ(m)

)
,

whereAn = q−2n−1(1− aqn+1)(c/a − bqn+1) andCn = q−2n(1− qn)(c/a − qn).
The relation (27) leads to an interesting equality

∞∑
m=0

(−1)m(1− abq2m+1)(abq;q)m

(1− abq)(q;q)mq−m(m−1)/2
Dn

(
µ(m);a, b, c|q)

× Dn′
(
µ(m);b, a, abq/c|q)= 0.

Observe also that from the expression (28) for the dual bigq-Jacobi polynomials it follows
that they possess the symmetry propertyDn(µ(m);a, b, c|q)= Dn(µ(m);ab/c, c, b|q).

The set of functions (23) and (24) form an orthogonal basis in the Hilbert spacel2 of
functions, defined on the set of pointsm = 0,1,2, . . . , with the scalar product〈f1, f2〉 =∑∞

m=0 ρ(m)f1(m)f2(m), whereρ(m) is the same as in formulas (25)–(27). Conseque
the dual big q-Jacobi polynomials Dn(µ(m);a, b, c|q) correspond to indeterminate mo-
ment problem and the orthogonality measure for them, given by formula (29), is not
extremal.

Note that in [16] a set of functions, dual to bigq-Jacobi functions, is found, whic
contains as a subset the family of continuousq−1-Hahn polynomials. Of course, as in o
case, the whole dual set does not exhausted by continuousq−1-Hahn polynomials (which
means that these polynomials correspond to indeterminate moment problem).
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