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Abstract 

Restricted permutations are those constrained by having to avoid subsequences ordered in 
various prescribed ways. They have functioned as a convenient descriptor for several sets of 
permutations which arise naturally in combinatorics and computer science. We study the partial 
order on permutations that underlies the idea of restriction and which gives rise to sets of 
sequences closed under taking subsequences. In applications, the question of whether a closed 
set has a finite 'basis' is often considered. Several constructions that respect the finite basis 
property are given. A family of closed sets, called profile-closed sets, is introduced and used 
to solve some instances of the inverse problem: describing a closed set from its basis. Some 
enumeration results are also given. @ 1999 Elsevier Science B.V. All rights reserved 
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1. General setting 

The study of  permutations which are constrained by not having one or more subse- 

quences ordered in various prescribed ways has been motivated both by its combina- 

torial difficulty and by its appearance in some data structuring problems in Computer 

Science. The fundamental relation that underpins this study is involvement which cap- 

tures the idea o f  one sequence being ordered in the same way as a subsequence o f  an- 

other. Two numerical sequences n = [Pl, P2 . . . . .  Pm] and p = [rl, 1"2 . . . . .  rm] o f  the same 

length are said to be order isomorphic if, for all i,j, Pi < Pj if and only if ri <rj. Order 

isomorphism is clearly an equivalence relation on sequences. Throughout this paper we 

shall consider only sequences o f  distinct elements. Every such sequence of  length n is 

order isomorphic to a unique permutation o f  1,2 . . . . .  n and, for this reason, most o f  our 
results are stated for permutations. Unless otherwise stated 'permutation' will always 
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mean an arrangement of  1,2 . . . . .  n for some n. Generally, sequences will be denoted 

by Greek letters and their elements by Roman letters. 

If  n and a are sequences then n is said to be involved in cr if  ~ is order isomorphic 
to a subsequence p of or; we write n ~ a. For example, [2, 3, 1,4] ~< [6, 3, 5, 7, 2, 4, 1, 8] 

because of the subsequence [3, 5, 2, 8] in the second permutation. For permutations on 
a small number of symbols it is often convenient to omit the brackets and commas 

and write 2314 ~ 63572418. 

A map ~ from {1 . . . . .  m} to {1 . . . . .  n} is said to be monotonic if  ~ ( i ) < ~ ( j )  when- 

ever i<j. Monotonic maps allow us to describe the terms 'subsequence' and 'order 

isomorphism' using functional composition (which we apply from left to right). Sup- 

pose that n and a are permutations. A sequence of positive integers is order isomorphic 
to n if and only if it has the form n~ where ~ is a monotonic map. Furthermore, a 

sequence is a subsequence of a if  and only if it has the form /3a with /3 a mono- 
tonic map. In particular, = ~< a if  and only if there exist monotonic maps ~,/3 such that 
~0~ =-/30" 

A set X of permutations is said to be closed if, whenever a E X and rr ~ a, then 
= E X. Closed sets are the principal object of  study in this paper. Many natural sets 

of  permutations are closed (some examples are given below) and a structure theory of 
closed sets would have many consequences. The beginnings of  such a theory are given 

in Section 2 but much remains to be done. 

The archetypal example of  a closed set is the set of  stack sortable permutations. A 

sequence is stack sortable if, when it is presented as input to a stack and subjected 
to an appropriate series of  'push' and 'pop '  operations, the stack can produce the 

elements in ascending order. It is evident that if  a sequence is stack sortable then so 

is any sequence order isomorphic to it and also any subsequence. In particular, if  tr is 
a stack sortable permutation and 7r ~ a then n is also stack sortable. 

Stack sortable permutations were first studied in [8] where two results were proved 
which have continued to inspire the study of closed sets. The first is that a permutation 

is stack sortable if and only if it does not involve the permutation 231. The second 

is that the number of  stack sortable permutations of  length n is (2nn)/(n + 1). The 
first of  these results motivates the definition of the 'basis'  of  a closed set below and 
allows several combinatorial results in the literature to be described uniformly. We shall 
survey some of these below and give some new results in the next section. The second 

result has been generalised to a number of other closed sets and we shall present some 

further results in Section 3. At this point however it is convenient to introduce the 

terminology Y', to denote the subset of  f whose permutations have length n. 
I f  X is closed let X *  denote the set of  permutations, minimal with respect to ~<, 

that do not belong to X. In turn, X *  determines X as {al/3 ~ a  for all /3~X*}. 
The set X *  is called the basis of  X. In this terminology the set of  stack sortable 
permutations has the basis {231}. 

Many natural closed sets of  permutations X *  have a very simple basis. For example: 
• I f  X is the set of permutations that can be sorted by a restricted input deque then 

X *  --- {4231,3241 } [8, 11,15]. 
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• If ~c is the set of permutations that can be expressed as the interleaving of two 

increasing subsequences then X * =  {321} [8]. 
• If X is the set of permutations that can be expressed as the interleaving of an 

increasing subsequence and a decreasing subsequence then X * =  {3412,2143} (see 

[7,151). 
• If X is the set of permutations that can be obtained by a 'riffle' shuffle of a deck 

of cards 1,2 . . . . .  n then f * =  {321,2143,2413} (see the proof of Proposition 3.4 

below). 
• If X is the set of all 'separable' permutations [6] then f * = { 3 1 4 2 , 2 4 1 3 }  (see 

also [13] where these permutations are considered in the context of 'bootstrap 

percolation' ). 
However, there are also many closed sets whose basis is not simple to describe nor 

even finite; examples of closed sets with an infinite basis are given in [17,11]. The 
converse problem of describing the closed set defined by a given basis ~ has also 
attracted some study; we call this closed set d ( M ) ,  the letter ~¢ recalling that d ( M )  
is the set of permutations that avoid ~ ( d ( { 1 } )  is empty, d ({21})  consists only of 
identity permutations, etc.). In [14] Simion and Schmidt gave complete descriptions of 
closed sets whose bases consist of sets of permutations of length 3. B6na [2, 3], West 
[18] and Stankova [15,16] have begun the study of bases comprising permutations of 
length 4 but this is still very incomplete. 

Another theme running through the above works is enumeration: finding the number 

of permutations of each length in a closed set. We let d ~ ( ~ )  be the set of permutations 
in ~¢(M) of length n. Occasionally it is necessary to consider the permutations of length 
n of some set other than {1,2 . . . . .  n} which avoid ~ but this set has the same size as 
N , ( ~ ) .  

In all this work it is very useful to take advantage of some natural symmetries based 
on the following facts (which were first made explicit in [14]). If a is any permutation 
on {1,2, . . . ,n},  let @ and a* ,  respectively, denote the permutations obtained from a 
by replacing every element si by n + 1 - si and reversing the elements of a. Also, as 
usual, let a - l  denote the permutation inverse of a. Then 

1. I fn~<a  then n<~a 

2. I f  n ~ a then n * < a *  
3. I fn<~a then n -1 < a  -I 
These 3 symmetries generate the dihedral group D of order 8. It acts in a natural 

way on sets of permutations. As a direct consequence of the definitions we have: 

Lemma 1.1. I f  2 is any element o f  the symmetry group D and X is an), closed set oJ 

permutations with basis X *  then 2(X)  is closed and has basis 2(X*) .  Furthermore, 

Ifnl = 12(X).I for  all n. 

As an example of the power of this lemma consider the problem of finding d ( a )  
when a has length 4. Although there are 24 such problems they fall into 7 symmetry 
classes under the action of D. According to the lemma I~.(¢)1 = IdnO)l  whenever 
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and z are equivalent under D. Mysteriously, this equation sometimes holds when 

~r and 7 are not equivalent. Some reasons for this are given in [15,16,18, 19] which 

use generating trees but these do not furnish a complete explanation. There are other 
equalities of  this sort also [14,19]; again, generating trees explain these in some cases. 

In Section 2 of  the paper we give some constructions and results for combining 
closed sets. We follow this with a discussion of a large family of  closed sets each 

of  which has a finite basis and use them to solve a problem on riffle shuffles. In 

Section 3 we consider closed sets where the basis consists of  a permutation of length 
3 and a permutation of length 4. West [19] has reported on some enumeration results 

for this problem, omitting most of  the proofs. Our results confirm his (and are available 

electronically [1]). Here we give only some new results obtained by the elementary 
structure theory in Section 2 but they suggest how effective a more general structure 

theory would be. 

2. Some finitely based sets 

2.1. Constructions 

There are several ways in which one or more closed sets can give rise to another 

closed set. This subsection reviews some constructions which respect the finite basis 

property. 

Theorem 2.1. Suppose that X and Yl are closed sets. Then X N ~ and Yf t3 Yl are 

also closed Moreover, i f  X and ~t each have a finite basis then both ~5 fq ~ and 

X tO Y/have  a finite basis. 

Proof. That X n ~ and 5( U ~ are closed follows directly from the definitions. Now 

suppose that X = ~ ¢ ( S )  and ~ - - ~ ¢ ( T )  for finite sets S and T. Since, obviously, 

X n ~ = d ( S  to T) it follows that X N ~¢ has a finite basis. 
Finally consider a permutation ~ in the basis of  X tO ~ .  Such a permutation belongs 

neither to X nor to ~ and so has subsequences tr and 7 which are order isomorphic 
to permutations in S and T, respectively. However, ~ is minimal and so no proper 
subsequence also has this property. Thus, ~ must be the union of tr and r and so has 

bounded length. Therefore there are only finitely many possibilities for ct. [] 

Theorem 2.2. Suppose that X and ~/ are closed sets each with a finite basis. Let 
[X, ~/] be the set o f  all permutations which are concatenations try where tr is order 

isomorphic to a permutation in X and z is order isomorphic to a permutation in 

Yl. Then IX, ~/] is closed Moreover i f  X and ~1 are each finitely based then so is 
[x,~/]. 

Proof. It is evident that [6f, °3/] is closed. Suppose that X and ~ are each finitely based 
and that ~ is a permutation in the basis of  [X, ~] .  Let ~ = ark where k is the last 
symbol of  c¢ and where (since ~ is minimal with respect to not belonging to [X,~¢]) 
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we may presume that tr and z are order isomorphic to permutations of  Y" and ~ ,  
respectively. Among all such decompositions for ct choose the one with a of  maximal 

length. Then, if t is the first symbol of  T, at is not order isomorphic to a permutation 

in 5f and zk is not order isomorphic to a permutation in qY. 

It follows that at has a subsequence &t order isomorphic to a permutation in the 
basis S of Y" and zk has a subsequence z'k order isomorphic to a permutation in the 

basis T of ~ .  But then the subsequence a~t~k (or atz~k if t is a symbol of  z ~) of  

cannot be order isomorphic to a permutation of [W, ~J] and, by minimality of ~, must 
be 7 itself. Since art and T'k are bounded in length (since S and T are finite), the 

length of ct is also bounded. [] 

Noonan [9,10] and B6na [4,5] have investigated classes of permutations which are 

allowed to involve a finite set permutations (particularly 123 or 132) but only a limited 
number of times. In general, given a finite list ctl . . . . .  ctk of  permutations and a list 

m l , . . . ,mk of non-negative integers, we let 

~(oq,...,o~k,ml,...,mk) 

denote the set of  permutations a which involve each ~ at most m~ times (i.e. a has 

at most m/ subsequences order isomorphic to ~i), and we let 

~(~1 . . . . .  Otk,ml , . . . ,mk)  

denote the set of permutations a which involve each 7i exactly mi times. Notice that 

°ff(oq . . . . .  o~,,ml . . . . .  mk)= U ~(oq . . . . .  o~k,pl . . . . .  pk). 
pi <~ mi 

It is conjectured in [10] that all Lr-type sets have P-recursive enumeration sequences. 

By inclusion-exclusion this is equivalent to all ~¢-type sets having P-recursive enu- 

meration sequences. The following theorem shows that this conjecture would follow 
from the (apparently weaker) conjecture of  Gessel that all finitely based closed sets 

have P-recursive enumeration sequences. 

Theorem 2.3. ~(g l  . . . . .  otk, m t . . . . .  mk ) is closed and  f ini tely based. 

Proof. Obviously, YC(~t . . . . .  ~k,ml, . . . ,m~) is closed. Let n be a basis permutation. 
Then n $ ~(~l  . . . . .  ~k, m l . . . . .  rnk) and so, for some i, n has at least mi + 1 subsequences 
order isomorphic to ~i. But the union of these mi + 1 subsequences is a subsequence 
of n also not in ~¢(cq . . . . .  ak,ml . . . . .  mk); therefore, as n is minimal, this union must 

be n itself. Thus In I is bounded. [Z 

All the theorems of this subsection are, in principle, constructive. For example, 
the method of the last theorem gives that ~(123, 1) (see [9]) has basis {1234, 1243, 
1324, 2134, 14523, 34125, 351624, 356124, 451623, 456123}. 
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2.2. Profile classes 

If  A and B are sets or sequences we write A < B  to denote that a < b  for all 

a E A,b E B. As a first use of  this notation we define the profile of  a permutation. 
I f  p and rc are permutations then p is said to have profile re = [ P l . . .  Pro] i f  p has a 
partition into segments p = -P l . . .  Pm where m is minimal subject to 

1. each pi is a non-empty sequence of  increasing consecutive symbols, 

2. Pi < pj if  and only if  pi < pj 
For example, 34597812 has profile 2431 because of  its segments 345, 9, 78, 12. Clearly, 
a permutation determines its profile uniquely. Not every permutation can be a profile 
however; to be a profile the permutation must not contain any segment t, t + 1. 

Lemma 2.4. I f  ~z is a valid profile and has length m then the number of  permutations 
n--I of  length n which have profile lr is (m--l)' 

Proof.  If  p is a permutation with profile zc (by way of  a decomposition p =  pl . . .Pm)  
then p is determined by the lengths o f  the Pi, i.e. by an ordered set of  m positive 
integers whose sum is n. Since every such composition o f  n can arise in this way and 

there are (~ l l )  such compositions the result follows. [] 

We define a set 2; of  permutations to be profile-closed i f  all its members are 
valid profiles and, whenever fl is a valid profile with fl <~ ~ E S, then fl E 2;. The 
profile closure of  a set of  profiles is defined to be the smallest profile-closed set 
containing it. As an example, the profile closure o f  {2431 } is the profile-closed set 
{2431,132,321,21,1}. 

Theorem 2.5. I f  2; is a profile-closed set o f  permutations then P(2~), the set o f  per- 
mutations whose profile lies in S,, is closed. Furthermore, i f  2; is finite then P(2;) has 
a finite basis. 

Proof. It follows from the definitions that, i f  p has profile rr and 2 ~< p, then 2 has 
profile # where ~ <~ ~. This proves the first part. For the second part let fl be a permu- 
tation on 1,2 . . . . .  m in the basis of  P(2;). Suppose that fl has two adjacent consecutive 
symbols t, t + 1; then, fl and fl - t have the same profile. However, fl - t is order 
isomorphic to a permutation in P(S )  and so its profile lies in 2;. Thus fl E P(2;) which 
is impossible. Hence no two adjacent symbols of  fl can be consecutive. 

The permutation fl - m can have at most two adjacent consecutive symbols (which, 
in fl, were separated by m) and so f l -  m has length at most 1 more than the length 
o f  its profile. But f l -  m E P ( E )  and so its profile lies in E. Therefore the length o f  fl 
is bounded and the proof is complete. [] 

We shall appeal to these results in the next section. They may be generalised in 
several ways. We can, of  course, consider profiles based on decreasing segments rather 
than increasing segments. More interestingly, we can consider profiles where segments 
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are allowed to be both increasing and decreasing; a similar finite basis result can be 
proved. We can also consider permutations with a profile where one or more of the 

increasing segments is of bounded length. In particular, in the next section we require, 
at one point, profiles where one of the segments has length 0 or 1; we shall show this 

by a superscript l; so, for example, permutations with the (generalised) profile 1312 

would be structured as [1,2 . . . . .  k ,n , k+  1 . . . . .  n -  1] for some k. 

2.3. Riffle shuffles 

We have already mentioned, in Section 1, the closed set of  permutations obtained 

by a standard riffle shuffle of  a deck of n cards. These riffle shuffle permutations are, 
of course, just merges of  cards 1,2 . . . . .  m (for some m) and cards m + 1 . . . . .  n. More 

generally we wish to consider S~ the set of r-shuffles which are defined by cutting 

a deck into r sections and interleaving these sections in any way. The inverse of  an 
r-shuffle n is, by definition, an ordering of the deck of cards from which the r-shuffle 

n could restore the deck to its original order. 

Lemma 2.6. A permutation n of length n is an r-shuffle i f  and only if  there exist 
r ?" partitions Uk=l Ak and Uk=l Ik of  {1 . . . . .  n} such that 

1. Ik <Ik+l for all k, 
2. n(Ak) = Ik for all k, 
3. n[n~ is monotonic increasing for all k. 

Proof. An r-shuffle begins by dividing {1 . . . . .  n} into segments I1 . . . . .  /~ satisfying 

property 1. When the segments are interleaved each set Ik is distributed, without dis- 
turbing its order, into a set of  positions Ak of the resulting permutation n and therefore 

conditions 2 and 3 hold. The converse is clear. [] 

An immediate consequence of this lemma is a corresponding characterisation of the 

inverses of  shuffles. 

Lemma 2.7. A permutation n of length n is the inverse of a t-shuffle i f  and only iJ 
there exist partitions Utk=l Bk and U~=l Jk of {1 . . . .  ,n} such that 

1. Jk <Jk+l for all k, 
2. n(Jk) : Bk for all k, 
3. nlj ~ is monotonic increasin 9 for all k. 

Notice that n is the inverse of  a t-shuffle if  and only if n has at most t - 1 de- 
scents (positions i where hi>hi+l). The number St(n) of permutations of  this type 
is the classical Simon Newcomb's problem (see p. 213ff of  [12]). Also notice that 
S~ - I  = [ J ,  J , . . . ]  where o¢ is the set of  all identity permutations and so St - I  and St are 
finitely based by Theorem 2.2 and Lemma 1.1. 

The main result of  this subsection is a structure theorem for the closed set Sr N S ;  t. 
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Theorem 2.8. Let S be the profile closure of the single permutation 

[ 1 , r + l , 2 r + l  . . . . .  ( t - 1 ) r + l , 2 , r + 2  . . . . .  ( t - 1 ) r + 2 , 3  . . . . .  n] 

Then P( £) = S r Nat -l. 

A r i r B t t Proof. Suppose that z E S ~ f q S t  I. Let { i}k=l,{ k}k=l,{ k}k=l,{Jk}k=l be the sets de- 
fined and guaranteed by the previous two lemmas. Let Chk =Ah NJk and Dhk =Ih NBk. 

Since Chk, Ch+l,k C_Jk, rc[j~ is monotonic increasing, and 

~( Chk ) -~ Dhk = Ih (q Bk < I h + l  f-q Bk = Dh+ l,k -~ ~ ( C h + l , k )  

we have Chk < Ch+l,k. Furthermore, Crk =At  NJk <Al AJk+l = Cl,k+l. Therefore, 

C I I  < C 2 1  < ' ' "  < C r l  < C 1 2 < C 2 2 <  . . .  • 

Also, by a similar argument, 

D ~ I  < D 1 2  < • • • < D i s  < D 2 1  < 0 2 2  < • • • • 

It follows that the profile of  ~ is in the set S. This proves one half of  the theorem. 
The converse can be proved by reversing the foregoing argument. [] 

In principle, this theorem allows the enumeration problem to be solved for any fixed 
S~ fq St -1 . We illustrate this for the standard riffle shuffles (2-shuffles) in the next lemma. 

Lemma 2.9. The number of riffle shuffles of a deck of n cards which can be restored 
by a riffle shuffle is (,~l) + 1. 

Proof. According to Theorem 2.8 $2 NS2 -I = P ( £ )  where S = {1324,213,132,21, 1} is 
the profile closure of 1324. Therefore, by Lemma 2.4, 

[ ( S 2 f q s 2 l ) n l = ( n 3 1 ) + 2 ( n 2 1 ) + ( n l l ) + ( n - o  1)  

= +1 .  [] 
3 

3. Closed sets with a basis of two permutations of lengths 3 and 4 

In this section we consider all closed sets which have a basis of two permutations, 
of  length 3, fl of  length 4. Of the 144 = 3! x 4! pairs of such permutations we may 

immediately reduce to a complete set of pairs inequivalent under the symmetry group 
D. There are 30 such pairs but 12 of  them are degenerate in the sense that ~ ~ fl and 
therefore {~, fl} is not a basis of a closed class. For the remaining 18 pairs Table 1 
gives the values of an = [ d n ( ~ ,  fl)[ or a recurrence relation they satisfy. Every pair ~, fl 
with ~ ~ fl is equivalent to one of these pairs. 
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Table 1 

1 123,4321 0 for n~>7 

2 3 2 1 , 2 1 3 4  n + (~) + ("4 +1) 

3 3 2 1 , 1 3 2 4  1 +  (~) + ( , , ; e )  

4 132 ,4321 1 + (,,+1) + 2 ( 4 )  

5 123 ,4213  3 x 2 "  I - ("+1)  - 1 

(.+q 
6 123 ,3412  2 ' '+t - 2 n -  I - \ 3 ! 

7 132 ,4312  (n - 1)2 n -2  + 1 

8 132,4231 (n - 1)2 " - 2  + 1 

9 132, 3214  a,, = 4 a n -  1 - 5a#_2  + 3 a n - 3  

10 123 ,3214  a ,  = 3a,, 1 - a n - 2  

11 132, 1234 a,, = 3an 1 -- a n - 2  

12 132, 4213 a,, = 3 a n -  I - a # - 2  

13 132 ,4123  a,, = 3 a n - I  -- a n - 2  

14 132, 3124  a,, = 3an I - a , , -2  

15 123 ,2143  an = 3 a n  1 - a , , -2  

16 123 ,3142  a n = 3 a n  I - - a n - 2  

17 132 ,2134  a,, = 3 a #  I - -  a , , -2  

18 132 ,3412  a,, = 3 a , ,  I - a n - 2  

35 

The table contains essentially the same information as the data given by West in [19] 
which he obtained with a generating tree approach; he gave detailed proofs for cases 
5, 10, and 15 only. Rather than give the detailed proofs here we invite the reader to 
consult [1] where proofs which avoid the use of generating trees are given. Instead, we 
shall look at those entries in the table where the theory of the previous section allows 
us to derive structure theorems for d , (~ ,  r)  from which the corresponding enumeration 
result follows easily. 

The following three propositions treat those cases where the enumeration formula 
is a polynomial. Since the proof strategies are all similar we give details for the last 
only. 

Proposition 3.1. If ~ = 3 2 1  and f l=2134 then ag(c~,fl) is the set of permutations 
whose profiles are in the profile closure of 14627135 I. Moreover, 

] ~ q l n ( ° q f l ) l = n + ( ~ ) + ( n ; 1 )  . 

Proposition 3.2. If c~=321 and r =  1324 then ad(~,fl) is the set of permutations 
whose profiles are in the profile closure of 21354 and 351624. Moreover, 
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Proposition 3.3. I f  ct= 132 and f l=4321 then d(~,fl) is the set of permutations 
whose profiles are in the profile closure of 32415 and 42135. Moreover, (n+l) (:) 

I d n ( ~ , / ~ ) l  = 1 +  3 + 2  . 

Proof. Note first that the profile closure of 32415 and 42135 is the set of profiles 

P = {32415, 42135, 3214, 3241, 4213, 213,321,21, 1 }. 

It is straightforward to verify that any permutation whose profile is in P must avoid 
both 132 and 4321. To prove that any permutation of length n which avoids both 132 
and 4321 has profile in P we argue by induction on n. Let o' be the permutation 
obtained by removing n from 0. By induction, the profile of tr' is one of the profiles 
in P. We shall consider the different possibilities for the profile of tr' and verify that 
when n is inserted into such a permutation to produce a permutation that avoids both 
132 and 4321 then the result has a profile that is also in P. 
1. tTt = ~ 3 " ~ 2 ~ 4 7 1 " ~ 5  . This is the case that a '  has profile 32415; each 7i is an increasing 

sequence of consecutive symbols and the subscripts indicate the relative values of 
symbols in different 7i. Notice that n cannot be inserted in the interior of any 7i 
since that would introduce a subsequence order isomorphic to 132 (this observation 
applies to all the cases). Also n cannot be inserted before 73 since that would 
introduce a subsequence order isomorphic to 4321. Nor can n be inserted anywhere 

between 73 and 75 for that would produce a subsequence order isomorphic to 132. 
So the only valid place where n can be inserted is after 75 and then the result also 
has profile 32415 

2. t r '=  74727173~5. Again we need only consider insertion points for n which fall be- 
tween 7-strings and, just as above, the only possible place is at the end of a'  giving 
a permutation also of profile 42135. 

3. 0 ' =  73727174. The argument is exactly the same. 
4. o -t =7372~471. To avoid introducing a subsequence order isomorphic to 4321 or 132 

the only possible places to insert n are between 74 and 71, or after 71. The former 
yields a permutation with profile 3214 and the latter yields a permutation with 

profile 32415. 
5. o "t= 74727173. Here the valid insertion points are between 74 and ~2 which gives the 

profile 4213, and after 73 giving the profile 42135. 
For o' of  the form 727173, 7372h, 7271, 71 the argument is similar. 
Finally, we apply Lemma 2.4 to each of the profiles in P. This shows that 

, s g n ( c t , ~ ) , = 2 ( n 4 1 ) q - 3 ( n 3 1 ) + 2 ( n 2 1 ) + ( n l l ) + ( n ;  1)  

( n + l )  ( : )  
= 1 +  3 + 2  . [] 
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We end with a result that demonstrates that profile-closed classes are useful even 

when the enumeration formula is not a polynomial. 

Proposition 3.4. 1. d ( 3 2 1 , 2 1 4 3 )  = d (321 ,2143 ,  3142) U J (321 ,2143 ,2413) ,  

2. d (321 ,2143 ,  3142) = S [  ~, 
3. d (321 ,2143 ,3142 )  -1 = d (321 ,2143 ,2413)  =$2,  

4. Id , (321,2143,3142)[  = 2 "  - n 
n+l  5. 1d , (321 ,2143)1=2  "+1 - 2 n -  1 - ( 3 ) '  

Proof .  For part 1 we can confirm, by case checking, that any permutation z which 

involves 3142 and 2413 necessarily involves 321 or 2143; only a finite number of  

cases have to be checked since we may presume that z is a minimal permutation 

involving 3142 and 2413 (and so of  length at most 8). This implies that a permutation 

which avoids 321 and 2143 must avoid at least one of  3142 and 2413. 
For part 2 it is easy to see that the right-hand side set is contained in the left-hand 

side set. Now, let a E d ( 3 2  l, 2143, 3142) and write 

tr = [1,2 . . . . .  m, al,a2 . . . . .  ar, m + 1,bl . . . . .  b~], 

where m>~0 and r>~l.  Since every a i>m + 1 and a avoids 321 al < a 2 < . . .  < a , .  

Moreover, bl . . . . .  b~ must also be increasing since, if  bi>bi+l then the subsequence 

[al,m + 1,bi, bi+l] is either order isomorphic to 4132 which involves 321 if al >bi, 

or order isomorphic to 3142 if bi>al  >bi+t, or order isomorphic to 2143 if bi+l >a i .  
Thus, a = 76 where 7, fi are increasing and so tr E S [  1 . 

Part 3 is true because the permutation inverse of  3142 is 2413. 

For part 4 a permutation t r = ? 6  (with ?,6 increasing) of  d , (321 ,2143 ,3142)  is 

defined once the subset o f  values in ? is determined. However, although there are 

2" such subsets, n + 1 of  them (those of  the form {1,2 . . . . .  i}) all give the same 
permutation tr and so there are 2" - n such permutations. 

Finally, to prove part 5 we use 

Idn(321,2143, 3142) U tin(321,2143, 2413)1 

= 1~4,(321,2143,3142)1 + Id , (321,2143,2413)[  

- [ d , ( 3 2 1 , 2 1 4 3 ,  3142) n s1~(321,2143, 2413)1. 

However,  by Theorem 2.8, d(321 ,2143 ,3142)Ad(321 ,2143 ,2413)=S2NS21  and 
so, by Lemma 2.9, this means that 

[d , (321,2143,  3142) N d , (321 ,2143 ,  2413)[ = 

The result now follows using part 4. [] 
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