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EXPONENTIAL NUMBERS
By E. T. BELL, California Institute of Technology

1. In some calculations which I was asked to check, a discrepancy was
easily traced to the mathematical handbook* that had been used, where the
MacLaurin expansion for es»* is given incorrectly. This suggested the desira-
bility of having some readily applicable numerical check on the tedious algebra
involved in expanding functions of the type ¢/¢® in MacLaurin series, when the
expansion exists, and this in turn led to the definition of exponential integers and
the investigation of their simpler arithmetical properties, with some of which
this note is concerned. The simplest of the congruence properties developed in
§6 are ample for checks on the series in the handbooks.

2. Let ¢/(®~(® admit a MacLaurin expansion, and let both this series and
the power series expansion

f(®) =cotecx+ -+ +caxm+ -

be absolutely convergent and differentiable term by term for 0<|x| <k. The
coefficients a,(# =0) in

x? x"
e—f(o)ef(t)=ao+alx—|-az;+...+an_l.+...
: n.:

will be called the exponential numbers associated with co, ¢, ++ , Cy, - + - , OF,
using the symbolic or umbral notation, we shall say that a is associated with c.
When all the a,(n=0, 1, - - -) associated with ¢ are integers, we shall refer to
them as exponential integers. It will be seen presently that a sufficient condition
that the @, be exponential integers is that !¢, be an integer for all integers 7> 0.

To avoid questions of convergence we shall give (§4) an independent defi-
nition of exponential numbers and integers, in which no infinite process is in-
volved. However, as the coefficients first presented themselves as above, we
have given the preliminary definition. Some examples in §7 illustrate the general
theorems of §§3-6.

3. For some 0< |x| <k let both of the expansions
3.1) flx) = > caan, eIl = 3 a,,x—'

n=0 n.

n=0
be absolutely convergent and termwise differentiable. Write
3.2) Cn = ay/n,
and pass to the umbral notation. Then we have

(33) f(x) = o2, g™ = gun,

* W. Léska, Sammlung von Formeln, Braunschweig, 1888-1894, This handbook is still quite
popular with some physicists. The error mentioned is only one of several that reappear, without
acknowledgement to L4ska, in later handbooks.
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By the usual rules of the umbral calculus! we may proceed to differentiate the
second of these with respect to x, under the hypotheses on (3.1); the umbrae a,
a are treated as ordinaries until symbolic formulas are translated back into
ordinary notation, when a¢”, @® (=0, 1, - - - ) are replaced by a., a,. It is to
be noted that if ¢, ¥ are umbrae, and p, ¢ ordinaries =0,

(pd + q¥)° = p%%Q%° = ¢p%O = Pofo.
Thus we find

aesea® = aea:c’ ae(a+a)x - aea:c’
and hence, by equating coefficients of x7,
(3.4) ala + a)" = a"(n = 0), ap = 1.

In ordinary notation, (3.4) is
L)
(3.5) Z ] iy 10pj = Otn_|_1(% g 0), oy = 1.
=0

The special cases when f(x) is an even, an odd function of x give recurrences
which may be derived from (3.5). It is more interesting however to obtain them
independently.

For some 0 < |x| <k, let both of the expansions

2n

@n)!

be absolutely convergent and termwise differentiable, and similarly for
0<|x| <kiand

(3.6) (x) = 2 bana?n, (O gh(2) = Z -
n=0

(3.7) §0) = e, 00 = Doy

Write

(3.8) bon = r9./(21) 1, Bant1 = Son1/(2n + 1)1,
Then, from (3.6), (3.7), we have

(3.9) h(x) = cosh rx, e Tgoohrz = cosh gz,

(3.10) g(x) = sinh sx, gsinhez = guz,

Differentiation of these with respect to x gives
r sinh rx cosh nx = 7 sinh gz, s cosh sx-e9* = we“?;

whence

! Due to Blissard. There is a sufficient account of this calculus in E. Lucas’ Théorie des
Nombres, Chap. 13. In my Algebraic Arithmetic, 1927, I have developed this calculus further.
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r[sinh (r + 7)& + sinh (r — 9)x] = 24 sinh 7z,
s[e(w+s)a: + e(w—s)x] —_ 2(06‘“;;

which give the recurrences

(3.11) r[(r + 77)2n+1 + (,, — 17)2n+1] = 2n2n+2(n > 0), no =1,
(3.12) Cs[lw + )"+ (@ — )] = 20mH(n = 0), wo = 1;
or, in ordinary notation,
n /2n+1 '

(3.13) Z( . >7’2n+2—2]‘772j = 772n+2(n g 0), No = 17

i~0\ 2j

[n/2] / 4
(314) Z < ) S2i4+1Wn—2; = w,,+1(n _2 0), Wy = 1.

=0 \2j

Instead of using the umbral calculus we might have obtained the recur-
rences (3.5), (3.13), (3.14) by Leibniz’ theorem applied to the first derivatives
of the generating functions for «, 7, w.

4. The arithmetical properties of the coefficients «, 7, w are implied by the
recurrences and are independent of the origin of the a,, 7., w, as coefficients in
power series. Accordingly we lay down the following definitions of the exponential
numbers ay, M, Wa (12 0) of the first, second and third kinds respectively, associated
respectively with Ca, ban, donya:

(4.1) ala + a)* = a™*(n = 0), ay =1,
Ay = nlcy;

(4.2) r[(r + )P 4 (r — )] = 223 (n 2 0),  qo =1,
7en = (21) 1ban;

(4.3) s[@ + )"+ (0 — )] = 20™(n = 0), =1,

Sont1 = (2" + 1)!d2n+1-

The equivalents of (4.1), (4.2), (4.3) in ordinary notations are (3.5), (3.13),
(3.14). As already indicated, (4.2), (4.3) are special cases of (4.1).

When the exponential numbers are integers, we shall call them exponential
integers.

A sufficient condition that the a,(# =0) be integers is that all j/c;(j >0) be
integers, by (4.1). The corresponding condition for 7:,(#=0) is that all
(25)1b4;(7>0) be integers; and for w,(#=0), that all (2j+41)!bs;41(j=0) be in-
tegers.

To extend the recurrences (4.1)—(4.3), let

P®) =ho+ hx+ - + hnx™ w50,

be any polynomial of degree m in x. Then, by (4.1), we have
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aY hla + a)* = a ) har,
n=0

n=0

and therefore

(4.4) aP(a + a) = aP(a).
In the same way, from (4.2), we find
(4.5) r[(r + ) P((r + ) + (r — 0)P((r — n)H)] = 29*P(n?),
and from (4.3),
(4.6) s[P(w + 5) + P(w — 5)] = 20P(w).

Finally, P(x) may be replaced by a power series, provided the series in (4.4)—
(4.6) are then convergent.!

The generating function of w being odd, the numbers w satisfy a bilinear re-
currence,?

4.7 (0 — @)™ = 0(m > 0), o =w=0uw"'

or, in ordinary notation,
m—1 . 2m

(4.8) 23 (— 1)v< i >w,w2,,,_,~ + (= D)™,z = 0(m > 0).
=0

This can be proved from (4.1), or as suggested in the footnote.

5. The simplest arithmetical properties of exponential integers follow from
theorems concerning the residues of binomial coefficients to a prime modulus.?
We shall require the following.

Let p be prime. Then

(5.1) <p>50modp,0<r<p;<p>z<p>s1modp.
r 0 v/

1 Tt is sometimes said that a result such as (4.4) is a generalization of the result such as (4.1)
from which it is derived. This is incorrect: (4.1) and (4.4) express the same fact; they are logically
equivalent, for it is obvious that each implies the other. Nevertheless (4.4) is sometimes more sug-
gestive than (4.1).

2 Such recurrences are most readily obtained by the symbolic method. Here
1 = go0@e—0(@) = go(@rtot=)

since g(x) is odd; hence
1= e(w'—w")z,

where w/'m=wm, ©'’m=w,. Hence (o' —w'")?=1, (0'—w'")»=0 (#>0). If # is odd, the last is a
trivial identity. But if n=2m, we have (4.8). The infinite formal processes used in this derivation
are independent of questions of convergence, and have been validated in my book cited.

3 See Lucas, loc. cit., §228; several are due to Lucas. See also Dickson, History of the Theory
of Numbers, vol. 1, Chap. 9. The convenient symbolic expression (5.4) for the residue of )Y
modulo p was given in my paper on Anharmonic Polynomials, Transactions of the American Mathe-
matical Society, vol. 34 (1922), p. 109,
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It will be convenient to use the customary extension of the notation (I) to
negative values of m,

<_0m) - b <—nm> =(Em=m=1)- - (=m—n+1)/n,

for m >0, >0. The next residue theorem may then be written

(5.2) - (P;]>E<—h]>modp, 0<h<p—j<p.

The third residue theorem is

m m\[ mi
()= G mone
n 71 71
(5.3) m>0,nz0,m=mp+m{, n=mnp+ n/,

v
0= m{, n{<p;(>=0ifs>r.
s

A similar reduction may be applied to (), provided at least one of m;, n,
exceeds p, and so on.

To pass to the general case, we apply (5.3) to (A\+u)¥, where \, u are either
ordinaries or umbrae (the latter includes the former as a special case), and N
is an integer>0. Let :

N = gup® + gap™ + - + g1p + go,
0=g;<p(G=0,--,n—1), &7 0, g < P,

be the expression of IV in the scale of p. Then we find easily the following con-
gruences,

(5.4) (N £ ¥ = 35 (A £ ur)simod p,

i=0
(the upper or the lower signs being taken throughout), in which, if X\, u are
umbrae, all the indicated binomial expansions and subsequent multiplications
are to be performed as in common algebra before exponents are lowered.

6. Let a, m, w in §4 be exponential integers, and let p be prime. Then, applying
(5.1) to §4, we get

6.1) @10p + Gpy1 = a1 mod P,
o1 = mpp1mod p, p > 2,
6.3) S10p = wppr mod p, p > 2.

It is easily seen that the second and third of these are included in the first, and
similarly for all following triads of congruences in this section.
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From the recurrences in §4 written in ordinary notation, we get the following
by (5.2),

p—k=1/ _ }
(6.4) Gprp1 + 2 < ; >ai+1ap—k—i = a,—t41mod p,
=0
0<p—k<p;
(>=DI2—k / — 9}
(6.5) < X >rp+1—2k—2ﬂ72i = fp+1-2¢ mod p,
i=0 2j
p>2,0<p—2k<p;
W2k /2l — 2
(6.6) 2 ( . >S21‘+1‘°p—2k—21’ = wp-ars1mod p,
=0 25
p>20<p—2k<p;
(p=3)/2—hf/— 2} — 1
Sp—an + E ( 2 >S2i+1wp—2h—l—2i = wp—2nmod P,
=0

p>2,0=h=(p—3)/2.

The corresponding congruence from (4.8) gives a theorem on quadratic residues.
The following very special cases of (5.4) applied to §4 will suffice.

6.7) a(a? + a?)(a + @)t = art?timod p,
(6.8) r[(r? 4+ 12)(r + n)* + (7 — 1?)(r — )?] = WPHi+imod p, p > 2,
(6.9)  s[(w? + s7)(w + $)* + (0P — s?)(0 — 5)*] = 20wPT*1mod p;

(6.7), (6.9) are valid for 0=k <p, (6.8) for 0=2h<p. For =0, these become
(6.1)-(6.3).

7. The coefficients in the MacLaurin expansions in §3 can be calculated
successively by the recurrences in §4. If desired, the recurrences can be solved
to give the coefficients explicitly as determinants; the results, however, are
useless for computation and appear to have no value for the deduction of arith-
metical theorems. Herschel’s theorem in the calculus of finite differences is
sometimes useful in furnishing manageable explicit forms from which some-
thing can be inferred. If ¢(e*) has a MacLaurin expansion, Herschel's theorem?
gives the expansion in the form

t2
o(e') = ¢(1) + ¢(E)0-¢ + ¢(E)02--2—, + - = (E)et,

where E=1+4A is the usual operator in finite differences.
The simplest example is (e umbral)

A Af An
ele” = e e =1, & = 1+—1—'+;+"'+— 0.

n!

1 See Boole, Finite Differences, (reprinted by Stechert), p. 24. The so-called “differences of
nothing” required in numerical work are tabulated for a short range by Steffensen, Interpolation
(Williams and Wilkins, 1927), p. 55.
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But (a well known formula),

ARQm 1 nmd
- E(—l)r(’:)m—r)m;

n! ”!r=0

whence,

R o [ ey

= (s—DIL S

The €'s have interesting connections with the numbers of Bernoulli and Stirling
but these need not be discussed now. Using Steffensen’s table (loc. cit.) for
A"0™/n! we get

€ = 1, € = 2, €3=5, €4 = 15, €5 = 52, €6=203, €7=877,

es = 4140, e = 21147, €, = 115975.

Referring to (4.1), we see that here ¢,=1(#=0), and hence the congruence
(6.1) becomes, for a=e, :

erp + 1 = €1 mod p.
The cases k=1, 2 of (6.4) give
p—2
14+ 2 (= )iep1j = e, mod p,

-
1+ ,=Zo (= 1D+ Depoj=eamod p,  p>2;
while (6.7) with k=1 gives
2 4 €p + €p11 = €pramod P,
and with 2=2,
S+ e+ 2ep11 + €pp2 = eppsmod p,  p > 2,

and so on. These are verified by the above numerical values. Incidentally, the
check renders probable the accuracy of Steffensen’s table.

Further simple illustrations of expansions of the type (3.1) giving sequences
of exponential integers defined by recurrences of the type (3.4) or (4.1) are
given by ¢/(® where f(x) =tan x or arctan x.

In (4.2) take 7;n=(—1)", and therefore by, =(—1)"/(2n)!. Hence, in (3.6),
h(x) =cos x. The coefficients can be calculated by (4.2) or (3.13). Write n=« in
this case. Then

n 2n+1
> 1>f( s = (= D
=0 2j

and we find
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ko=1,ke=—1, ke =4, ke = — 31, kg = 379, k1o = — 6556,
which are sufficient for verifying the congruences. Thus (6.2) becomes
Kpt1 = (_ 1)(p+1)/2 mod ?, p> 2,

which is checked, and similarly for (6.5) with k=1,
(p=3)/2

S0 (= 1)i2f 4+ Dkej = (= 1)@ D%, ymod p,  p > 2,

=0
and for (6.8) with k=1,

kpys = 2[(— D@2 — k] mod p,  p > 2.
Combining the first and third of these we get the simpler result
Kpys = 4(— 1)@+ /2 mod p, p > 2.

As an example of the remaining type, take Szu41= (—1)"in (4.3), and hence
g(x) =sin « in (3.7). Write w=g for this choice, and calculate the o by (3.14).

Then

so=1,01=1,00=1,05=0, 0s= — 3, 55 = — 8, 76 = — 3, o1 = 56,

os = 217, 09 = 64, 019 = — 2951, o1 = — 12672, g1z = 5973.
The congruences are, from (6.3),

op = opp1mod p, P> 2;
from the first of (6.6), with k=1,
[(p=2)/2]
g (= 1)i(2j + Dops2; = op1mod p,  p > 2,
and from the second, with =1,
(»=5) /2
(— 1)1 4 ]go (— 1)i(j + 1)(2 + 1)ops2; = opamod p, p > 4;
while from (6.9) with z=1 we get
opp1 + (— 1)@DI2 =g, ,mod 2, > 2.

All of the congruences are checked by the above numerical values.

From the well known expansions for e=°s¢, e=in¢ in series of Bessel coef-
ficients, we find immediately the following independent expressions for the
integers k, 0: ‘

koo = € 1(— 1)t T, (— i)s¥(t > 0),

s=1
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0

o = 2(— 1)t (— DWa(— 9)(25)2(¢ > 0),

8=0

0

2i(— 1)* 25 (= D)W aea(— i) (2s — 1)241( 2 0),

s=1

T2¢4+1

where i=(—1)1/2,

ON FERMAT’'S LAST THEOREM!
By GLENN JAMES, University of California at Los Angeles
1. Introduction. We consider the equation
M 2ty =

where # is an odd prime integer, %, y, 2 are positive integers relatively prime in
pairs and y>x. There is no loss of generality in this last restriction, since if
x =y, 2 cannot be an integer. In this paper we confine ourselves to the so-called
“first case,” namely that in which x, v, 20 mod #. Certain intervals, in which
z—y must lie if x, y, 2 satisfy (1), are easily established by analytic methods.
For instance? '

2) 2[1 — (1/2)n]an/zmt > 2 — y > xn/(nzmY).

This paper is a first step in an attempt to prove Fermat's Last Theorem by
excluding z—y from some such interval by means of number theory properties
of x, y, 2 and n. Our central theorem states that (1) fails unless

z—y=(en+ 1 ¢ = 2.

This theorem, incidentally, completes the various attempts to prove that x, v,
and z are composite.?

Another by-product is a proof of the cubic case, which seems to be new and
suggests another possible point of attack on the general problem.

2. Preliminary Considerations. It was proved by P. Barlow* that if (1)
holds when x, v, 220 mod #, then

3) x+y=r, z—ax=s" z—y=1i"

1 Presented to the American Mathematical Society, August 31, 1932.
2 To establish these limits one writes (1) in the form
w4 [5— (= 9)]r = zror (n/z") + [1 — (s — 9)/s]" = 1.

Putting v for x7/2 and av for (z—y)/z we get v+ (1 —av)*=1. Whence a=(1/v) [1 — (1 —2)*/»]
=j(v). Now, 1/2>v>0, j(0) =1/ and j'(v) >0, whence 2[1—(1/2)/*»]>a>1/n. From this (2)
readily follows.

3 H. F. Talbot, Trans. Royal Society, Edinburgh, vol. 21 (1857), pp. 403—6, and others proved
that x, v, z are composite unless z—y is unity. We have removed this troublesome case,

4 Jour. Nat. Phil. Chem. and Arts., vol, 27 (1810), p. 193,



