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POSTULATIONAL BASES FOR THE UMBRAL CALCULUS.*
By BE. T. BeLL.

As the somewhat condensed treatment of the umbral calculus which I
gave elsewhere ' has been misunderstood 2 a fuller treatment than was given
before is desirable. Incidentally, what follows validates the purely formal uses
of this calculus, or of its special cases, which have appeared in the literature,
when such uses give correct results. There are immediate generalizations to
abstract commutative rings, obtainable by obvious modifications of the fol-
lowing ; but as such generalizations seem to be of no use at present, it seems
hardly worth while to develop them.

1. Rational operations on umbrae.

(1.1) Real, or complex, numbers are called scalars. The sign = denotes
either definitional identity or identity as in algebra; which, will be clear from
the context.

(1.2) Scalars are denoted by small Latin letters with non-negative integer
suffizes, thus zy (N =0,1,- ), or by small Greek letters, a, 8, . As usual,
the sum, product of any scalars a, 8 are « -+ 8, @8, and 0,1 have their usual
meanings.

(1.8) Latin capitals, 4,- - -, N,- - - denote non-negative integers.

(1.4) If ay (N=0,1,---) are any scalars, the one-rowed matrix
(@0, Ty, Ty, + +) 1s denoted by z: z= (o, @1, = *, TN, * *).

(1.5) The (N + 1)-th element, N =0,1,- - -, of 2 in (1.4) is denoted
by «V:

aN =uzy (N=0,1,- - -).
(1.6) The z in (1.4) is called an umbra; @ is the umbra of (o, @1," -« -,
ay,- * +), or of the sequence zy (N =0,1, - ). Note that an umbra has

neither exponent nor suffix.

(1.7) Equality of umbrae is matric equality: if @ is as in (1.4), and

* Received April 8, 1940.

14 Algebraic arithmetice,” American Mathematical Society Publications, vol. 7
(1927), pp. 146-159.

2 G. Temple, Journal of the London Mathematical Society, vol. 12 (1937), p. 114.
Professor Temple has seen the present note, and writes (Feb. 21, 1938) that it clears
up the obscurity.
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Y= (Yo, Y1,* * *,Yn," ), ‘@ is equal to y,> written z =y, if, and only if,
ay=yy (N=0,1,- - ). Hence

(1.71) z=z.

(1.72) 1If z=y, then y=u=.

(1.78) If z=y, and y =z, then z = 2.

(1.8) The coefficient of #,% - - z787 in the expansion of (z, + -+ + 27)V
by the multinomial theorem, is denoted by Ms,, ..., s,. Note that exponents
and suffixes 0,1 are to be indicated precisely in the same way as exponents
and suffixes > 1.

The next refer to rational functions of umbrae, and define ¢umbral
scalar multiplication,” ‘umbral addition,” etc. The qualification °umbral”’
will be dropped, as it is taken care of in the notation.

(1.9) The scalar product, az, of & and z= (zo,* * *, 2y, * *) is
ar=a(To," * *, Ty, * ) = (aBo," * @y, * *).

By definition, za == az.
Now az is an umbra, by (1. 6), and it is a compound symbol. To denote
the (N —+ 1)-th element of az in accordance with (1. 5), we write {az}¥; thus

(1.91) {az}V = azN = axy.

Similarly, if * is any compound symbol of scalars and umbrae, and if *
is an umbra, the (¥ -+ 1)-th element of * is denoted by {*}¥.

(1.10) The sum, s,s=aa - - - - ¢, of aa,- - -, v, where

Q== (G0, * s, " )yt B=(Toy* * > T3, * ),
is

s= (atto++ * * + &0y + +, Aty 4+ - F £z, - ).
Hence
(1.101) {ag £+ - I x}V = aay + -+ - + Exy;

(1.102) Addition, -+, of umbrae is commutative and associative;

(1.108) There is a unique 2, the zero umbra, such thai x4 z2=a for

every «:
2= (0,- - +,0, - *);

(1.104) For every x there is a unique y such that = y == z; y is called
the negative of z; y = (— 1)z, and is denoted by —x;

(1.105) With respect to | the set of all umbrae is an abelian group; the
inverse of & in the group is —, and the identity of the group is 2.
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(1.11) If no two of a,- - -,z are equal as defined in (1.7), a,- - -, @
are said to be distinct. In (1.12)-(1.125), a,- - -, are distinct.

(1.12) Ifa,- - -, are T distinct umbrae, (aa - - - 4 &)V denotes the
scalar py, / ‘

(1.120) py= (ea -+ - &)V =3Ms, .., 5,05 - - Erag, - - - wg,,
(see (1.8)). In particular,

(1.121) Po=0o" * " To.

Hence, by (1. 5),

(1.122) (aa - - - &)V =3My, ..,

the left of which is called the N-th power of the sum aa - - - 4 £&z. Hence
such powers are expanded by the multinomial theorem, and - is replaced by
-+ in the result.

If py is as above defined, and p== (po,- * -, pwn," * *), then p¥N — py,
by (1.5). Note the distinction, as shown in (1.101), (1.122), between

{oa - - - F &}V, (aat-- -+,

only the second of which is a power; hoth are scalars.
By (1.121), ' .
(1.123) (sa 3 - -+ &) —ay- - -z,

In (1.122) replace N by N + B. The resulting scalar,
(aa - enyon,

STasl. . .SSTasl. . .xST

is called the product,
(e - - ._]_55,;)N. (aa—[—-- . -—[—éa:)R,

(ea - -+ é&)¥, (s - Eo)R:
(1.124) (aa+- - -f&)¥ (az+- - - &&)B= (aa F-- - - } &x) VR,

It follows that this multiplication, -, i¥ commutative and associative, and that
it has the ¢identity’ (aa + - - - + &)°. The right of (1.124) may be (and
is) calculated from the left by expanding each of the factors ( )V, ()% hy
the multinomial theorem, multiplying the resulting (scalar) 'polynomials
together as in common algebra and finally degrading all exponents of small
Latin letters to suffixes. For example, noting that «® = 8° =1, and o' = «,
B* = B, since @, B are scalars, we have

(aa + 8b)* - (aa - Bb)*
= (aa'd® 4 Ba’d?) - (a*a®b® 4 2aBatd + B%a’h?)

of
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= o*a®b° 4 3a*Bab* +- 308%b? + B%a°b3,
= &®asbo + 3a*Ba.b, + 3aB%b, + B3aebs,
— (aa - Bb)*.

As a mere convenience of notation we write

(1.1R5)  (&)N- [(aa)™ 4 (BbYE 4+ + -+ (y¢)5]
= (&)¥- (aa)™ 4 (&x)V - (BD)E+ - - -+ (éa)V - (y0)5,

the (scalar) sum of scalars on the right defining the expression on the left.
Similarly for an infinity of scalar summands.

All in this section (1.1R) refers only to the case in which the 7' umbrae
¢, -,z are distinct. The contrary case is equally important in applications
of the calculus, and requires special consideration.

(1.18) If in ax 4 - - 4 & there are precisely 7' summands az,- - -, &z,
each of which is a scalar product of a scalar and =z, we replace (—) the T 2’s

by T distinct umbrae, say a,- - -, , in any order, and indicate this replace-
ment by writing
(1.131) aw—"—' . '—.I_E:v.._)“a/_i_. . ._]_gx.

Then (aa 4+ &) is to be calculated by (1.122), and the exponents are
degraded, as in (‘1. 120). In the result, each of a,- - -, x is replaced («) by z;
the resulting polynomial is defined to be N-th power (ax - --- 4 &)V of the
sum ax - - - 4 &

For example,

(o 4 B2)* — (0a + Bz)*;
(aa 4 Bx)® = a*aszy + 3a*Baqz, + 3aB%a,z, + B3eyes,

— abrywy + 3a2Pa.xy + 3aBwiws + B ;
(o + Ba)* —= (@ + f*)ass + 39p (2 + B):a

The relation (1.124) holds also for powers (ax 4 - - -+ &)Y when
therein the replacements == are made.

Similarly, if in @ (<) sum s there are precisely A summands each of which
is a scalar product of a scalar and =, - -, precisely C' summands each of which
ig a scalar product of a scalar and w, and if these summands exhaust s, the
S=A4A-+4- -+ C 2%, -,ws, are replaced (—) by S distinct umbrae, say
s—t. Then (t)¥ is calculated by (1.122), (1.120), and the final replace-
ment (<) of the S distinct umbrae by those introduced by (—). These
powers (s)V also satisfy (1.124).

(1.182) Hence (1.124) holds for any umbrae a, - - -, z, distinct or not.
(1.14) 2V was defined in (1.5); it denotes the scalar azy. Hence, since
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multiplication of scalars is indicated (as always) by mere juxtaposition,
without any symbol denoting the operation of multiplication,

»(1. 14:1) NP — TNTR.

Since this multiplication is multiplication of scalars, it is commutative and
associative.

In (aa+- - -+ &)V, defined in (1.120), take £ =1 and each of the
other scalars = 0. Then by (1.9), (1.103), (0a - - -+ 1z)¥ = (z)V.
Note that () is not omitted on the right. By (1.120), (z)¥ = aV. Hence,
by (1.5), ()Y =ay. By (1.124), (2)V- (z)B = (2)V*E, and hence, by
what has just been shown, zV - 2F = gM*E — gy, p,

(1. 142) TN * TR = TNiR-

Thus, unless zyzg = Twy.r, Zyv¥r 5= Zy * ¢z The ¢ dot multiplication,” -, is an
operation peculiar to the calculus, and will be explicitly indicated where there
is any possibility of confusion.

Similarly, (ea -+ &)¥(azx -+ -+ 3 &), without the dot, is the
(scalar) product of the scalars (aa 4 -+ &)V, (ez - - é&)®, which
are defined in (1.222); and this scalar product is different from the dot
product in (1.124). To see the difference in an example, we compare the
example illustrating (1.124) with the following:

(aa + Bb)* (aa + Bb)*;
— (aaybo + Baaoh,) (a2asbo 4 RaBab; 4 B2achs),
= @3, 05002 + a?Bboby (202 + tottz) + aB2ott: (2D:2 4 bob2) + B2a0b1b.,
7 (a0 + Bb)* - (aa + B)>
(1.15) A particular case of (1.120) occurs so frequently that a special
notation is convenient. If s=az -+ -+ az is a sum of precisely A scalar

products az, we write
(1.151) Arar=s=oar} -+ az.

There can be no confusion between the dot in A - ax and that in (1.124),
since here the dot is between a scalar and an umbra, while in (1.124) it is
between two scalars. If desired, the dot in (1.151) may be circled, thus ©.
It would be incorrect to write Aoz instead of A - az, since A« is a scalar, and
hence, by (1.9), Aaz is a scalar product.

(1.16) Umbral multiplication can be defined in many (actually, an infinity
of) ways to yield algebras simply isomorphic with parts of the common algebra
of scalars, for example rings. Here we need mention only that species of
umbral multiplication which is directly applicable to the power series in §®.
It will not be used in the sequel.
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(1.161) = (2,/0!,2,/1!,- - -, zy/N!,- - )
is said to be of e-type (e==°‘exponential’). Hence, if y is of e-type,
y¥N = yy/N!. If wis not of e-type, it is replaced by @, in which wN=#"/N!,
until after all calculations involving % have been completed, when wy is
replaced by N ! wy.

Let 2= (2,/0!, - - -, o5/N!,- - ), y= (yo/0!,- - -, yx/N!,- - ) De

of e-type. The product, @y, of z,y (in this order) is the matrix p which is
such that

[ N
(1.162) pN.Eix_:F#.

>

. x4 y)° T 1
(1.163) a:yE(( -(')_!‘/) 5 ( le S,

Hence umbral multiplication is commutative and associative. Thus
powers may be defined as usual; the A-th power of =z is denoted by z4’, to
distinguish it from z4.

2. Power series. The set of all (formal) power series in the variable 6
is closed under the four rational operations. Division is immediately referred
to multiplication, and need not be separately discussed. Irrational functions
of these power series also occur, but as they are of less interest than the rational
functions, and are readily investigated if desired, they will not be considered
here. The use of formal (disregard of convergence) power series can be justi-
fied in detail, if not obviously legitimate in the present connection (for example,
as in my paper, Transactions of the American Mathematical Society, vol. 25,
1923, 185-54) ; however, there is sufficient generality in the set of all power
series in 6 convergent in the same domain || > 0 to show here how the
definitions, etc., in §1 give immediately the algorithms of Blissard’s umbral
calculus.

If z= (ilz'o,' C LN, ) we write
0
(2. 1) 6”05]\[2 xN(oN/NY))
=0

where ¢ has its usual meaning (2.7 - -). Thus, by (1.5),

. o0
(2.11) $e’“’=§NE ZN(6N/N ).
=0
By either of these, £e?’ is a scalar. Hence if A(, -+ -, %) is a polynomial in
&+ + -, with scalar coefficients, A = A (&%, - -, 7e¥¥) is a scalar, as is also

the N-th derivative 8,NA of A with respect to §. By writing A as a MacLaurin
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series in 6, we express it in the form re*?, and similarly for the derivative.
For any A (or its derivative) the appropriate r¢®? is built up by repeated
applications of the elementary identities (2.2)—(2.4) in 6.

(2.2) elor! — ot =3 (2 y)N(8V/NY),

which, by (1.120), is merely the formal multiplication of two MacLaurin
series to produce a third. Generally, for any number of factors on the left,
(2.81) efed. - o gtei im0 S (g - - - )N (/N ).
o
For addition, (1.101) gives

(2.2) ot - o s oo = S (o g} (/N ),

with the obvious extension to any number of summands.
Powers are obtained directly from (2.21), or more conveniently thence
by (1.151):

o0
(2. 3) [e600]4 = g4 - 800 =3 (4 - &) N (6N /N 1),
)
For derivation, we have
o0
D Nets) = 9N 3 My (6¥/111),
M=0

— éo ENMpy o (M /M 1),
= 3 @GN/ [by (1.5)],
=3 (&) (e M (/M) [y (L.124)],
= ()" 3 (éa') (8¥/M1) [y (1.125)],
= (&x)N - gbol;
(R. 4) 0gNeb?0 = (Ex)N - etol,

in complete formal analogy with derivatives of ordinary (scalar) exponential
functions. From (R.3), (2.4),

(2.5) DN [efe0]4 = (A - x)NeA - 8020,
and from (1.101), (1.1R0),
(2.6) ghal[gaal . . . | gvel] == glwi{aai .. . ivo})0,

The coefficient of V¥/N'! in the MacLaurin expansion of the left of (2.6) is
in fact
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§ (Z‘SY) SN'S:UN_s[OC‘Sas ‘I“ Ce + YSCS],
N
= 2(§) @ st -+ 08

8=0
— (g {oat- o)),
which is the coefficient of 6¥/N ! on the right of (2.6).
Many of the more interesting applications to special sequences of numbers
(like the Bernoulli or Euler numbers), arise in the following simple way. Let

A(eaaz' ! ':'Y)
®(0,a, * ,y)

be a rational function of 6, @,- - -,y in its lowest terms. Replace @, - -,y
by ae®, - - -, ye¥l, and let the MacLaurin expansion of the result be
A(GJ aea&) ) -yg’Yﬁ) = gewG,

@(9, aeao’ SRR .ye'y())
thus defining the numbers zy (N =0,1,---). Let the MacLaurin expansions
of A, ® be '

A (6, ae, - - -, yer?) =qevt, @(0, ael, - - 7676) = {e",
thus defining yw, uy. Hence
7761/6 —_ gée(mm)o’
N =& (z +u)".
Hence, if F () is a polynomial in 6, or a power series, if convergent,
F(6+9) —&F(0+a +u),
in which, after expansion, exponents of y, z, u are degraded to suffixes.

In practice, the special notations {}, &, () (), 4 ez are dropped,
+, () (), Aoz being written, as the notation is a sufficient guide to the
correct use of the algorithms. There are many extensions, in particular one
to multiple suffixes, as in @45, ..., ¢, and the corresponding power series,

::::::

A, By..., C

Finally, everything down to (2.6) goes through unchanged if scalars in
(1.1) are re-defined to be elements of any commutative ring with a modulus
(= identity with respect to multiplication).
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