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1. INTRODUCTION

In [2], Neville Robbins explores many properties of the Lucas triangle, an in-
finite triangular array with properties similar to Pascal’s triangle. In this paper,
we provide a combinatorial explanation for the entries of this triangle. This inter-
pretation results in extremely quick and intuitive proofs of most of the properties
(proved mostly by induction in [2]) and allows for a natural generalization, with

equally transparent proofs.

n

k} by the initial conditions

Using Robbins’ notation, we define the number {

M1 for n > 1, MQ for n > 0,
0 n

and the Pascal-like recurrence for 1 < k <n — 1,

A= B

For combinatorial convenience, we shall define {Z} =0 whenever n < Oor k <0
or k > n. This allows the recurrence to be true for all values of n and k& except
form=k=0andn=1,%k=0.

Below we list rows 0 through 9 of the Lucas triangle:
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2

12

1 3 2

1 4 5 2

1 5 9 7 2

1 6 14 16 9 2

17 20 30 25 11 2

1 8 27 50 55 36 13 2
19 3 77 105 91 49 15 2
1 10 44 112 182 196 140 64 17 2

2. COMBINATORIAL INTERPRETATION

The connection to Lucas numbers is easy to see as follows. As is well-known
[1], L,, counts the ways to tile a bracelet of length n with squares and dominoes.
The cells of the bracelet are labeled from 1 through n and we define the first
tile to be the tile that covers cell 1, the cell that is to the right of the clasp.
For example, the Lucas number L, = 7, reflects the fact that there are seven
bracelets of length four, namely dd (two ways), dss (two ways), sds, ssd, and
ssss where d denotes a domino, s denotes a square; the first two tilings have two
representations, depending on whether the initial domino covers the clasp (cells

4 and 1) or covers cells 1 and 2.

Theorem 1. Forn > 1, {Z} counts bracelets containing n tiles with exactly k

dominoes (and therefore n — k squares).

Proof. Let B(n,k) denote the number of bracelets with k& dominoes and n — k

n

k

initial conditions and recurrence. Clearly, there is one bracelet with n squares

squares. We prove that B(n, k) = { } by showing that B(n, k) satisfies the same

and no dominoes and there are two bracelets with n dominoes and no squares



THE LUCAS TRIANGLE RECOUNTED 3

n

(depending on the location of the initial domino). Thus B(n,0) =1 = {O

} and

B(n,n) =2 = {Z} For the recurrence, notice that a bracelet with & dominoes
and n — k squares will either end with a square (preceded by &k dominoes and
n — 1 — k squares) or end with domino (preceded by k& — 1 dominoes and n — &
squares). That is, B(n,k) = B(n — 1,k) + B(n — 1,k — 1) satisfies the same

recurrence as {Z} , and therefore B(n, k) = {Z} : [

Using this combinatorial interpretation, most of the identities presented in [2]
can be proved by inspection (more precisely, by inspecting the size of a set in two
different ways). We note that a bracelet with n tiles consisting of k& dominoes and
n — k squares will have length n + k.

It follows that for n > 1,

mnﬂ

since a bracelet with n tiles with just one domino has length n + 1 and that

domino can start on any of the n + 1 cells. Likewise, for n > 1,

n
{n—l} —2n—1

since a bracelet with n—1 dominoes and one square has length 2n—1 and therefore

has 2n — 1 places to put its lone square. Similarly, for n > 2,

DR

n— 2

since a bracelet of length 2n — 2 with two squares can be obtained by inserting

the squares in any two cells of opposite parity.
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The following sums are also easy to “see.” Forn > 1,

>o[i] o

k=0
since the left side counts bracelets with n tiles with an arbitrary number of domi-

noes. There are three choices for the first tile (one possible square and two possible
dominoes) followed by two choices for each of the following n — 1 tiles. By the

same reasoning, we have, for n > 2,

) {2714 = {%Z 1} =32"7)

k>0 k>0

since if we specify the parity of the number of dominoes, then the last tile is
forced. Finally notice that {n Z_ 1 counts bracelets of length n with ¢+ dominoes

and therefore

3 {” - } .
i
i>0
Notice that when p is prime, we have for all 1 <i < (p—1)/2,

|l

since every bracelet of prime length p with at least 1 domino has p distinct
bracelets in its “orbit,” obtained by shifting each tile clockwise k units as k varies
from 0 to p — 1. The bracelets are distinct since p is prime. Even Robbins’s
following extension can be appreciated combinatorially.

Proposition: Let p be an odd prime, then for all 5 such that 1 < j7 <p—2and

for allisuchthatj+1§i§p—1,wehavepHpJ;j}

Proof. Let X be a bracelet with p+ j tiles, where 1 < 7 < p— 2, with + dominoes
where 7+ 1 <7 < p—1. Here we obtain the orbit of X by keeping the first j tiles

fixed, and then rotating the remaining p tiles one tile at a time. Notice that the
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bounds on ¢ and j ensure that the fixed part has at least one tile, and that the
rotating part has at least one square and at least one domino. (If the rotating
part of X were all squares or all dominoes, then its orbit would have size one or
two, respectively.) Thus, since p is prime, every orbit of X has p elements, as

desired. N

Alternating sums can also be easily handled combinatorially. For example, for
n > 2, the identity
;(—1)’6 m —0
says that, among bracelets with n tiles, there are as many bracelets with an even
number of dominoes as with an odd number of dominoes. This is easy to see
by the simplest of involutions: toggling the last tile. In other words, if the last
tile of your bracelet is a square then turn it into a domino; if the last tile is a
domino, then turn it into a square. (Note that the condition that n > 2 assures
that the last tile is not the same as the first tile.) Either way, the parity of the
number of dominoes has changed. In this way, every bracelet with n tiles and an
even number of dominoes “holds hands with” a bracelet with n tiles and an odd
number of dominoes.

The preceding identity and argument can be generalized to give:

Sl -l

0

For this identity, we apply the same toggling argument as before, but now we
are restricted to bracelets with n tiles that have at most m dominoes. The only

bracelets that are not matched up are those that have m dominoes and end with
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a square. (These bracelets are unmatched because toggling the last square would
create a bracelet with m + 1 dominoes, which exceeds our upper bound.) Since
there are {n”—l 1} bracelets of this type, all of which have m tiles, the identity
follows.

Next, we note that entries of the Lucas triangle can be expressed in terms of

the classical binomial coefficients that inhabit Pascal’s triangle. Specifically, for

)0

For any bracelet with n tiles and & dominoes, it either has a domino covering the

n>2andk >0,

clasp (resulting in an out-of-phase bracelet) or it does not (resulting in an in-phase
bracelet.) The first binomial coefficient counts the in-phase bracelets, since we

simply choose which & of the n tiles are dominoes. The number of out-of-phase

n—1

k_l) since the first tile must be a domino covering the clasp, and

bracelets is (

then we can freely choose k& — 1 of the remaining n — 1 tiles to be dominoes.

n

In fact { I

} can be expressed even more directly in terms of binomial coefficients,

m] n+k(n
k)l n \Ek)’

nZ (n+k)<Z>.

The left side counts the ways to create a bracelet with n tiles, containing &

namely

or equivalently,

dominoes, and placing a star on one of the n tiles. (If the selected tile is a
domino, we shall place the star on its left half.) The right side counts in-phase

bracelets with n tiles, containing k& dominoes where we place a star on one of its
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n+k cells. We show that these two sets have the same size by creating a bijection
between the two sets. Let X be a bracelet from the first set. Then X has length
n+ k and has a star on a tile that begins on some cell j, where 1 < j <n+ k. If
X is in-phase, then we leave the bracelet unchanged, and simply move the star
from the tile to the cell j. If X is out-of-phase, then we rotate X counterclockise
j — 1 units so that it becomes an in-phase bracelet beginning with the tile that
originally had the star. Then we transfer the star to the cell below the right half
of the domino that used to cover the clasp. (This would put the star on cell
n+k -+ 2—j.) Since this process is easily reversed by examining the tile that
covers the cell with the star, we have our desired bijection.

The next two identities make use of the complement of a tiling. Given a tiling
X, we obtain its complement X* by toggling each tile. For example, if X =
ssdds then X* = ddssd. Recalling that F,, counts the set of tilings (or in-phase
bracelets) of length m — 1, we obtain the next identity (misstated in [2]). For

n>1,

Fopyo = iz; {n;; Z}
To see this, let X be a tiling of length ;n + 1. If X begins with a square, then
we create an in-phase bracelet Y by deleting the first square, then taking the
complement of the rest of X. If we let X; be the tiling X with its first tile

missing, then our mapping can be denoted by
sX1 — X{ (in-phase).

Notice that since X has odd length, then the number of squares in X must be

an odd number 2¢ 4 1 for some 0 < ¢ < n. It follows that X has n + ¢ 4 1 tiles
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comprising 2¢+ 1 squares and n — ¢ dominoes. Hence the bracelet Y has n+1 tiles
with 27 dominoes, and all in-phase bracelets of this type can be obtained this way:.
On the other hand, if X begins with a domino, then we obtain the out-of-phase

bracelets by the mapping
dX, — dX| (out-of-phase)

where the initial domino of X covers the clasp of Y, and all subsequent tiles of
X are replaced by their complement. Here, if X has 2 — 1 squares for some
1 <12 < n, then X will contain n + ¢ tiles comprising 2¢ — 1 squares and n+ 1 —1¢
dominoes, and therefore Y will contain n + ¢ tiles with exactly 2¢ dominoes as
desired. We leave it to the reader to verify that the exact same mapping leads to

the identity

n—1 .
n+1
FQ”“ZLz'H '

=0

3. THE GIBONACCI TRIANGLE

The Lucas numbers are a special case of the Gibonacci numbers G,, defined by

arbitrary initial conditions Gy and G4, and for n > 2,
Gn — anl + Gn72-

It is easy to show (as done in [1]) that G,, has the following combinatorial
interpretation. When Gy and (7 are nonnegative integers and n > 1, G,, counts
phased tilings of length n. These are just like traditional tilings with squares and
dominoes, but the first tile is given a phase. If the initial tile is a domino, then
it can be assigned one of Gy phases; if the initial tile is a square, then it can be

assigned one of (G; phases. Notice that when Gy = 2 and G; = 1, that G,, = L,
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and the Gg = 2 phases of an initial domino indicate whether or not an initial
domino covers the clasp. When Gy = 0 and G; = 1, then G,, = F,, and we are
counting length n tilings that must begin with a square (since there are no initial
dominoes) and therefore G,, counts arbitrary tilings of length n— 1. Although this
definition requires Gy and G to be nonnegative integers, a similar interpretation
can be given for arbitrary real or complex numbers (as shown in [1]) but we will
not pursue that here.

We define the number {Z} by the initial conditions
G

{g} =Gy forn>1, {n} =Gy forn >0,
e "a

and for 1 <k <n-—1,

i i I

n} =0whenn<Oork<O0ork>n.
G

k

For example, the initial terms Gy = 4 and G; = 9, generate the Gibonacci se-

Also we let {

quence: 4,9,13,22,35,57,92, 149, 241, 390, ... The first ten rows of the Gibonacci

Triangle are:

9
13 9
17 22 9

21 39 31 9

25 60 70 40 9

29 85 130 110 49 9

33 114 215 240 159 38 9

37 147 329 455 399 217 67 9
41 184 476 784 854 616 284 76 9

R s s R s s s O
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Arguing exactly as before, we have a simple combinatorial interpretation of
8
kg

Theorem 2. Forn > 1,k >0, {n

k

exactly k dominoes (and therefore n — k squares).

} counts phased tilings with n tiles containing
G

This combinatorial interpretation allows us to immediately generalize most of
the preceding theorems. (It also immediately gives us a generating function,
namely {Z} is the a*0"=* coefficient of (Goa + G1b)(a+b)"~1.) Their proofs are
almost exac’fly the same as before, so we leave most of their details to the reader.

In our first set of identities, we decide on the length and phase of the initial

tile, then proceed to choose the remaining n — 1 (unphased) tiles. For n > 1,

{ﬂ = Go+Gi(n—1) = Gin + (Go — Gy),
e

{ " } :G1+G0(TL—1):GQTL+(G1—GQ),
n—1 o

and for n > 2,

R R

AR
k=0 G
n o n o n—2
MR MRS
k>0 k>0

n n—1 n—1 n n—1
MgG1< I >+Go<k_1>G1<k>+(GO—G1)<k_1>.
Some identities generalize with virtually no changes to their statement or logic.

For example, the sum of the diagonal entries of the Gibonacci triangle yields
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Gibonacci numbers. For n > 0,

Although the prime identity

does not have a phased analog (because we cannot rotate the phased initial tile),
the extension of that result works fine because the first j tiles are fixed. Specifi-
cally, for any odd prime pand forany 1 <j<p—-2andj+1<:<p—1,
ny
0
G
Likewise, the alternating identities, obtained by toggling the last tile, are com-

pletely unaffected by the initial tile. Thus, for n > 2,

el -l
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