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FIBINOMIAL IDENTITIES

Arthur T. Benjamin, Jennifer J. Quinn and Jeremy A. Rouse

Problem A — 6 from the 1990 Putnam exam states:

If X is a finite set, let |X| denote the number of elements in X. Call an ordered pair
(S,T) of subsets of {1,2,...,n} admissible if s > |T| for each 8 € S, and ¢ > |S| for each
t € T. How many admissible ordered pairs of subsets of {1,2,...,10} are there? Prove your
answer.

It is no coincidence that the solution, 17711, is the 21%¢ Fibonacci number. The number
of admissible ordered pairs of subsets of {1,2,...,n} with |S| = a and |T| = b is (*;°)("}%).
As we shall show, summing over all values of a and b leads to

Identity 1:
n n
n—>b\/m—a
Z( )( b )=f2n+1-
a=0b=0 > &

where fo =1, fi =1 and for n > 2, fn = fn-1 + fn—2. The published solutions [6, 7] use
“convoluted” algebraic methods. Yet the presence of both Fibonacci numbers and binomial
coefficients demands a combinatorial explanation. Beginning with our proof of Identity 1,
we provide simple, combinatorial arguments for many fibinomial identities — identities that
combine (generalized) Fibonacci numbers and binomial coeflicients.

Fibonacci numbers can be combinatorially interpreted in many ways [10]. The primary
tool used in this note will be tilings of 1 x n boards with tiles of varying lengths. The identities
presented are viewed as counting questions, answered in two different ways. To begin with,
Identity 1 is-easily seen by answering
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Question: How many ways can a board of length 2n+ 1 be tiled using (length 1) squares and
(length 2) dominoes?

Answer 1: A length m board can be tiled in f,, ways, which can be seen by conditioning on
whether the last tile is a square or a domino. Consequently, a board of length 2n + 1 can be
tiled f2ﬂ+1 ways.

Answer 2: Condition on the number of dominoes on each side of the median square.

Any tiling of a (2n + 1)-board must contain an odd number of squares. Thus one square,
which we call the median square, contains an equal number of squares to the left and right of
it. For example, the 13-tiling in Figure 1 has 5 squares. The median square, the third square,
is located in cell 9.

How many tilings contain exactly a dominoes to the left of the median square and exactly
b dominoes to the right of the median square? Such a tiling has (¢ +b) dominoes and therefore
(2n + 1) — 2(a + b) squares. Hence the median square has n — a — b squares on each side of
it. Since the left side has (n — a — b) + a = n — b tiles, of which a are dominoes, there are

(">®) ways to tile to the left of the median square. Similarly, there are (*;*) ways to tile to

the right of the median square. Hence there are (";b) (™, ®) tilings altogether.
Varying a and b over all feasible values, we obtain the total number of (2n + 1) tilings as

Yo oo (0 ("5%)-

median square

Figure 1: Every square-domino tiling of odd length must have a median square. The
13-tiling above has 3 dominoes left of the median square and 1 domino to the right of the
median square. The number of such tilings is () (3).

We can extend this identity by utilizing the 3-bonacci numbers, defined by 8, = 0 for
n <0, 6p=1andforn>1, Oy =6,_1+0n-s.

Identity 2:
e~ /n—b—c\/n—a—-c\/n—a—b
b = 93,1;2.
a c
a=0 p=0 ¢=0

Question: How many ways can a board of length 3n+ 2 be tiled using squares and trominoes?

Answer 1: It is easy to see that 8, counts the number of ways to tile a board of length n
with squares and (length 3) trominoes. Hence there are 83,42 such tilings of a board of length
3n+2.

Answer 2: The number of squares in any tiling of a (3n + 2)-board must be 2 greater than a
multiple of 3. Hence there will exist two goalpost squares, say located at cells z and y, such
that there are an equal number of squares to the left of =, between z and y, and to the right
of y. We condition on the number of trominoes in the three regions defined by the goalposts.
If the number of trominoes in each region is, from left to right, a,b,c, then there are a total
of a+ b+ c trominoes and (3n + 2) — 3(a+ b + ¢) squares, including the two goalpost squares.
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Thus each region has n — (a+ b+ ¢) squares. The leftmost region has n—b — ¢ tiles, a of which
are trominoes, and there are ("~°~°) ways to arrange them. Likewise the tiles of the second
and third region can be arranged ( ways and ("~%7°) ways, respectively.
As a, b, and c vary, the total number of (3n + 2)-tilings is the left side of our identity.
Applying the same logic, using only tiles of length 1 and %, we immediately obtain the
following k-bonacci generalization.

Identity 3: Let s, be the k-bonacci number defined by Kk, = 0 for n < 0, Ko = 1, and for
n 21, Kp = Kn—1+ kn—g. Then forn >0, Kgnyk—1) equals

n—a—c)

n n T
a1=0az=0 aE=0

ay as Qg

(n—(a-z +a3+---+ak))(n—(a1+a3+---+ak))___(n—(a1 + az —f----+ak_;}>
(1

Another generalization of Fibonacci numbers are the k** order Fibonacci numbers defined
by gn=0forn <0, go=1,and forn > 1, gn, = gn~1+gn—2+* -+ + gn—k- The next identity
is proved by non-trivial algebraic methods in (8] and [9], but when viewed combinatorially, as
done in [2], it is practically obvious.

Identity 4: For alln > 0,

ny+neg+--+n
3P ED B (AN BT

ny ng T

the k** order Fibonacci number, where the summation is over all non negative integers
Ny, N2, ... ,Nk Such that ny + 2ng + - - + kng = n.

Question: In how many ways can we tile a board of length n using tiles with lengths at most
k?

Answer 1: By its definition, it is combinatorially clear that g, counts this quantity.

Answer 2: Condition on the number of tiles of each length. If for 1 < ¢ < k there are n; tiles

of length 7, then we must have ny 4+ 2n2 + -+ + kng = n. The number of ways to permute
. a . . - . -+ +...+

these tiles is given by the multinomial coefficient (";l’:fgﬂ:”‘)

More colorfully, for nonnegative integers ci,...,c; we define the generalized k** order
Fibonacci number by h,, =0 forn <0, hg =1,andforn > 1, h, =c1-hp—1+co2-hn_g+---+
¢k - hn—g. It is easy to see that h, counts the number of ways to tile a board of length n with
colored tiles of length at most k, where for 1 < i < k, a tile of length ¢ may be assigned any
one of ¢; colors. The previous identity and argument immediately generalizes to the following
identity.
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Identity 5: For alln >0,

np+na+ o+ 5 on, nk _ p
ZZZ C17Cg ~ i Cp T g,y
Ny, Mg, Nk

M1 N2 Tk

the generalized k™ order Fibonacci number, where the summation is over all non-negative
integers ny, Mg, ++ , 0 such that ny +2na+ -+ kng =n.
Our tiling approach also succeeds in proving even more complex fibinomial identities.

Identity 6:

>33 (M) () -

ay1=0a3=0 ag=0

Question: In how many ways can we simultaneously tile n distinguishable boards of length
k + 1 with squares and dominoes?

Answer 1: Since each board can be tiled fr.1 ways, there are f',, such tilings.

Answer 2: Condition on the number of dominoes covering each consecutive pair of cells. We
claim there are (1) ("72) -+ - ("72*-*) ways to create n tilings of length k+ 1 where a; of them
begin with dominoes, as have dominoes covering cells 2 and 3, and generally for 1 < ¢ <k, a;
of them have dominoes covering cells ¢ and 7 4 1. To see this, notice there are ( b } ways to
decide which of the n tilings begin with a domino (the rest begin with a square). Once these
are selected, then among those n —a; tilings that do not begin with a domino there are (";:‘)
ways to determine which of those will bave a domino in cells 2 and 3. (The other n — a; — a2
tilings will have a square in cell 2.) Continuing in this fashion, we see that once the tilings
with dominoes covering cells ¢ — 1 and i are determined, there are ("72*~') ways to determine
which tilings have dominoes covering cells 7 and 7 + 1.

More generally, by tiling n distinguishable boards of length k¥ + 1 with squares and domi-

noes where the first ¢ of them must begin with a square, the same reasoning establishes:
Identity 7: For 0 < ¢ <n,

n n n n—c¢ n— a; n—ag_1 c pn—c
ZZZ(al )( " )( a ):fkfk+1

a1=0a3=0 ax=0

Identities 6 and 7 can be extended to Gibonacci numbers, Gy, defined by initial conditions
Gy, G1, and the Fibonacci recurrence Gy, = Gp—1+Gp—2 for n > 2. For non-negative integers
Gy and G;, G, can be combinatorially defined [3] as the number of ways to tile a length n
board with squares and dominoes subject to the initial conditions that the first tile is given a
phase, where there are Gy choices for the phase of a domino and G; choices for the phase of
a square. The extension of Identity 6 to Gibonacci numbers is
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Identity 8:

75590 {4 g ) L SR

Question: In how many ways can we simultaneously tile n distinguishable boards of length
k + 1 with squares and dominoes, where an initial domino is assigned one of G phases and an
intial square is assigned one of Gy phases?

Answer 1: Since each board can be tiled Gy41 ways, there are G}, such tilings.

Answer 2: As in the proof of Identity 6, we condition on the number of dominoes covering
each consecutive pair of cells. The difference here is that initially choosing a; of the tilings to
begin with a domino contributes ()Gg'GT™*' to the product since we must assign domino
phases to a; of the boards and square phases to the remaining n — a; boards.

As an immediate corollary, we have

Identity 9:

i n n—a n—ag-—

1 f—1
§.§ LI e
a1=0a (ﬂl)( 0'2 ) ( l‘.lk ) 2

a=0 ar=0

where L,, is the n*® Lucas number.
Likewise, if we require that the first ¢ of the n boards begin with phased squares, then
the same reasoning establishes the following Gibonacci extension of Identity 7.

Identity 10: For 0 < ¢ < n,

oy ik L n—c\/n—a n— Gp—1 _ —
Ghgn—o — RefeGm TS
Ty z(al)(az) ("~ 2)ezer s

a1=0az=0 ap=0

As with Identity 5, these identities can be further generalized by colorizing them. For
more combinatorial proofs of fibinomial identities, see [4].

We end with an open question. The Fibonomial Numbers are defined like binomial coef-
ficients with s on top. That is, Fibonimial (%) - = %ﬂ, where Fy, = f,,_1 is the
traditional n** Fibonacci number. Amazingly (}) 5 is always an integer [1]. We challenge the
reader to find a combinatorial proof of this fact.
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