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In (4], Carlitz demonstrates
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- =z sophisticated matrix methods and Binet’s formula. Nevertheless, the presence of bino-
- v coefficients suggests that an elementary combinatorial proof should be possible. In this
-er_we present such a proof, leading to other Fibonacci identities.

=-nof: Recall that for m > 1, F,, counts the ways to tile a length m — 1 board with squares
Zominoes (see [1], [2], [3]). Hence the right side of equation (1) counts the tilings of a
1 with length (n+ 1)L — 1.

3efore explaining the left side of equation (1), we first demonstrate that any such tiling
= ne created in a unique way using n + 1 supertiles of length L. Given a tiled board of
-2 (n+1)L—1, with cells numbered 1 through (n+1)L —1, we break the tiling into n+1

= ~vwetiles 81,83, , Snt1 by cutting the board after cells L,2L,3L,... ,nL. See Figure 1.
Notice that a supertile might begin or end with a half-domino. For instance, if a domino
-=< cells L and L + 1, then S; ends with a half-domino, and S, begins with a half-domino.
:nertile that begins with a half-domino is called open on the left; otherwise it is closed on

-
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FIGURE 1. A board of length (n+ 1)L — 1 (with a half-domino
attached) can be split into n + 1 supertiles of length L.

the left. Likewise a supertile is either open or closed on the right. Naturally, S; must be closed
on the left.

For convenience, we append a half-domino to the last supertile so that S,+1 has length
L, like all the other supertiles, and is open on the right. Notice that Sy, ... ,Sp4+1 must obey
the following “following” rule:

For 1 < i< m, S;is open on the right iff S;;; is open on the left.

Given supertiles S1,... ,Sp+1, we can extract subsequences Oy, ... ,0;and Cy, ... ,Crip1—¢
for some 0 < t < n, where Oy,...,0; are open on the left, and Cj,...,Cr41—¢ are closed on
the left. By the “following” rule, there are exactly ¢ + 1 supertiles that are open on the right,
necessarily including Cp41—;. Conversely, given 0 < ¢t < n and O4,...,0;, Ci1,...,Cri1-¢
there is a unique way to reconstruct the sequence Si,...,Sp4; that preserves the relative
order of the O’s and C’s. Specifically, we must have Sy = C}, and for 1 < ¢ < n, if S; is closed
on the right then S;i, is the lowest numbered unused Cj; else Siyq is the lowest numbered
unused O;.

To summarize, Fi, 1)z counts the ways to create, for all 0 < ¢ < n, length L supertiles
01,...,0, open on the left, and length L supertiles C},... ,Cpry1—¢ closed on the left, where
Crn+1-¢ is open on the right and exactly t of the other supertiles are open on the right. It
remains to show that the left side of equation (1) counts the ways that such a collection of
supertiles can be constructed.

Given 0 < t < n, we begin by tiling Cpyj—¢. Since it must end with a half-domino and
has L — 1 free cells, it can be tiled Fr, ways. Now for any non-negative integers z,... ,zr—1,
we prove that the remaining supertiles can be created (";7%) (") -+ (""7%~!) ways, where
zr, =t and for 1 < ¢ < L — 1, exactly z;, of these n supertiles bave a domino beginning at its
it cell.

Since t of the supertiles (excluding Cyp41-:) must be open on the right, zz = ¢ of these
n supertiles have half-dominoes beginning at their L** cells. Now thére are (";]t) = ("7°5)
ways to pick z, supertiles among {Ci,...,Cr_:} to begin with a domino. (The remaining
n —t —x; C;’s (other than Cpy1_,) begin with a square and all of the O,’s begin with a
half-domino.) Next there are (";:‘) ways to pick z2 supertiles to have a domino covering the
second and third cell among those not chosen in the last step to have a domino covering the
first and second cell. The unchosen n — £ — z2 supertiles have a square on the second cell.

Continuing in this fashion, there are (""::“) ways to pick which supertiles have a domino

beginning at the ** cell for 1 < i < L. Hence Oy,...,0; and Ci,...,Cpn_s,Cpy1-1 can be
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created in exactly Fy,("_%*) (";:1) (”‘::—1) ways. Summing over all values of z; gives us
the left side of equation (1). m]
By counting our tilings in a slightly different way, we combinatorially obtain another

identity presented in [4]:

1‘+j ﬂ"'j'“i . + e
ZE( i )( J )FE‘“IFEJ FL T = Fasn (2)

i>0 >0

Proof: Fin11)r counts the ways to create supertiles Sy,...,Sn+1 subject to the same condi-
tions as before. This time, we classify supertiles in four ways, depending on whether they are
closed on the left only, right only, both, or neither. If, for some 0 < j < [ 2], S1,...,Sp+1 con-
tains exactly j supertiles R,,..., R; closed on the right only, then there must be exactly j+1
supertiles Ly,..., L4, closed on the left only. Subsequently, Sy,... ,Ss41 has subsequence

Ly, Ry, L2, Ry,... :Lj:Rj:L_j+l-

For example, see Figure 2. Since each of the supertiles above has length L with one half-domino
and L — 1 free cells, this subsequence can be tiled (Fz)¥+! ways.
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FIGURE 2. When this length 19 board (plus half-domino) is split
after every 4 cells, we create 5 supertiles that are closed,
respectively, on both sides, left side, neither side, right side, and left side.

Now suppose Sy,...,Sq+1 is to have exactly 4 supertiles that are open at both ends,
where 0 < i < n—24. We first place these supertiles, like ¢ identical balls to be placed in j+1
distinct buckets, between any Ly and Ry or after L;41. Since there are (**2~!) ways to place
a identical balls into b distinct buckets, there are (*+4) ways to do this. Once placed, since
each has L —~ 2 free cells, they can be tiled (Fr-1)* ways.

Finally, the remaining n — 25 — ¢ supertiles that are closed on both ends can be placed
into § + 1 different buckets (before L; or between any Ry and Ly41) in (:_‘27].__1‘.) = ("']? )
ways. Once placed, they can be tiled (Fr41)"~ %~ ways.

Consequently, the number of legal ways to choose supertiles Si,...,Sp41 With ex-
actly j supertiles closed on the right only and 7 supertiles open on both ends is
7 Fi_ F3*'Fp=2=% (Notice that the second binomial coefficient causes this quan-
tity to be zero whenever n —j —¢ < j, i.e., when 2j+4 > n.) Summing over all ¢ and j proves
equation (2). O
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Notice that both equations (1) and (2) imply that for all n > 1, Fr, divides F,r,. However,
a more direct combinatorial proof is possible, without invoking supertiles. Specifically, we have:

n

Fy, Z(I"L-l)j_llr"(n—glz,+1 = For- (3)
i=1

Proof: The right side counts the ways to tile a board of length nL — 1. The left side of (3)
counts this by conditioning on the first j, 1 < j < n, for which the tiling has a square or
domino ending at cell 5L — 1. Such a tiling consists of j — 1 tilings of length L — 2, each
followed by a domino. This is followed by a tiling of the next L — 1 cells (cells (j — 1)L +1
through L — 1), followed by a tiling of the remaining nL — jL cells. This can be accomplished
(FL—1Y" FLFy_j)L+1 ways, and the identity follows. m]
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