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Abstract: In this note the authors have extended a novel result on bilateral generating
functions involving modified Jacobi polynomials from the existence of partial-quasi
bilinear generating function of the polynomial under consideration by utilizing group
theoretic method. Some special cases of interest are also discussed.
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1. Introduction

In [1], the partial-quasi bilateral generating function is defined as follows:

(1.1) G(x,u,w)=Y a, pi&h (x) a™™ (u) w",
n=0
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where a, - the coefficients are quite arbitrary and pr(noi)n (x), qr(nm+”) (u) are two special

functions of ordersm+n,rand of parameters a,m+n respectively.
1fg{". ()= p{™™ (u) ,the generating relation is known as partial-quasi bilinear.

The aim at writing this note is to show that the existence of partial-quasi bilinear
generating function involving modified Jacobi polynomials implies the existence of a
more general generating relation by using group-theoretic method.

In [2], Chongdar and Chatterjea proved the following theorem on bilateral generating

function involving P{*#™" (x) , a modification of Jacobi polynomial by group-
theoretic method .

Theorem 1: If there exists a unilateral generating relation of the form

(1.2) G(x,w) = ian p(@ A0 (x) w"
n=0
then
W 1-a-p x—ﬂ(1+ X) VW
(1.3) 1+ w)’ [1-—(1+ x)} G| —2 ,
2 1—%(1+ xy €=

= 2 wW'ga R ()
n=0
where

N (p+D)np
1.4 a(v) = LA Ll LIRVEY
(1.4) gn(v) g}ap (D) v

Subsequently, Chongdar obtained the following extension of Theorem-1 while
investigating a problem on generating function involving modified Jacobi polynomials.

Theorem-2: If there exists a unilateral generating relation of the form:

(1.5) G(x,w) = Y a, PG () w"
n=0

then
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~1-a—p-m x—w(1+ X)
(L6) (L-w)’ {1—W(1+ x)} 2 L
2 1-Yary AW
2
=Y Wg, OP (x).
n=0
where
~ n m+ny
(1.7) g, (t) = F;)ap(m p]t :

In this paper, we have obtained a nice extension of theorem-2 stated above from the
existence of a partial quasi bilinear generating relation by using group-theoretic
method.

In fact, we have obtained the following theorem as the main result of our investigation.

Theorem 3: If there exists a partial quasi-bilinear generating relation involving modified
Jacobi polynomials of the following form:

(1.8) G(x,u,w)= Y a, P& (x) P ™ (u) w
n=0
then
@A+ w) M (14 2w) L+ w(l+ x) e

(1.9) Lo Xrwa+x) usw wv
1+wl+x) 1+w (1+w) (1+2w)

p+g+n

DI o (2P, (Péfm (%) )
n=0 p=0 g= - O

x (1) (1+n+a+m+r)q(Pn(1“’ 1+4) (1) )v” :

2 Proof of the theorem

We first consider the following linear partial differential operators [3, 4],
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&:a—ﬂ)gerYQQ——mﬁa+ﬁ+0a+@—2My

oy
and
o 5 0

Ry=(01-u) ——-t" ——-(Q+a+m+r)t

2 = )au p ( )
such that
2.1
&1 Ry (PP ™ ()y") =—2(n+r+1) P& A (x) yit
and
(2.2) R, (P ™) (U) t" )= — (L4 n+ o+ m+ )R M () 7

The extended form of the groups generated to R; and R, are given by

WR, _ Vi —Ll-a-p-m X+wy(l+X) y
(2.3) e" f(x,y) = (@+2wy)’ [1+wy(@d+x)] f (1+Wy(1+x)' 1+2wy]

and
em—r— t t
2.4 e"Re f (u,t) = L+ wt) M f(u+w, j
@4 W =( ) 1+wt 142wt
We now consider the following generating relation:
(2.5) G(x,u,w)=>a, &A™ (x) R{® ™) () w",
n=0
Replacing w by wytv in (2.5), we get
(2.6) G(x,u,wytv)=>"a, (wv)" (Pn(fr’ AN (%) y”)(Pn(f" n+r) (u)t”) .
n=0

Now operating gWR: gWR: on both sides of (2.6) we get,

(2.7) W RigW Rz G(x,u, wytv)
=g gk [Zan (W) (R 2 (9 y" )Pl ()" )} .
n=0
Left hand side of (2.7)

(2.8) =V R eV R G(x,u, wytv)
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T+wt 1+wt
= @+wt) M (42wt )P L+ wy @ x)[EEA

G X+wy(l+x) u+wt wytv
1+wy(L+x) " 1+wt (L+wt) (1+2wt) |

=gVR ((1+ wt) e G(x, u+wt wytv D

Right hand side of (2.7)
@9  g"Re" R{ian ()" (P& () y" ) (pie 0 (u)t“)}

n=0

_ © o o a (Wv)”ﬂ Péf’fr_n_p) ) yn+p Pn(]a, n+r+q) (u)tn+q
I gl P

n=0 p:O q:O p

x(=2)P(+r+1), (-1 @+n+a+m+r),.

Equating (2.8) and (2.9) and then putting Yy =t =1, we get

(2.10) A+w) M (14 2w) L+ w(+ x) e A
G X+W(l+x) u+w wv
T+w@d+x) " 1+w (1+w) (1+2w)

(2P, (Pl (x) )

(DT @+n+a+m+r), (Pn(f" r+a) () )v”
which completes the proof of the Theorem 3.

Corollary 1: Putting r =0in (2.10), we get

(2.11) QW)™ (L4 2w)f L w(+ ) eA
X+WI+X) u+w WV
T+w@d+x) " 1+w’ (1+w) (1+2w)

0 0  ®© p+q
=3 3 Sa o) R ()

n=0 p=0 q=0
x (Pl e (u)) X (-2)P(n+1), (D)% (A+n+a+me),,

|
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a more general generating relation which can be obtained from the existence of quasi
bilateral generating relation [5] involving Jacobi polynomial

Corollary 2: Putting m =0, we get

(2.12) (1+ ZW)ﬁ [1+ w(l+ x)]_l_a—ﬂ 1+ W)—l—r—a
y G( X+ W(1+x) wv j

T+wl+x) " (L+w) (L+2w)

S n+r+1
- Z Z a, (—2w)"*P Pn(fpfr "P) (x) (2™ %(1+ W)—l—n—r—a v

p=
= i i a, Pn(fpfr n-p) (x )((n + I’p;k 1) p (2(1—+VW)] JX (_Zw)n+p(1+w)flfr7a .

Thus we have

213) (L+2w) Lrw+ 0] « G( XFWL+X) w J
1+wy(l+x) (@+w)(1L+2w)

Y Y 8, RS (x>[(””+l)"( -V j ]x(—zm“”’.

p! 2(L+w)

Putting 2w=-w, v=-2vso that wv = (—%)(—Zv) = wv and replacing

_2(1—w) by v, we get

p " 1-a-p x—g(l+x) VW ) (@, B

(1_W) |:1_E(1+X)} G 1_&(1_'_)()' 1-w) :Z::W gn(v) Pavr (X),
2

where

p+r

gn(V) = Za (nHva

which is theorem -2.
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