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KEYWORDS Abstract We prove that the sequence (1/F,.,),-, of reciprocals of the Fibo-
Fibonacci numbers; nacci numbers is a moment sequence of a certain discrete probability measure
Orthogonal and we identify the orthogonal polynomials as little g-Jacobi polynomials with
polynomials g = (1-+/5)/(1+/5). We prove that the corresponding kernel polynomials

have integer coefficients, and from this we deduce that the inverse of the corre-

sponding Hankel matrices (1/F;;;») have integer entries. We prove analogous
results for the Hilbert matrices.
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1. Introduction

Richardson (2001) noticed that the Filbert matrices
fizz(l/E+j+l)7 0<i,j<l’l7 l’l:O,l,..., (1)

where F,, n = 0 is the sequence of Fibonacci numbers, have the property that all
elements of the inverse matrices are integers. The corresponding property for the
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Hilbert matrices (1/(i +j+ 1)) has been known for a long time (see Collar, 1939;
Choi, 1983; Savage and Lukacs, 1954). The last reference contains a table of the
inverse Hilbert matrices up ton = 9.

Richardson gave an explicit formula for the elements of the inverse Filbert
matrices and proved it using computer algebra. The formula shows a remarkable
analogy with the corresponding formula for the elements of the inverse Hilbert
n>by

matrices in the sense that one shall replace some binomial coefficients i

the analogous Fibonomial coefficients

I’l k F '+1
T2 o<k<n, 2
(k)ﬁ [ n @)

i=1

with the usual convention that empty products are defined as 1. These coefficients
are defined and studied in Knuth (1973) and are integers. The sequence of Fibo-
nacci numbers is Fy=0,F =1,..., with the recursion formula F, ;=
F,+F,_, n>1

The Hilbert matrices are the Hankel matrices (s;,;) corresponding to the mo-
ment sequence

I
sp=1/(n+1) :/ x"dx,
0

and that the reciprocal matrices have integer entries can easily be explained by the
fact that the corresponding orthogonal polynomials, namely the Legendre polyno-
mials, have integer coefficients. See Section 4 for details.

The purpose of the present paper is to show that (1/F,.,),-, is the moment
sequence of a certain discrete probability measure. Although this is a simple con-
sequence of Binet’s formula for F,, it does not seem to have been noticed in the
literature (cf. Koshy, 2001). We find the corresponding probability measure to be

n= (1 - q2) qu(éq"/qba (3)
k=0
where we use the notation
Vs 1-Vs 1
- 2 9 q - 1 + \/§ - ¢ b

and J, denotes the probability measure with mass 1 at the point a. The number ¢
is called the golden ratio.
The corresponding orthogonal polynomials are little g-Jacobi polynomials

¢

4)

q ", abg""!
pn(x;a7b; q):2¢1 ( aq ;q7xq>7 (5)

(see Gasper and Rahman, 2004), specialized to the parameters a = ¢, b = 1, with
q taking the value from (4).
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To be precise we define

pn(x) = ”-‘r]pn('xd); q, 17 q)? (6)
and these polynomials have integer coefficients, since they can be written

n =30 O (1) () - @

k=0

The orthonormal polynomials with respect to u and having positive leading coef-
ficients are given as

Pox) = ()2 Faprap, (3, ®)

so the kernel polynomial

x7) = an PU)PL(Y)

is a polynomial in x, y with integer coefficients. If we denote a ) the coefficient to
x'y/ in the kernel polynomial, then it is a general fact that the matrlx

ay=(a)), 0<ij<n )

is the inverse of the Hankel matrix of the problem (s;;;),, see Theorem 2.1 below.
This explains that the elements of the inverse of the matrix (1/F;;2), are
integers, and we derive a formula for the entries from the orthogonal polynomials.
The Filbert matrices (1) are not positive definite but non-singular, and they are
the Hankel matrices of the moments of a (real-valued) signed measure with total
mass 1. The orthogonal polynomials for this signed measure are the little g-Jacobi
polynomials

niagit 1) = YO (1) (M) 2 (10

k=0
and a simple modification of the positive definite case leads to Richardson’s for-
mula for the entries of the inverse of the Filbert matrices.

The two results can be unified in the statement that for eachx € N = {1,2,...}
the sequence (F,/F,.,),-, is a moment sequence of a real-valued measure yu, with
total mass 1. It is a positive measure when « is even, but a signed measure when « is
odd. The orthogonal polynomials are little g-Jacobi polynomials p,(x¢; ¢*~!, 1; q).
This is proved in Section 3.

In Section 2 we recall some basic things about orthogonal polynomials both in
the positive definite and in the quasi-definite case, and Theorem 2.1 about the in-
verse of the Hankel matrices is proved.

In Section 4 we briefly discuss the matrices (1/(x+ i +)),, where o > 0. They
are related to Jacobi polynomials transferred to the interval ]0, 1] and belonging to
the parameters (0, — 1). This leads to the formula (36), which for « = 1 is the for-
mula for the elements of the inverse Hilbert matrices.
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After the circulation of a preliminary version of this paper (dated April 10,
2006), Ismail has extended the results of Section 3 to a one parameter generaliza-
tion of the Fibonacci numbers (cf. Ismail, 2008/2009).

2. Orthogonal polynomials

We start by recalling some simple facts from the theory of orthogonal polynomials
(cf. Akhiezer, 1965 or Ismail, 2005) and in particular (Chihara, 1978) for the quasi-
definite case.

2.1. The positive definite case

We consider the set M”* of probability measures on R with moments of any
order and with infinite support. The moment sequence of u € M"* is

sn:sn(,u):/x”d,u(x), n=0,1,..., (11)

and the corresponding Hankel matrices are given by

5o §1 Sn
St 82 Saq

H=| S, m=o0,1,.... (12)
Sn S+l Son

The orthonormal polynomials (P,) for u are uniquely determined by the equations

/ Po(x)Po(x) di(x) = S mym > 0, (13)

and the requirement that P, is a polynomial of degree n with positive leading coef-
ficient. This coefficient is equal to

V' D,_1/D,, (14)

where D, = det H,. The reproducing kernel for the polynomials of degree <n is
defined as

Z Pr(x)Pi(y (15)
and is called the kernel polynomial. It is clear that we can write
= Z Zaﬁf;)xiyf, (16)

=0 j=0

(n)

where the numbers ¢;;" are uniquely determined and satisfy al(-:;) = q](-z). If we collect

these numbers in an (n+ 1) x (n+ 1)-matrix 4, = (a,(f;)) , then it is the inverse of
the Hankel matrix H,,:
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Theorem 2.1

Aan = HnAn = Ina

where 1, is the unit matrix of order n+ 1.

Proof. For 0 < k < n we have by the reproducing property

/ VK, (x, ) du(x) = . (17)

On the other hand we have

/ Ky () dulx) = 3 (Zs/m ,,>

J=

and therefore

n
Zskﬂag}) = 5kJ'- O
i=0

2.2. The quasi-definite case

If uis a real-valued signed measure on R with total mass 1 and moments of any
order, one can still define the moments (11) and the corresponding Hankel matri-
ces (12). To define orthogonal polynomials one has to assume that (12) is a non-
singular matrix for any #, i.e. that the determinants satisfy D, = det H, # 0. On
the other hand, if orthogonal polynomials exist with respect to a signed measure,
then the Hankel determinants are non-zero. See Chihara (1978, Theorem 3.1) for
details. In this case the orthonormal polynomial P, is uniquely determined by the

requirement that the leading coefficient /D, /D, is either positive or purely

imaginary with positive imaginary part. The corresponding kernel polynomial
K, has real coefficients, and Theorem 2.1 remains valid.

3. Fibonacci numbers

The Fibonacci numbers can be given by the formula

1 .

- T H" , n = 0 18
7 (9" —¢") (18)
usually called Binet’s formula, but it is actually older (see Knuth, 1973; Koshy,
2001). Here

14+/5
2 )

F, =

~ 1 —=4/5
¢ = 5 =1-¢.

b=
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Using the number ¢ = (}5 /¢, satisfying —1 < ¢ < 0 and already defined in (4), leads to

Lo _

and fora e Nandn > 0

Facz\/gFi 1 zoo: k/¢n ock
FaH—n (bOH_H 1 - qoc+n k=0

which is the nth moment of the real-valued measure
o= 1=0)> ¢ (20)
k=0

with total mass 1. When « is even then y, is a probability measure, but when « is
odd the masses ¢** change sign with the parity of k. Note that y, is the measure
considered in (3).

For the Fibonomial coefficients defined in (2) one has

(”) —1, 0<k<n<2,
k F

and they satisfy a recursion formula

= — n— 5 n = 1,
k . k—1 k . k+1 k—l .

(see Knuth, 1973), which shows that the Fibonomial coefficients are integers.
From (2) it is also clear that

n n
k)¢ n—=kj;

In Gasper and Rahman (2004, Section 7.3) one finds a discussion of the little
g-Jacobi polynomials defined in (5), and it is proved that

ki:p (¢ a,b;q)p,,(¢"; a,b; q) ((bqq qq))k" (aq)" = h(iibq) (22)
where
(b g) = (abg; q),(1 — abq™ ") (aq; 9),(aq; q) . e 23

(¢;9),(1 — abq)(bq; q),(abq’; q) .

In Gasper and Rahman (2004) it is assumed that 0 < ¢, ag < 1, but the derivation
shows that it holds for |¢| < 1, |a| < 1, |b| < 1, in particular in the case of interest
here: —1 < ¢ <0, a=¢*', b =1, in the case of which we get
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2
n

o k. o1 k. ol ak q"(¢;9)
> (@507 P50 )T = Sum :
=0 ((1“;61)5(1 — gt

This shows that the polynomials
Pa(xiq* ", 15q)
are orthogonal with respect to p, and that
(1 - 4")4" (4:9),
(q*: ‘I)i(l — g*)

/ Pa(xd; ¢ 15 9)p,(xdi "' 1 q) dpty (X) = Oy
To simplify this apply (19) to get

n— 2 -2
(1 _qu)qa”(q;q)i — (1) F, 1—[1& 1y F, (oc—i—n— 1)
(qa; q)i(l - qa+2”) Fot+2n =0 Fo<+j Fa+2n n F

Theorem 3.1. Let « € N. The polynomials pi (x) defined by

1
P () = (“*” ) P (i 6, 15.0) (25)
F

n

can be written

k
pfﬁ(x)iuf"(z)(”) (‘””*’“1) & 26)

=0 k n

and they satisfy
/ PP () dpy () = Gm(—1)""
so the corresponding orthonormal polynomials are

PY(x) = \/(=1)" Fuu/ Fup (x). (28)

Proof. By definition, see (5)

Wy (2Tl ) (g7 g ), k
P(x) = ( @D 0
n F 0 (q7 (]“; q)k

SEp:
n Fk

F,

Fy.+2n

, (27)

=~
= |

(@D vk B k
; {kL (4% 9)x (g™ agx)
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is the g-binomial coefficient. Using (19) leads to

ny fn k(k—n)
i), ()

) a+n—1 n n R =L S
P = ("7 () e T S
F o+j

n F k=0 =0

which by (19) can be reduced to (26). [

Remark 3.2. The polynomials p¥(x) for « = 1 and « = 2 are the polynomials in
(10) and in (7) respectively.

Corollary 3.3. For o € N

-1
., L L o+ 2k —1\°
det(1/Fyii))y = ((—1) ("3 )FaHFH%( X >[F> ;

k=1

which is the reciprocal of an integer.

Proof. From the general theory it is known that the leading coefficient of the
orthonormal polynomial P,S” is \/D,_1/D,, where

D, = det(Foc/FocHJrj)g'
From (26) and (28) we then get

aana n O(+2I1—1 ?
D,_1/D, = (~1) Ffz < ) ,
o n F

hence
1 n D] 1
D, E D

and the formula follows. [

n+l o+ 2k —1
1 H o+2k
o k= F

Theorem 3.4. The i, jth entry of the inverse of the matrix (1/F,.y;), is given as

e OB, () (251
F F

n—j n—i

SR S
X<O€+l—i.-j ) <oc+z—i.—] ) (20)
l F J F
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Proof. From Theorem 2.1 we get
n\—1 n "
((Fx/Fa+i+/)0) = (az(j)(‘x))oa

where 4" )(a) is the coefﬁcient to x'y/ in the kernel polynomial K,(x,y) for the
orthonormdl polynomials P . Inserting the expressions (26) and (28) in the kernel
polynomial and changing the order of summation gives

Fdi ()= > C%kij),
k=max(i,j)
where we for k > i,j have defined
(2)-)
k(o+itj)— - k k
im0 2\ ma() (%)
F F

J

k+i—1 k+j—1
X<oc+ +1 ) <a+ +J > . (30)
k F k F

To prove that this expression can be summed to give (29), we use induction in 7.
By symmetry we can always assume i > j. The starting step n = k =i > j is easy
and is left to the reader. For the induction step let R® (n; , ) denote the expression
(29). It has to be established that

RO (n+150,j) = R (m;0,j) = C¥(n + 151, ).
The left-hand side of this expression can be written
(_1)(n+1)(a+i+j)_(£)_(£)Fa+i+i<a titi—1 > <OC titi-1 > T,
' i F J F

where

T o+n+1+i o+n+1+j (= 1)+ o+n+i o+n+j
N n+1—j )¢ n+1—i ) n—j Jg n—i Jg
1

_ (Fac-HH—z : a+z+/+ )( oatn+j " " oH—H—H—l)
( n+1 /)( : n+1 1)
: [Fa+n+i+1Fa<+n+j+1 - (_1)a+l+]Fn+l an+17j]-

By Lemma 3.5 below (with n replaced by n + 1), the expression in brackets equals
Fyioni2Fy iy, and now it is easy to complete the proof. [

Lemma 3.5. Forn = i,j = 0 and o = 0 the following formula holds
Fa<+2nFac+i+j = Fa+n+in+n+j - (_ I)O’ﬂﬂFn*iFn*j' (31)

Proof. Using Binet’s formula, the right-hand side of (31) multiplied with 5 equals

(§477 = o (@7 — ) — (1 = (9T — ),
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Using (/’)(2) = —1 one gets after some simplification

(¢a+2n _ (i)a+2n)(¢a+i+j - &Saﬂ#j),
which establishes the formula. O

Remark 3.6. For « = 1 the expression (29) reduces to

o, () (101 (151
' F F )

n—j n—i i
which is the expression found by Richardson (2001), except that he expressed the
sign in a different but equivalent manner.

4. The Hilbert matrices

For o > 0 the matrices
HY = (af(a+i+)));, n=01,..., (32)

are the Hankel matrices for the moment sequence

1
o
sff‘):oc/ X'x*Vdx = , n=0,1,...
0 o+n

of the measure o, = ax* '1jy;(x) dx. The corresponding orthogonal polynomials
are casily seen to be

1
r(oc) (x) — Jx’“HD"[x“’H”(l o x)n]

—(—1)”;<Z><a_;€+n>(x—l)kx”_k, (33)

since they are Jacobi polynomials transferred to ]0, 1] (cf. Andrews et al., 1999).
Using the binomial formula for (x — 1) we find

() = (1) 3 (1) e,

Jj=0

RANOIG A OPIAn] G
()0 ()
()
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where the ,F; is summed by the Chu-Vandermonde formula (cf. Andrews et al.,
1999, p. 67). This gives

&m@::§5p4y<7><“+”+j_l>ﬂ. (34)

=0 / n

The orthonormal polynomials with positive leading coefficients are given as

2
RE(x) = (1) [ o2 ),

so the corresponding kernel polynomials have coefficients aE?(cx) which by Theo-
rem 2.1 satisfy

wa (@) = (~1)" Z (oc+2k)<l§><f>(“Jrk:i_])(“Jrk:j_l),

k=max(i,)
(35)

Theorem 4.1. The i, jth element of the inverse matrix of (1/(a+i+))), is given as

(—1)i+j(“+i+f)<a:i;ri><a:ijj><a+itj_l><a+ijj_1)'
(36)

In particular they are integers for oo € N. Furthermore,

setrf = (aTes 0 (1)) &)

Proof. Let R(n;i,j) denote the number given in (36), and define

C(k;i,j)—(—1)i+j(oc+2k)<l§><§><a+kzi_1><a+k1—:j_l>,

k=i

We shall prove that

n

R(mij)= > Clkij)

k=max(i,j)

by induction in # and can assume i > j. This is easy for n = k =i and we shall
establish

R(n+ 1;i,j) — R(n; i,j) = C(n + 1;1i,)). (38)

The left-hand side of this expression can be written
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wi a1\ fatiti—1
(—1)+](OC+Z+])< ij )( j] )T,

where

T o+n+1+1 a+n+1+j o4+n+i o+n+j
N n+1-—j n+1—i n—j n—i

((o+n+i)--(a+i+j+1))((a+n+)) - (a+i+j+1))
(n+1—)(n+1—i)
Jla+n+1+i)(a+n+14+))—(n+1—j)(n+1-1i).

The quantity in brackets equals (o + 21 + 2)(« 4 i +j), and now it is easy to com-
plete the proof of (38).
The leading coefficient of R™(x) is

anl_ o+ 2n o+2n—1
V. D, V « n ’

where

D, = det(a/(a + i +j))y = o det(1/ (o« + i +))g-

Therefore

1 "Dy 1 o+ 2k —1\°

which proves (37). O

Replacing x by 1 — x, we see that r¥(1 — x) are orthogonal polynomials with
respect to the probability measure o1 — x)““1 1)o,1{(x) dx. The corresponding mo-
ment sequence is

1
< o+n ) ’ (39)
n
and the corresponding orthonormal polynomials are +/(x + 2n)/ar®(1 — x).
Therefore

Sy =

" oa+2k ”
Kixp) =Y~ = (=0 (1 ), (40)

k=0

showing that the coefficient to x'y/ in aK,(x,y) is an integer when o € N. This
yields

Theorem 4.2. Let o € N. The inverse of the matrix
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n

1

(oc+i+j>
o
o 0

has integer entries.

(41)

It is not difficult to prove that

KO (1 — x) = Zn:(_l)nk<z> <a+nzk— 1 )x",

k=0

and it follows that the entries of the inverse of (41) are given as

(_1),~+fk§m(a+2k)</§> (ljc) (oH—kj—i— 1) <a+k;r]— 1>.

This formula holds of course for any o > 0.

The results of this section for « = 1,2 have been treated in the survey paper
(Berg, 2006), written in Danish. For o = 1 the formula for the elements of the in-
verse of Hff) was given in Choi (1983), but goes at least back to Collar (1939), while
the formula for its determinant goes back to Hilbert (1894). In this case the poly-
nomials r(!'(x) are the Legendre polynomials for the interval [0, 1] (cf. Andrews
et al., 1999, Section 7.7). These polynomials have successfully been used in the
proof of the irrationality of {(3). For & =2 we have (« + 2k)/a =1+ k, so the
coefficient to x'y/ in (40) is an integer. In this case Theorem 4.2 can be sharpened:
The inverse of the matrix (1 / < 2 +2l +J >> has integer coefficients. This result is

0
also given in Richardson (2001).

Historical comments: This paper was originally prepared for the proceedings of
the International Conference on Mathematical Analysis and its Applications,
Assiut, Egypt, January 3-6, 2006 and a copy was uploaded to ArXiv:math/
0609283 in September 2006. The author wants to thank the organizers for the invi-
tation to participate. Unfortunately, the proceedings of the meeting have not been
published.

In June 2007 the following comments have been added because of the manu-
script (Andersen and Berg, 2009).

A result equivalent to Theorem 2.1 is given by Collar (1939). Denoting by

M, = (p;), 0<ij<n

the matrix of coefficients of the orthonormal polynomials, i.e.

P(x) =Y ppl, i=0,1,....n,
=0
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where p; =0 for i <, then the orthonormality can be expressed as the matrix
equation M,H,M! = I,, hence

H'=MM,. (42)

Collar uses (42) to obtain formula (36) and states: “Eq. (42), which provides an
elegant method for the computation of the reciprocal of a moment matrix, is
due to Dr. A.C. Aitken. The author is grateful to Dr. Aitken for permission to de-
scribe the method and for many helpful suggestions.”

The paper by Collar is not mentioned in Choi’s paper (Choi, 1983) and was not
included in the list of references in the first version of this paper.

In Andersen and Berg (2009) the authors have defined a g-analogue of the
Hilbert matrix for any complex ¢ different from the roots of unity and have
proved a g-analogue of (36). When ¢ = (1 —+/5)/(1 + +/5) one can recover the
results about the Filbert matrices and for ¢ = —e™?’, 0 > 0 results of Ismail
(2008/2009) about Hankel matrices of generalized Fibonacci numbers.

References

Akhiezer NI. The classical moment problem. Edinburgh: Oliver and Boyd; 1965.

Andersen JE, Berg C. Quantum Hilbert matrices and orthogonal polynomials. J Comput Appl Math
2009;233:723-9, ArXiv:math.CA/0703546.

Andrews GE, Askey R, Roy R. Special functions. Cambridge: Cambridge University Press; 1999.

Berg C. Ortogonale polynomier og Hilbert matricen. NORMAT 2006;54:116-33 [in Danish].

Chihara TS. An introduction to orthogonal polynomials. New York—London—Paris: Gordon and Breach; 1978.

Choi Man-Duen. Tricks or treats with the Hilbert matrix. Am Math Month 1983;90:301-12.

Collar AR. On the reciprocation of certain matrices. Proc R Soc Edinburgh 1939;59:195-206.

Gasper G, Rahman M. Basic hypergeometric series. 2nd ed. (2004). Cambridge: Cambridge University Press;

Hilbert D. Ein Beitrag zur Theorie des Legendreschen Polynoms. Acta Math 1894;18:155-9 [367-370 in
“Gesammelte Abhandlungen 11, Berlin, 1933]..

Ismail MEH. Classical and quantum orthogonal polynomials in one variable. Cambridge: Cambridge
University Press; 2005.

Ismail MEH. One parameter generalizations of the Fibonacci and Lucas numbers. Fibonacci Quart 2008/
2009;46/47(2):167-80. ArXiv:math.CA/0606743).

Knuth DE. 2nd ed. The art of computer programming 1973;vol. 1. Springer; 1973.

Koshy T. Fibonacci and Lucas numbers with applications. New York: John Wiley; 2001.

Richardson TM. The Filbert matrix. Fibonacci Quart 2001;39(3):268-75.

Savage R, Lukacs E. Tables of inverses of finite segments of the Hilbert matrix. Natl Bureau Standard Appl Math
Ser 1954;39:105-8.



