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WHAT IS A ¢-SERIES?

BRUCE C. BERNDT

Abstract. Historically, research in g-series has not always been appreciated, and those who ac-
complished it even less acknowledged.

“The problem is very much that of unscrambling an egg; we have to reverse the substitution ¢ = 1,
and this involves us, especially with series, in inserting, variously, various unexpected ¢V ....”

“...though everything he wrote was marked by a certain distinction, nothing else of first-rate
importance was discovered. ... Yet of what the world counts success he achieved practically nothing.”

As we demonstrate below, the beautiful and useful theorems in ¢-series are now cherished, and
many of their progenitors greatly admired. It is our fondest wish that the introduction to g¢-series
that follows will inspire formerly uninitiated readers to willingly contract the “g-series disease,” in the

words of Richard Askey, who has “suffered” from this disease for several decades.

1. INTRODUCTION

What is a g—series? The simplest and most manifestly useless definition would be a
series with ¢’s in the summands. Having begun this essay with meaningless drivel, we
next admit that there does not exist a “good” definition of a ¢-series. We might define
a g-series to be one with summands containing expressions of the type

(@)= (a;q)n = (1 —a)(l—ag)---(1—ad""), n=0, (1.1)
where we interpret (a;q)o = 1. If the base ¢ is understood, we often use the notation
at the far left-hand side of (1.1), but in this paper, since we are going to use this
notation for rising factorials or shifted factorials, to avoid confusion, we shall always
write (a;q),. This definition of a g-series is also not completely satisfactory, because
often in the theory of g-series, we let parameters in the summands tend to 0 or to
00, and consequently it may happen that no factors of the type (a;¢), remain in the
summands. In some cases, what may remain is a theta function. Following the lead of
Ramanujan, we shall define a general theta function f(a,b) by

fla,b) := " a0z gpl < 1. (1.2)
In the theory of g-series, theta functions also frequently arise in identities satisfied by
series with products (1.1) in their summands. Thus, for these reasons, theta functions
are an integral part of the theory and are also considered to be g-series. As we shall
see in the sequel, infinite g-products

(@; @)oo := lim (a;q)n, g <1,

arise both in product representations of theta functions and, more generally, in identi-
ties for g-series.
In the theory of ¢-series, there is an important class of series
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which are called basic hypergeometric series. Observe that the quotient of successive
terms in (1.3) is a rational function of ¢", and conversely every such series with this
property is of the form (1.3). The parameters ay, as, . .., apt1, b1, bo, ..., b, are arbitrary
complex numbers, except for the restrictions b; # ¢~", 1 < 7 <p, n > 0. Note that the
number of parameters in the numerator is one more than the number of parameters
in the denominator. This restriction is not necessary, but in the more general case it
is best to slightly modify the definition (1.3). If the number of parameters is “small,”
then we write them on one line, instead of two; e.g., we usually write 2¢1(a, b; ¢; ¢, t).

In Section 2, we give a brief history of ¢-series indicating a few of the promient
theorems in the subject and describing some of the mathematicians who played leading
roles in its development. In the following Section 3, we indicate some of the primary
tools that are used to prove theorems about ¢-series. We concentrate on the use of
combinatorial methods, because of exciting recent activity and because they often give
new, fascinating insights into the combinatorial nature of ¢-series identities. Theorems
about basic hypergeometric series are often ¢-analogues of results about ordinary or
generalized hypergeometric series, and so in Section 4, we describe this symbiosis and
offer a few examples in illustration. In case readers think that theta functions might
arise only trivially or coincidentally in the theory of g-series, in Section 5, we provide a
few examples where theta functions arise in some of Ramanujan’s beautiful theorems,
in particular, on mock theta functions. Lastly, by the time readers reach the end of
Section 5, if we have been successful in stimulating them to action, they will want
dig more deeply into the subject, and so we indicate in Section 6 some of the primary
sources from which one can study and learn more about the properties and applications
of ¢-series.

2. IMPORTANT THEOREMS AND FIGURES IN THE HISTORY OF ¢-SERIES

One could claim that the theory of ¢-series began with certain famous theorems of
L. Euler [36, Chapter 16] and C.F. Gauss [40]. We begin non-chronologically with
Gauss, who is generally considered to be the founder of the theory of theta functions.
In Ramanujan’s notation, perhaps the three most important special cases of (1.2) are
defined by

0(0) =f0,0) = Y 0" = (=% (@ ) (2.1)
o ) = S gz (@)

W(g) :=f(a,4") = ;q = P (2.2)

f=) =f(=¢. =) = D (=1)"q"® 2 = (¢;)w, (2.3)

where the three product representations in (2.1)—(2.3) are special cases of the Jacobi
triple product identity

fla,b) = (—a;ab) oo (—b; ab) o (ab; ab) oo, (2.4)
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which is arguably the most useful and celebrated theorem in the theory of theta func-
tions, and which was actually first discovered by Gauss. The identity (2.3) is called
Euler’s pentagonal number theorem, which, in a less abbreviated notation, is given by

> (g =TT -, (25)

To discern its combinatorial interpretation, we first define the partition function p(n)
to be the number of ways the positive integer n can be written as a sum of positive
integers, with the order of these positive integers immaterial. For example, p(5) = 7,
because there are 7 ways to write 5 as a sum of positive integers, namely, 5, 44+1, 3+2,
3+141, 24241, 2+1+1+1, 14+1+1+1+1. Observe that [ (1 + ¢") generates the
number of partitions of a positive integer into distinct parts. With this in mind, we
offer a combinatorial interpretation of (2.5).

Corollary 2.1 (Combinatorial Version of Euler’s Pentagonal Number Theorem). Let
De.(n) denote the number of partitions of n into an even number of distinct parts, and
let D,(n) denote the number of partitions of n into an odd number of distinct parts.
Then

-1y, ifn=j3iE1)/2

2.6
0, otherwise. (26)

We next give perhaps the most important and useful theorem in which a ¢g-product
(a; q)n appears in the summands.

Theorem 2.2. For |q|, |2| < 1,

o

3 (4@ _ (0% D)oc (2.7)

= (¢, q)n CHIN

Proof. Note that the product on the right side of (2.7) converges uniformly on compact
subsets of |z| < 1 and so represents an analytic function on |2| < 1. Thus, we may
write

(0% @)  ~o
F(z)=—""—=) A", 2| < 1. (2.8)
(23 @)oo nz_:o
From the product representation in (2.8), we can readily verify that
(1—2)F(2) = (1 —a2)F(q2). (2.9)

Equating coefficients of 2", n > 1, on both sides of (2.9), we find that
An - Anfl = ann - aqnilAnfla

or . -
Ap=— A n>1. (2.10)
1—qgn
Iterating (2.10) and using the value Ay = 1, which is readily apparent from (2.8), we
deduce that

A, = (af D s, (2.11)
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Using (2.11) in (2.8), we complete the proof of (2.7). O
Corollary 2.3. For|q| <1,

= 1
= .l <, 2.12
(@00 (100 4 (2.12)

n=

and
(_Z)nqn(nfl)/Q

ZW = (5@, [ <00 (2.13)

n=0

Theorem 2.2 is called the g-analogue of the binomial theorem, and in Section 4 we
relate in detail why this name is given to this theorem. In its general form, Theorem
2.2 is due to A. Cauchy [30], while the special cases in Corollary 2.3 are due to Euler
[36, Chapter 16]. The proof of (2.7) given above follows along the lines of that given
by Euler and Cauchy and has been copied from the author’s book [24, p. 8].

Although certain important theorems were found by Euler, Gauss, and Cauchy, the
systematic development of the theory of g-series began with a paper by E. Heine [43]
in 1847. In particular, the following theorem, called Heine’s transformation, is perhaps
his signature theorem.

Theorem 2.4. For [t],[b] <1,

(05 @)oo (at; q) oo
(€5 q)oo(t; @)oo

In his lost notebook [57], S. Ramanujan, who independently discovered Heine’s trans-
formation [56, Chapter 16, Entry 6], [21, p. 15], found many applications of it [10,
Chapter 1].

Two English mathematicians, F.H. Jackson and L.J. Rogers, at the end of the 19th
and beginning of the 20th centuries devoted most of their mathematical careers to
further developing the theory of g-series, but their efforts were not appreciated by their
contemporary researchers. We first discuss Rogers.

L.J. Rogers, who was born on March 30, 1862 and died on September 12, 1933, was
recognized during his lifetime for only a handful of his contributions to mathematics.
As a mathematics student, he was elected to a Scholarship at Balliol College, Oxford
in 1879, but he also earned a Bachelor of Music degree in 1884. In 1888, he became
Professor of Mathematics at Yorkshire College, now called the University of Leeds. It
appeared that music, in fact, took precedence over mathematics in his professional life.
A.L. Dixon wrote one of the two obituaries that we have of Rogers; let us quote from
that obituary [35].

Rogers was a man of extraordinary gifts in many fields, and everything
he did, he did well. Besides his mathematics and music he had many
interests; he was a born linguist and phonetician, a wonderful mimic
who delighted to talk broad Yorkshire, a first-class skater, and a maker
of rock gardens.

He did things, and did them well, because he liked doing them; but
he had nothing of the professional outlook, and his knowledge of other

2(251 (Cl, b; G 4, t) = 2(251 (C/ba t; Clt; q, b) . (214)
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people’s work was vague. He had very little ambition or desire for recog-
nition.

Nonetheless, the Rogers-Ramanujan identities (given below in (2.15) and (2.16)),
the Rogers—Ramanujan continued fraction, and the Rogers—Szegd polynomials are im-
portant discoveries that are named after him. Moreover, as pointed out by G.H. Hardy,
J.E. Littlewood, and G. Pdlya [42, p. 25|, Rogers 58] discovered Hélder’s famous in-
equality one year before O. Holder [45], and in a more symmetrical form.

During his lifetime, Rogers was singularly known for the two identities

o o q,nZ B 1

o= ZO (@ Dn (60)oo(qh6%)o0” (2.15)
o > qn(n+1) B 1

o= nz_:o (@D (0367 (6% 6)oo’ (2.16)

n

which he discovered in 1894 [59], but which were entirely ignored until Ramanujan
rediscovered them about 20 years later. In the words of the writer of Rogers’ obit-
uary [61], “Rogers’ reputation as a mathematician rests almost entirely on a single
incident.” In other words, if it had not been for Ramanujan’s rediscovery of these now
famous identities, in the collective opinion of Rogers’ contemporary mathematicians,
his name would have been completely forgotten. For a history of these identities, see,
for example, Ramanujan’s Collected Papers [55, pp. 344-346], the monograph [4] by
G.E. Andrews, Andrews’s survey article [6], or the survey paper written by the author,
Y.-S. Choi, and S.-Y. Kang [25].

The Rogers—Ramanujan continued fraction, also first studied by Rogers in [59], is
defined by

q1/5 q q2 q3

MO = e T T+
The continued fraction (2.17) is intimately connected with the Rogers—Ramanujan
functions by the beautiful theorem

lq| < 1. (2.17)

Rlg) = ) _ s (4 ) (43 4") o | 2.18)
G(q) (0% @)oo (% ) oo
by (2.15) and (2.16), which was also first proved by Rogers [59] and rediscovered by
Ramanujan. Although Rogers established several of its properties, Ramanujan proved
many more theorems about R(g), most of which are found in his lost notebook [57].
For an account of a sizeable portion of Ramanujan’s discoveries about R(g), see the
book by Andrews and the author [9].
Let us quote from a second obituary [61] of Rogers; more extensive quotations may
be found in Andrews’s absorbing monograph [4].

Of course the rest of Rogers’ work was carefully studied; but, though
everything he wrote was marked by a certain distinction, nothing else
of first-rate importance was discovered. He was elected a fellow of the
Royal Society in 1924, and relapsed into his former obscurity.
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To all who knew him but slightly, that incident must appear typical
of Rogers. Fine abilities, they would say, wasted by freakishness and

inconstancy! ...Rogers’ major abilities can seldom have been excelled in
extent or variety; and his minor accomplishments ranged from knitting
to skating. ...Certainly he might have won great fame in music, either

as scholar or executant; and surely no position in diplomacy would have
been unattainable to one endowed with his easy mastery of languages,
his quick intelligence, his sparkling wit, his fine presence, his athletic
grace, his courtly charm that no woman could resist. Yet of what the
world counts success he achieved practically nothing.

Of course, the first sentence of the quote above is complete nonsense. However, in
defense of those in his time who might have attempted to understand Rogers’ papers,
it is to be admitted that Rogers wrote in a manner that makes his work very difficult
to understand. We have discussed only the most famous of Rogers’ discoveries, but in
recent years, due to the efforts of Askey, Andrews, and others, considerably more of
Rogers’ mathematics has been discovered and appreciated than heretofore. However,
some of Rogers’ papers have yet to be thoroughly examined.

Jackson was contemporaneous with Rogers and even less appreciated for his work.
The Bible in the theory of basic hypergeometric series is the text [39] by G. Gasper and
M. Rahman. Readers of this book will find many results due to Jackson and rightly
conclude that he, indeed, is one of the founders of the subject. For example, using
Heine’s transformation (2.14), one can derive Jackson’s transformation formula [39,
p. 10]

(@21 9)oo
(23 0o
As another example, Jackson proved that for each positive integer n [39, p. 17],

shala,b, g e abe g g, q) = ((;/ cj);nC]()(:T}((Z/bb);;?)Z' (2.19)

2¢1(aa b; G 4, Z) = ¢2(aa C/b; ¢, az; q, bZ)

Observe that the series on the left-hand side above terminates.

Jackson, who was born on August 16, 1870 and died on April 27, 1960 at the age
of 89, authored 49 papers, most of them on ¢-series. Although he took the Tripos
and was a Wrangler at the early age of 19, he chose the ministry as his profession.
As an ordained minister, Jackson served for ten years as a chaplain and instructor
in the Royal Navy, and held various positions in the Church of England throughout
his career. Let us now quote from T.W. Chaundy’s obituary [33] of this “amateur”
mathematician.

After a few practice pieces (as was usual in those days) titivating known
results, his whole mathematical output was devoted to basic analogues
or g-analogues (as they are obscurely called). .... The problem is very
much that of unscrambling an egg; we have to reverse the substitution
g = 1, and this involves us, especially with series, in inserting, variously,
various unexpected ¢V (often with N quadratic in n). Perhaps these
were not unexpected to Jackson, for he seemed to have an especial flair
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for these extensions. .... He had a ceaseless and vivid imagination
which (to this writer) seemed often to tax his powers of exposition.

In all he was the enthusiastic amateur with gifts that, given the
opportunity, might have led him to a professional status.

As further evidence of the contempt in which his work was regarded, he once read a
paper before the London Mathematical Society, to which someone remarked, “Surely,
Mr. President, we have heard all this before.” Jackson quickly strode from the room
and never darkened the pages of the Society again.

Ramanujan undoubtedly contributed more to g-series than anyone either before or
after his time. His most famous theorem is his 1¢; summation theorem, a theorem
about bilateral hypergeometric series, which, in importance and usefulness, plays the
same role in the theory of ¢g-bilateral series as the ¢g-binomial theorem plays in unilateral
g-series. Our first task then is to extend the definition of (a;¢), to negative integers.
To that end, define, for every integer n,

(@; @)oo

(@;9)n = ad (2.20)

Note that (2.20) is equivalent to (1.1) when n > 0.

Theorem 2.5 (Ramanujan’s ;71 Summation). For |b/a| < |2| < 1 and |¢| < 1,

= (@@ (07 0)oo(0/(02); D)oo (5 @)oo (/03 D)
2 Ga)e (20)00(b/(@2): @)oo (b D)oo (40 D)oo (2.21)

n=—oo

Ramanujan’s 17); summation theorem was first stated by Ramanujan in his note-
books [56, Chapter 16, Entry 17]. It was found there by Hardy, who called it, “a
remarkable formula with many parameters” and intimated that it could be established
by employing the g-binomial theorem [41, pp. 222-223]. There now exist many proofs
of Theorem 2.5, and a list of all known proofs (22 up to the printing of [10]), with a
few brief descriptions of proofs, can be found in [10, Chapter 3, pp. 54-56]. In this
source, one can also find several identities from the lost notebook that can be proved
with the use of the 11; summation theorem. The g-binomial theorem and the Jacobi
triple product identity are both corollaries of Ramanujan’s ;70; summation theorem.
Connections of the g-binomial theorem and the 11, theorem with g-analogues of the
gamma and beta functions have been eloquently discussed by Askey [13], [14].

In closing our historical account, we remark that we do not know when it became
standard to designate ¢ as the variable. Heine used the letter z in place of ¢. In the
theory of elliptic functions, ¢ has been in use at least since the time of C.G.J. Jacobi,
who used it in all of his papers, in particular, in his famous Fundamenta Nova [46].
Ramanujan used z as his variable in his earlier notebooks [56] but used ¢ in his pub-
lished papers [55] and lost notebook [57]. Rogers employed the notation ¢ in all of his
papers, and it is possible that the use of ¢ in the theory of ¢-series and, more precisely,
in the theory of basic hypergeometric series, was therefore instigated by Rogers.
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3. THE TooLs USED TO PROVE THEOREMS ABOUT ¢-SERIES

1. The proof of Theorem 2.2 illustrates the most common approach to proving
identities for ¢-series. In that proof we established a functional equation relating
F(z) and F'(gz). This yielded a functional equation for the coefficients, which we
iterated to complete the proof. Employing ¢-difference equations, i.e., equations
relating functions at different arguments involving ¢, is the most potent method
that we have at our disposal.

2. In the 1940’s, W.N. Bailey [15], [16] introduced a powerful method for producing
g-identities. One begins by defining a sequence {3,} in terms of any given
arbitrary sequence {a,}. From these two sequences, one can then derive another
pair of sequences {a/,} and {3}, each containing the same two free parameters.
Of course, one needs to be clever in constructing the two original sequences
in order that one can obtain two new meaningful and useful sequences. In
recent years, several authors have derived a large number of beautiful identities
by ingeniously employing versions of Bailey’s Lemma. We now state Bailey’s
Lemma, as it is given in the text of Andrews, Askey, and Roy [8, p. 584].

Theorem 3.1. Let {a,}, n > 0, be a sequence of complex numbers, and define

also
ﬁn = Z &

(¢ D (0 Dner
Define another sequence {a,} by
o e P15 D023 g /(P12); @)t

" (ag/pia)nlad/psi @)n
where p1 and pe are arbitrary non-zero complex numbers. Then

3

n !

B=>

(¢ Do (0 D’

where

C = (050 (p2s @) (ags [ (prp2); iy ag \
fi=2 (¢;9) ( >

e n—3(aq/ pv; Onlaq/p2; Dn \p1p2

Among those who have fruitfully developed the theory of Bailey pairs are Lucy
Slater, Andrews, David Bressoud, S. Ole Warnaar, and Andrew Sills.

3. Using partial fractions is another effective technique for producing ¢-series iden-
tities. In the past few years, Andrews and this author have concluded that Ra-
manujan likely employed partial fractions far more than was formerly believed.
See Chapter 12 in the first book [9] that Andrews and Berndt wrote on the lost
notebook, the papers [7] and [23] by Andrews and Berndt, respectively, and
S.H. Chan’s thesis [31] and paper [32].

4. Combinatorial reasoning is an extremely compelling method for proving g-series
identities. Although, arguably the combinatorics of ¢-series began with Euler’s
pentagonal number theorem given by (2.5) or (2.6), it lay dormant until it
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received a tremendous impetus with the bijections of J.J. Sylvester [66] and
F. Franklin [38] in the 1880’s, followed by P.A. MacMahon [50] early in the
twentieth century. In the last few decades, the combinatorial efforts of several
authors, led especially by Andrews, Bressoud, Frank Garvan, Krishnaswami
Alladi, Sylvie Corteel, and Ae Ja Yee, have provided not only insightful proofs
but have also led to new theorems as well. We briefly discuss some of these
contributions.

Recall that prior to Corollary 2.1, we defined the ordinary partition function
p(n). Euler first established the generating function for p(n),

> bl = i
T (@9

and so it is perhaps not surprising that partitions arise ubiquitously in com-

binatorially proving ¢-series identities. Euler found two further identities for

1/(¢; q)oo. First, a trivial consequence of Euler’s theorem (2.12) is

O e et T (31)

=0 q7 Q)n (Q7 Q)oo

The identity (3.1) can easily be proved combinatorially. Observe that 1/(¢; q)»
generates partitions into parts with each part less than or equal to n. The
numerator ¢" generates the part n. Thus, ¢"/(q; ), generates all partitions
with largest part equal to n. The left side of (3.1) thus generates all partitions
while sorting them out according to the largest part n. The partition 9 + 9 +
7+ 7+ 34+ 3+ 2 in the Ferrers diagram depicted below is therefore one of the
partitions counted by the summand with 7 = 9 on the left-hand side of (3.1).
Euler also established the beautiful identity
o 2

Z(C?HQZ .1 . (3.2)

“(a)h (60

The identity (3.2) can be proved combinatorially as follows. Consider the Fer-

FIGURE 1. Durfee square of side n = 4

rers graph of an arbitrary partition, and extract the largest Durfee square of
side n. These nodes are then generated by ¢*°. The nodes to the right of the
square form a partition into parts not exceeding n, while the nodes below the
Durfee square also form a partition into parts less than or equal to n. These
two partitions are generated by 1/(¢; ¢)?, and so the generating function on the
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left side of (3.2) generates all partitions and separates them according to their
largest Durfee square. Thus in Figure 1, the largest Durfee square is of size 42
with the partition at the right being 4 + 4 4+ 4 4+ 2 4 2 and the partition below
the square being 3 + 3 + 2. See also Andrews’s book [3, pp. 27-28].

Probably the simplest partition-theoretic ¢-identity is Euler’s theorem

1

G P (= @) oos (3.3)
which is equivalent to the assertion that the number of partitions of a positive
integer n into odd parts is equal to the number of partitions of n into distinct
parts. Sylvester [66] developed a beautiful bijection between partitions with
only odd parts and partitions with distinct parts in order to prove (3.3). This
bijection is described by Andrews [5] in his interesting paper on Sylvester’s work
on partitions.

We remarked above that Euler’s pentagonal number theorem has an elegant
partition-theoretic interpretation given by Theorem 2.1. One might ask if their
is a bijective proof of it, and indeed in 1881, Franklin [38] devised what is now
widely known as Franklin’s bijection to prove Theorem 2.1; see also [3, pp. 10—
11]. Moreover, Franklin’s bijection, like Sylvester’s bijection, has been used on
many occasions to give combinatorial proofs of further g¢-series identities. For
example, see papers by Berndt and Yee [28] and Berndt, B. Kim, and Yee [26].

It was not until 1965 that a bijective proof of the Jacobi triple product identity
(2.4) was developed by E.M. Wright [69], and since then it has had numerous
applications; see, for example, the papers by Warnaar [68] and S. Kim [49].

Leading the modern era in providing combinatorial proofs of ¢-series identities
is Andrews. We cite just one of his many papers on the subject, namely, [2]
where a combinatorial proof of the useful Rogers—Fine identity [60], [37, p. 15]

i (0 @)n_n _ 5~ (0 0)nla79/8; )" "¢ "(1 — a7g™)
n=0 (ﬁv Q)n 0 (ﬁv Q)n(T; Q)n-i-l
is given.

The first bijective proof of the g-binomial theorem, Theorem 2.2, was given in
1987 by J.T. Joichi and D. Stanton [47]; see also 1. Pak’s survey, which provides
several combinatorial proofs of partition and ¢-series identities. A variation
of Joichi and Stanton’s proof has been devised by Yee [70] to provide another
bijective proof of the ¢-binomial theorem.

Lastly, in 2004, Yee [70] devised a remarkable bijective proof of Ramanujan’s
1% summation theorem, Theorem 2.5.

We conclude our discussion of combinatorial proofs by offering a few remarks
about an identity

) . oS (—Q§ Q)nflanqn(n-i_l)ﬂ
Za ¢ = Z 7 2 (3.4)
= = (@)

found on page 28 in Ramanujan’s lost notebook [57]. (The claims that we
make below about partitions are not easy to establish [26].) Let D,, be the set
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of partitions into n distinct parts less than 2n such that the smallest part of
each partition is 1, and if 2k — 1 is the largest odd part, then all odd positive
integers less than 2k —1 occur as parts. Let F, be the set of partitions into even
parts less than or equal to 2n. In giving a bijective proof of (3.4), Berndt, Kim,
and Yee [26] show that the right-hand side of (3.4) generates pairs of partitions
(r,0) with 7 € D,, and o € FE,, where the exponent of a denotes the number
of parts of 7 minus the number of parts of . When we examine the left-hand
side of (3.4), we see that the the partitions 7 and ¢ “cancel each other out,”
except on a very thin set, the squares, where only one single partition survives
the cancellation. This example, which has also been studied combinatorially
by Yee [71] and Alladi [1], and many other such identities, illustrate why the
combinatorial study of g-series identities is fascinating.

5. To complete our list of tools, we briefly mention two theories that have not been
successful in establishing ¢-series identities. Theta functions play a prominent
role in the theory of elliptic functions, which reached its peak in the late nine-
teenth and early twentieth centuries. However, in the past decade or so, Zhi-Guo
Liu has written several papers demonstrating the power of elliptic functions in
establishing many of Ramanujan’s results on theta functions as well as new
theorems in the subject. Theta functions also play a leading role in the theory
of modular forms. Although, as we have seen, theta functions are inextricably
intertwined with the theory of basic hypergeometric series, the development of
the theory of basic hypergeometric series has kept the theories of elliptic func-
tions and modular forms in abeyance standing at the door. Will these theories
ever be able to make inroads into basic hypergeometric series?

4. THE SYMBIOSIS OF HYPERGEOMETRIC SERIES AND BASIC HYPERGEOMETRIC
SERIES

If p>0,let ar,as,...,a,41 and by, be, ..., b, be arbitrary complex numbers, except
that b;, 1 < 7 < p, cannot be a non-positive integer. The generalized hypergeometric
function ,1F, is defined by

(1,02, - -, Gpy1  (@)n(a2)n - (@pi1)n
E e = 1 4.1
pH15p < bl,bg,...,bp 7Z> Z (bl)n(bQ)n(bp)nn' Z ’Z’ < 1, ( )

where
(a)o =1, (@), :=ala+1)---(a+n—1), n>1, (4.2)

is called the rising or shifted factorial. If the number of parameters is “small,” then in
place of the left side of (4.1), we write ,1F,(a1,as, ..., apr1;b1,b2,...,b,;2). Observe
that the quotient of successive terms in (4.1) is a rational function of n, and conversely
every such series with this property is a hypergeometric series.
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Replacing a by ¢* in (1.1), where a > 0, and using L’Hoéspital’s rule while letting ¢
tend to 1, we find that

) (qa; q)n ) 1— qa 1— qa-l-l 1— qa-l-nfl

hm— = l1m

=1 (l—g)" =1 1l—q 1l—gq l—gq
=ala+1)---(a+n—1)=(a). (4.3)

The equality (4.3) demonstrates an intimate relation between basic hypergeometric
series defined in (1.3) and hypergeometric series defined in (4.1). In particular, formally,
ai a9 Ap+1
ql_if{lf p+19p <qu’1’qu2” - j ’qup 14, Z) = pr1Fp (az,l?z;’ . ,?5;17Z> .

One could define many other g-series, such that when we let ¢ — 1, they tend to
the same hypergeometric series. Of course, most of these ¢-series would not play
meaningful roles in any theory of ¢-series. The series and theorems in ¢-series that
have counterparts in the theory of hypergeometric series are called ¢-analogues. Does
every theorem about hypergeometric series have a natural, meaningful g-analogue? Is
it possible for a theorem about ordinary hypergeometric series to have more than one
g-analogue?

Let us begin with a g-analogue of the binomial coefficient (:L) Let n and m denote
integers. Then the Gaussian polynomial or ¢-binomial coefficient is defined by

n @D g <<,
m| = (@ Om (@ Dn-m
0, otherwise.

(4.4)

If we let ¢ tend to 1 in (4.4) and employ (4.3), we easily see that

i ] = ()

We are now able to answer the last question at the close of the penultimate para-
graph. It is easy to show by induction on n that, for n > 1,

MR .
R i R ek »

Both (4.5) and (4.6) are g-analogues of Pascal’s familiar recurrence formula for binomial
coeflicients, which is obtained by letting ¢ — 1 in either (4.5) or (4.6). Thus, more
than one g-analogue may exist!

Next we show that Theorem 2.2 is justified in being christened the g¢-binomial the-
orem. In (2.7), replace a by ¢*, where we now assume that a is an integer. After
simplifying the right-hand side of (2.7) and then letting ¢ tend to 1, we deduce the
ordinary binomial theorem in the form

o

Z%z" —(1—2)"" (4.7)

n=0
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If ¢ is not an integer, letting ¢ — 1 in (2.7) still yields (4.7), but it is considerably more
difficult to obtain the right-hand side of (4.7) [8, p. 491, Theorem 10.2.4].

We provide another example in which a famous theorem about ordinary hypergeo-
metric series has an analogue in the theory of basic hypergeometric series. In 1812,
Gauss proved that, if Re(c —a —b) > 0 [8, p. 66, Theorem 2.2.2],

I'e)l'(c—a—»)
[(c—a)l(c—b)

oy (a, by 1) = (4.8)

The special case

(c—a),
(©)n

where 7 is a non-negative integer, is called the Chu-Vandermonde Theorem, because

S.~C. Chu in 1303 [34] and A.T. Vandermonde in 1772 [67] had previously discovered
(4.9). The g-analogue of (4.8) is due to Heine. For |¢/(ab)| < 1,

(¢/@; @)oo (/b3 @)
(€5 Q)oo(c/ (ab); @)oo
Note that Euler’s identity (3.2) is the special case a = b =0, ¢ = ¢ of (4.10). To show

that (4.10) is a g-analogue of (4.8), it is perhaps best to introduce a g-analogue of the
classical gamma function, namely,

oI (—n,a;¢;1) =

(4.9)

201(a, b;c; q,c/(ab)) =

(4.10)

(¢;9)os -
I,(x):=—"—(1—-¢q) 7%, gl < 1.
(@) = B gy
Then it can be shown that [8, p. 495, Corollary 10.3.4]
lim ['y(z) = I'(x). (4.11)
q—1—

If we now replace a, b, and ¢ in (4.10) by ¢%, ¢°, and ¢°, respectively, let ¢ tend to 1, and
employ (4.11), we immediately deduce (4.8). Setting b = ¢~ in (4.10) and reversing
the order of summation, we can obtain a ¢g-analogue of the Chu—Vandermonde Theorem
(4.9) in the form

) = LG Dn
2¢1(q » @5 €1 4, Q) - (07 Q)n a . (412)

Observe that Jackson’s theorem (2.19) is a generalization of (4.12), which can be seen
by letting b — oo in (2.19). If we had not inverted the order of summation above, we
would have obtained a second analogue of the Chu—Vandermonde theorem [39, p. 14].

Ramanujan derived a multitude of beautiful continued fractions for quotients of
Gamma-functions that are found in his notebooks [56]. Proofs of these continued frac-
tions can be found in the author’s books [20, Chapter 12], [22, Chapter 32]. Methods
for proving these continued fraction formulas are varied and at times ad hoc. Ramanu-
jan evidently had a systematic procedure for proving these continued fractions, but
we do not know what it is. As an illustration, we cite Entry 25 from Chapter 12 of
Ramanujan’s second notebook [56], [20, p. 140]. Suppose that either n is an odd integer
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and z is any complex number, or that n is any complex number and Re z > 0. Then

FGe+n+ D)l —-—n+1) 4 n2—-1*> n?-32 n?-5
F(i(x—l—nJrB))F(i(x—n—i-S))_;— 2r — 2 — 2x — - (4.13)

On the other hand, consider another continued fraction, Entry 12 in Chapter 16 of
Ramanujan’s second notebook [56], [21, p. 24]. Suppose that a, b, and ¢ are complex
numbers such that |ab| < 1 and |¢| < 1, or that a = b*™** for some integer m. Then

(00 ) (V16N 1 (a—bg)(b—aq)  (a—bg*)(b—aq’)
(@G oo (P ¢)ee 1—abt (1—ab)(1+¢°) + (1—ab)(1+g") +--
(4.14)
At a first glance, it does not appear that (4.14) is a g-analogue of (4.13). However, if
we replace a and b by ¢ and ¢°, respectively, then replace ¢* by ¢, set 2a = x +n and
2b = x — n, multiply both sides of (4.14) by (1 — ¢), and lastly let ¢ — 1, we formally
obtain (4.13).

We had earlier asked if there were theorems about ordinary hypergeometric series
that do not have g-analogues. We provide one example for which g-analogues indeed
do exist, but they are not faithful analogues, in that they do not have a shape that one
would suspect. Consider Clausen’s identity [8, p. 116]

I (a,b;a—i—b—i-%;z) = 3F (2@,2b,a+b;a+b+%,2a+2b;z). (4.15)

This identity was used by Ramanujan in deriving his 17 famous series for 1/7 [54],
which were not entirely proved in print until 1987 when Jonathan and Peter Borwein
[29, Chapter 5] used (4.15), modular equations, and special values of theta functions
to prove all of them. As an example, we offer

4 (3)n 1
= ;(Gn +1) mETS (4.16)
For an expository discussion of proofs of these 17 series representations and many
more such series formulas for 1/, see the survey article by N.D. Baruah, Berndt, and
H.H. Chan [17].

Gasper and Rahman (39, p. 232, Eq. (8.8.3); p. 234, Eq. (8.8.12)] have derived two
analogues of (4.15). The first, which is a consequence of the second, is given by

" a,b,abz,ab/z 2 - a’,b* ab,abz,ab/z
493 ab\/a, _ab\/a’ —ab’ q4,4q — 5¥4 a2b2, ab\/a’ _ab\/a’ —ab’ 4,4 ],
under the assumption that the series terminate. The more general g-analogue of Gasper
and Rahman expresses
{201(a, b; aq/b; ¢, 2q/b)}*
as a sum of two 5¢4’s.

We have observed that the g-binomial theorem is an analogue of the binomial the-
orem. Readers may ask if the corresponding bilateral sum theorem, Ramanujan’s 11,
summation theorem (2.21), has an analogous forerunner in the theory of hypergeomet-
ric series. To answer this question, we should define a bilateral hypergeometric series.
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For every integer n, define

I'(a+n)
)y = ———>,
(a) Ia)
which agrees with our previous definition (4.2) of (a), if n is a nonnegative integer.
The bilateral hypergeometric series ,, [, is defined for complex parameters a4, ag, .. ., a,

and by, by, ..., b, by

1,09, ..., Clp;z — ad (al)n(CLQ)n Ce (ap)nzn
vy (bl,bg,...,bp; > Z b)n(B2)n - () (4.17)

provided that the parameters are chosen so that poles do not arise. There is only a
meager theory of bilateral hypergeometric series, which is mostly covered in Slater’s
book [65, Chapter 6], primarily because, if they converge, they converge only on |2| = 1
under the condition

Re(by +bs+---+b,—a1 —ag —---—a,) > 1. (4.18)

n=—oo

Thus, to answer our question, Ramanujan’s 11; summation theorem does not appear
to be a g-analogue of any theorem about bilateral hypergeometric series. Bilateral
g-series have a much richer theory than the series (4.17).

5. THETA FUNCTIONS, ¢-SERIES, AND MOCK THETA FUNCTIONS IN
RAMANUJAN’S LOST NOTEBOOK

In Section 3, we discussed the combinatorics of (3.4). The series on the left-hand
side of (3.4) is a partial theta function. We offer now some ¢-series representations
for certain complete theta functions that are found in Ramanujan’s lost notebook [57,
p. 35, [10, pp. 32-35, Entries 1.7.7, 1.7.9, 1.7.6, 1.7.8]. If f(a,b) is defined by (1.2)
and ¢(q) is defined by (2.1), then

o (_1)nq(n+1)(n+2)/2 ;
> —~ =qf(¢,q4"),
= (g q)n(1 — ¢ )

0o (_1)nqn(n+1)/2

— (B P
n=0 (Q; Q)n(l — q2n+1) f(q v q ),
2 (—q; @) gD (nt2)/2
(=) ( ?fq;:?q' I af (=g, =),

n=0
(=g P)ug" D2 . .
Pl = f(=¢",=¢).
( ); (45 ) @ ¢*)nsa ( )

As in (3.4), the partitions generated on the left-hand sides above mostly “cancel” each
other, as we see from the right-hand sides. The first two are proved combinatorially in
[26].

As another example, we offer [57, p. 36], |9, p. 235, Entry 9.4.7]

o o

Gttty = o =g, 5
n=0 a5 4q7)n n=0
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The function on the left-hand side is a third order mock theta function, and the function
on the right-hand side is a false theta function. Note that the latter series is the same as
Euler’s pentagonal number series (2.5), except that the signs of infinitely many terms
have been changed. The identity (5.1) does have a combinatorial proof [26], [51].

We conclude this section with the two identities

= " (@) 0" - "
;( GO (@ 6)dh56) z% (g CI) o2
Z q" o (Qi;.Q) o (0’1 4" ——‘Z (5.3)

n_(q7Q)(qq Nos1(6*6°)n

n=

from Ramanujan s lost notebook [57]. The functions on the left-hand sides of (5.2)
and (5.3) are fifth order mock theta functions. The first quotients on the right-hand
sides of (5.2) and (5.3) can be expressed in terms of theta functions. On pages 18-20
in his lost notebook [57], Ramanujan stated two classes of five identities of which (5.2)
and (5.3) are representatives of the two classes, respectively. Andrews and Garvan [11]
proved that if one identity in each group of five could be proved, then the remaining
four identities would follow in each case. These became known as the mock theta
conjectures, and they were proved by D. Hickerson [44] in 1988.

The identities (5.2) and (5.3) have interesting combinatorial interpretations. We
state, but not prove, the combinatorial equivalent of (5.2). No combinatorial proof of
either (5.2) or (5.3) has ever been given, i.e., there do not currently exist combinatorial
proofs of the mock theta conjectures. To explicate the first combinatorial interpreta-
tion, it is necessary to make a couple definitions and introduce some notation.

Definition 5.1. The rank of a partition equals the largest part minus the number of
parts.

For example, the rank of the partition 4 + 1 is 2. Let N(a,b,n) denote the number
of partitions of n with rank congruent to @ modulo b.

Definition 5.2. We define po(n) to be the number of partitions of n with unique
smallest part and all other parts < the double of the smallest part.

For example, po(5) = 3, with the relevant partitions being 5, 2+ 3, and 1 + 2 + 2.
The First Mock Theta Conjecture
N(1,5,5n) = N(0,5,5n) + po(n).
For example, if n = 5, then N(1,5,25) = 393, N(0,5,25) = 390, and, as observed
above, po(5) = 3.
6. CONCLUDING REMARKS

We have seen that initially the theory of basic hypergeometric series was developed
more or less in isolation with few connections with other parts of mathematics. For
this reason, the subject’s development was slow and scarcely appreciated. The Rogers—
Ramanujan identities (2.15) and (2.16) perhaps provided the first examples to break
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these chains of confinement and link ¢-series with partitions at a deeper level. Since
that time, g-series have not only played a leading role in the theory of partitions, but
they have appeared prominently in other areas of number theory and combinatorics,
e.g., in sums of squares. See [24] for some of these applications.

Today, as a subject in analysis, the work of Gasper, Rahman, Askey, Mourad Ismail,
Michael Schlosser and others has continued the work of the early pioneers, Heine,
Rogers, Jackson, and Ramanujan, in giving us a beautiful coherent theory still in the
process of active development.

Many other bonds with g-series now exist. For example, ¢-series have appeared
in various ways in physics. In particular, see the work of R.J. Baxter in statistical
mechanics, e.g., [19], [18], and papers (either solely or coauthored) by A. Schilling [12],
[52], [62], [63].

In this introduction to g-series, we have ignored several topics. First, we have not
discussed bibasic hypergeometric series, which possess two independent bases, say ¢ and
p [39, pp. 80-88]. Second, we have neglected to mention multiple ¢-series, a subject
to which Steve Milne has made numerous contributions. Third, we have not discussed
g-integration, the exclusive topic of the monograph [48]. Fourth, one of the current
active topics in g-series are elliptic and theta hypergeometric series [39, Chapter 11].
Very briefly and oversimplified, a theta hypergeometric series has in its summands
products of theta functions. Schlosser, Warnaar, and Hjelmar Rosengren are three of
the leading researchers in the subject. In particular, see Schlosser’s excellent survey
[64] elsewhere in this volume.

Where should readers begin to learn the subject of ¢-series. If one wants to learn
how ¢-series interact with the theory of partitions, readers should read Andrews’s book
[3, esp., Chapter 2] and N.J. Fine’s book [37]. If one wishes to learn how ¢-series
articulate with theta functions and number theory, in particular from the point of view
of Ramanujan, read Berndt’s book [24]. For a highly motivated introduction to the
subject of g-series, one should read Chapter 10 in the book of Andrews, Askey, and
Roy [8]. Lastly, if you want to be an expert in g-series, or if you really just want to
learn the subject very well, then you must read Gasper and Rahman’s text [39].
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