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Abstract

The paper investigates the properties of certain biorthogonal polynomials appearing in a specific
simultaneous Hermite–Padé approximation scheme. Associated with any totally positive kernel and a
pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their
zeros are simple and positive. We then specialize the kernel to the Cauchy kernel 1

x+y and show that the
ensuing biorthogonal polynomials solve a four-term recurrence relation, have relevant Christoffel–Darboux
generalized formulas, and their zeros are interlaced. In addition, these polynomials solve a combination
of Hermite–Padé approximation problems to a Nikishin system of order 2. The motivation arises from
two distant areas; on the one hand, in the study of the inverse spectral problem for the peakon solution of
the Degasperis–Procesi equation; on the other hand, from a random matrix model involving two positive
definite random Hermitian matrices. Finally, we show how to characterize these polynomials in terms of a
Riemann–Hilbert problem.
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Multiple Padé approximation
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1. Introduction and motivations

This paper mainly deals with a class of biorthogonal polynomials {pn(x)}N, {qn(y)}N of
degree n satisfying the biorthogonality relations∫

R+

∫
R+

pn(x)qm(y)
dα(x)dβ(y)

x + y
= δmn, (1.1)

where dα, dβ are positive measures supported on R+ with finite bimoments. These polynomials
will be introduced in Section 2 in a more general context of polynomials associated with general
totally positive kernels (Definition 2.1) with which they share some general properties in regard
to their zeros.

While these properties are interesting in their own right, we wish to put the work in a more
general context and explain the two main motivations behind it. They fall within two different
and rather distant areas of mathematics : peakon solutions to nonlinear PDEs and Random Matrix
theory.

Peakons for the Degasperis–Procesi equation. In the early 1990’s, Camassa and Holm [13]
introduced the (CH) equation to model (weakly) dispersive shallow wave propagation. More
generally, the CH equation belongs to the so-called b-family of PDEs

ut − uxxt + (b + 1)uux = bux uxx + uuxxx , (x, t) ∈ R2, b ∈ R, (1.2)

Two cases, b = 2 and b = 3 within this family are now known to be integrable: the case b = 2 is
the original CH equation whereas the case b = 3 is the Degasperis–Procesi [16] (DP) equation,
which is more directly related to the present paper.

In all cases the b-family admits weak (distributional) solutions of the form:

u(x, t) =
n∑

i=1

mi (t) e−|x−xi (t)|, (1.3)

if and only if the positions xi (t) and the heights mi (t) satisfy the system of nonlinear ODEs:

ẋk =

n∑
i=1

mi e−
|xk−xi |, ṁk = (b − 1)

n∑
i=1

mkmi sgn(xk − xi ) e−|xk−xi |, (1.4)

for k = 1, . . . , n. The non-smooth character of the solution manifests itself by the presence of
sharp peaks at {xk}, hence the name peakons. For the CH equation the peakons solution were
studied in [4,3], while for the DP equation in [25,26]; in both cases the solution is related to the
isospectral evolution of an associated linear boundary value problem

b = 2 (C H) b = 3 (D P)

−φ′′(ξ, z) = zg(ξ)φ(ξ, z) −φ′′′(ξ, z) = zg(ξ)φ(ξ, z)

φ(−1) = φ(1) = 0 φ(−1) = φ′(−1) = φ(1) = 0

(1.5)
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The variables x, ξ and the quantities m, g, u are related by

ξ = tanh
(

x

b − 1

)
, g(ξ) =

(
1− ξ2

2

)−b

m(x),

m(x, t) = u(x, t)− uxx (x, t). (1.6)

Because of the similarity to the equation of an inhomogeneous classical string (after a separation
of variables) we refer to the two linear ODEs as the quadratic and cubic string, respectively. The
case of peakons corresponds to the choice

m(x, t) = 2
n∑

j=1

δ(x − xi (t))mi (t). (1.7)

The remarkable fact is that in both cases the associated spectral problems have a finite positive
spectrum; this is not so surprising in the case of the quadratic string which is a self-adjoint
problem, but it is quite unexpected for the cubic string, since the problem is not self-adjoint and
there is no a priori reason for the spectrum to even be real [26].

As it is natural within the Lax approach to integrable PDEs, the spectral map linearizes the
evolution of the isospectral evolution: if {z j } are the eigenvalues of the respective boundary value
problems and one introduces the appropriate spectral residues

b j := res
z=z j

W (z)

z
dz, W (z) :=

φξ (1, z)

φ(1, z)
(1.8)

then one can show [25] that the evolution linearizes as follows (with the dot representing the time
evolution)

żk = 0,
ḃk

bk
=

1
zk
. (1.9)

Since this is not the main focus of the paper, we are deliberately glossing over several interesting
points; the interested reader is referred to [26] and our recent work [10] for further details. In
short, the solution method for the DP equation can by illustrated by the diagram

{xk(0),mk(0)}nk=1
spectral map

−−−−−−−−−→ {zk, bk}yDP flow

yevolution of the extended spectral data

{xk(t),mk(t)}nk=1
inverse spectral map
←−−−−−−−−−−−

{ zk(t) = zk
bk(t) = bk(0) exp(t/zk)

}
In the inverse spectral map resides the role of the biorthogonal polynomials to be studied here,
as we briefly sketch below. The inverse problem for the ordinary string with finitely many point
masses is solved by the method of continued fractions of Stieltjes’ type as was pointed out by
Krein [21]. The inverse problem for the cubic string with finitely many masses is solved with the
help of the following simultaneous Hermite–Padé type approximation [26].

Definition 1.1 (Padé-like Approximation Problem). Let dµ(x) denote the spectral measure
associated with the cubic string boundary value problem and W (z)

z =
∫ 1

z−x dµ(x), Z
z =∫∫ x

z−x
1

x+y dµ(x)dµ(y) denote the Weyl functions introduced in [26]. Then, given an integer
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1 ≤ k ≤ n, we seek three polynomials (Q, P, P̂) of degree k − 1 satisfying the following
conditions:

[Approximation]: W = P
Q + O

(
1

zk−1

)
, Z = P̂

Q + O
(

1
zk−1

)
(z→∞).

[Symmetry]: Z∗ Q + W ∗ P + P̂ = O
(

1
zk

)
(z → ∞) with W ∗(z) = −W (−z), Z∗(z) =

Z(−z).
[Normalization]: P(0) = 1, P̂(0) = 0.

This approximation problem has a unique solution [26] which, in turn, is used to solve the
inverse problem for the cubic string. We point out that it is here in this approximation problem
that the Cauchy kernel 1

x+y makes its, somewhat unexpected, appearance through the spectral
representation of the second Weyl function.

Random matrix theory. The other source of our interest in biorthogonal polynomials comes
from random matrix theory. It is well known [27] that the Hermitian matrix model is intimately
related to (in fact, solved by) orthogonal polynomials (OPs). Not so much is known about the
role of biorthogonal polynomials (BOPs). However, certain biorthogonal polynomials somewhat
similar to the ones in the present paper appear prominently in the analysis of “the” two-matrix
model after reduction to the spectrum of eigenvalues [7,9,8,18]; in that case the pairing is of the
form ∫∫

pn(x)qm(y)e−xydα(x)dβ(y) = δmn, (1.10)

and the associated biorthogonal polynomials are sometimes called the Itzykson–Zuber BOPs, in
short, the IZBOPs.

Several algebraic structural properties of these polynomials and their recurrence relation (both
multiplicative and differential) have been thoroughly analyzed in the previously cited papers
for densities of the form dα(x) = e−V1(x)dx, dβ(y) = e−V2(y)dy for polynomials potentials
V1(x), V2(y) and for potentials with rational derivative (and hard-edges) in [5].

We recall that while ordinary OPs satisfy a multiplicative three-term recurrence relation, the
BOPs defined by (1.10) solve a longer recurrence relation of length related to the degree of the
differential dV j (x) over the Riemann sphere [5]; a direct (although not immediate) consequence
of the finiteness of the recurrence relation is the fact that these BOPs (and certain integral
transforms of them) are characterized by a Riemann–Hilbert problem for a matrix of size equal
to the length of the recurrence relation (minus one). The BOPs introduced in this paper share all
these features, although in some respects they are closer to the ordinary orthogonal polynomials
than to the IZBOPs.

The relevant two-matrix model our polynomials are related to was introduced in [12]. We now
give a brief summary of that work. Consider the set of pairs H(2)

+ := {(M1,M2)} of Hermitian
positive definite matrices endowed with the (U (N )-invariant) Lebesgue measure denoted by
dM1dM2. Define then the probability measure on this space by the formula:

dµ(M1,M2) =
1

Z(2)
N

α′(M1)β
′(M2)dM1dM2

det(M1 + M2)N (1.11)

where Z(2)
N (the partition function) is a normalization constant, while α′(M1), β

′(M2) stand for
the product of the densities α′, β ′ (the Radon–Nikodym derivatives of the measures dα, dβ with
respect to the Lebesgue measure) over the (positive) eigenvalues of M j .
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This probability space is similar to the two-matrix model discussed briefly above for which
the coupling between matrices is eNTrM1 M2 [19] instead of det(M1 + M2)

−N . The connection
with our BOPs (1.1) is analogous to the connection between ordinary orthogonal polynomials
and the Hermitian Random matrix model [27], whose probability space is the set of Hermitian
matrices H N equipped with the measure dµ1(M) := 1

Z(1)
N

α′(M)dM. In particular, we show

in [12] how the statistics of the eigenvalues of the two matrices M j can be described in terms
of the biorthogonal polynomials we are introducing in the present work. A prominent role in
the description of that statistics is played by the generalized Christoffel–Darboux identities we
develop in Section 4.

We now summarize the main results of the paper:

- for an arbitrary totally positive kernel K (x, y) and arbitrary positive measures dα, dβ on
R2
+ we prove that the matrix of bimoments Iab :=

∫∫
R2
+

xa yb K (x, y)dα(x)dβ(y) is totally
positive (Theorem 2.1);

- this implies that there exist, unique, sequences of monic polynomials of degree n,
p̃n(x), q̃n(y) biorthogonal to each other as in (2.1); we prove that they have positive and
simple zeros (Theorem 2.5);

- we then specialize to the kernel K (x, y) = 1
x+y ; in this case the zeros of p̃n(x) (̃qn(y)) are

interlaced with the zeros of the neighboring polynomials (Theorem 3.2);
- they solve a four-term recurrence relation as specified after (1.1) (Corollary 4.2);
- they satisfy Christoffel–Darboux identities (Proposition 4.3, Corollary 4.3, Theorems 5.3

and 5.5)
- they solve a Hermite–Padé approximation problem to a novel type of Nikishin systems

(Section 5, Theorems 5.1 and 5.2);
- they can be characterized by a 3×3 Riemann–Hilbert problems, (Propositions 6.1 and 6.2);

In the follow-up paper we will explain the relation of the asymptotics of the BOPs introduced
in this paper with a rigorous asymptotic analysis for continuous (varying) measures dα, dβ using
the nonlinear steepest descent method [11].

We should point out that polynomials solutions to higher order recurrence relations in the
context of the inverse spectral method for nonlinear dynamical systems were also studied in [1],
with applications to Bogoyavlensky lattices. Moreover, other examples of biorthogonal (or
multiply orthogonal) polynomials related to various matrix models have been investigated in
[24,5,7,8]. The first asymptotic results in this connection started to appear very recently [17].

2. Biorthogonal polynomials associated with a totally positive kernel

As one can see from the last section the kernel K (x, y) = 1
x+y , x, y > 0, which we will refer

to as the Cauchy kernel, plays a significant, albeit mysterious, role. We now turn to explaining
the role of this kernel. We recall, following [23], the definition of the totally positive kernel.

Definition 2.1. A real function K (x, y) of two variables ranging over linearly ordered sets X
and Y , respectively, is said to be totally positive (TP) if for all

x1 < x2 < · · · < xm, y1 < y2 < · · · < ym xi ∈ X , y j ∈ Y,m ∈ N (2.1)

we have

det
[
K (xi , y j )

]
1≤i, j≤m > 0. (2.2)
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We will also use a discrete version of the same concept.

Definition 2.2. A matrix A := [ai j ], i, j = 0, 1, . . . , n is said to be totally positive (TP) if
all its minors are strictly positive. A matrix A := [ai j ], i, j = 0, 1, . . . , n is said to be totally
nonnegative (TN) if all its minors are nonnegative. A TN matrix A is said to be oscillatory if
some positive integer power of A is TP.

Since we will be working with matrices of infinite size we introduce a concept of the principal
truncation.

Definition 2.3. A finite n + 1 by n + 1 matrix B := [bi, j ], i, j = 0, 1, . . . , n is said to be
the principal truncation of an infinite matrix A := [ai j ], i, j = 0, 1, . . . if bi, j = ai, j , i, j =
0, 1, . . . , n. In such a case B will be denoted A[n].

Finally,

Definition 2.4. An infinite matrix A := [ai j ], i, j = 0, 1, . . . is said to be TP (TN) if A[n] is TP
(TN) for every n = 0, 1, . . ..

Definition 2.5 (Basic Setup). Let K (x, y) be a totally positive kernel on R+×R+ and let dα, dβ
be two Stieltjes measures on R+. We make two simplifying assumptions to avoid degenerate
cases:

1. 0 is not an atom of either of the measures (i.e. {0} has zero measure).
2. α and β have infinitely many points of increase.

We furthermore assume:

3. the polynomials are dense in the corresponding Hilbert spaces Hα := L2(R+, dα), Hβ :=
L2(R+, dβ),

4. the map K : Hβ → Hα , K q(x) :=
∫

K (x, y)q(y)dβ(y) is bounded, injective and has a dense
range in Hα .

Under these assumptions K provides a non-degenerate pairing between Hβ and Hα:

〈a|b〉 =
∫∫

a(x)b(y)K (x, y)dαdβ, a ∈ Hα, b ∈ Hβ . (2.3)

Remark 2.1. The points 3 and 4 above could be weakened, especially the density assumption,
but we believe the last two assumptions are the most natural to work with in the Hilbert space
setup of the theory.

Now, let us consider the matrix I of generalized bimoments

[I]i j = Ii j :=

∫∫
x i y j K (x, y)dα(x)dβ(y). (2.4)

Theorem 2.1. The semi-infinite matrix I is TP.

Proof. According to a theorem of Fekete, (see Chapter 2, Theorem 3.3 3.3 in [23]), we only need
to consider minors of consecutive rows/columns. Writing out the determinant,

∆ab
n := det[Ia+i,b+ j ]0≤i, j≤n−1
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we find

∆ab
n =

∑
σ∈Sn

ε(σ )

∫∫ n∏
j=1

xa
j yb

j

n∏
j=1

x
σ j−1
j y j−1

j K (x j , y j )dnα(X)dnβ(Y )

=

∫∫
C(X)aC(Y )b∆(X)

n∏
j=1

y j−1
j

n∏
j=1

K (x j , y j )dnαdnβ.

C(X) :=
N∏

j=1

x j , ∆(X) :=
∏
i< j

(xi − x j ) = det
[
x j−1

i

]
1≤i, j≤n

where Sn stands for the symmetric group on n elements, and the integrals are understood as n-fold
integrals over R+. Since our intervals are subsets of R+ we can absorb the powers of C(X),C(Y )
into the measures to simplify the notation. Moreover, the function S(X, Y ) :=

∏n
j=1 K (x j , y j )

enjoys the following simple property

S(X, Yσ ) = S(Xσ−1 , Y )

for any σ ∈ Sn . Finally, the product measures dnα = dnα(X), dnβ = dnβ(Y ) are clearly permu-
tation invariant.

Thus, without any loss of generality, we only need to show that

Dn :=

∫∫
∆(X)

n∏
j=1

y j−1
j S(X, Y )dnαdnβ > 0,

which is tantamount to showing positivity for a = b = 0. First, we symmetrize Dn with respect
to the variables X ; this produces

Dn =
1
n!

∑
σ∈Sn

∫∫
∆(Xσ )

n∏
j=1

y j−1
j S(Xσ , Y )dnαdnβ

=
1
n!

∑
σ∈Sn

∫∫
∆(X)ε(σ )

n∏
j=1

y j−1
j S(X, Yσ−1)dnαdnβ

=
1
n!

∑
σ∈Sn

∫∫
∆(X)ε(σ )

n∏
j=1

y j−1
σ j

S(X, Y )dnαdnβ

=
1
n!

∫∫
∆(X)∆(Y )S(X, Y )dnαdnβ.

Subsequent symmetrization over the Y variables does not change the value of the integral and
we obtain (after restoring the definition of S(X, Y ))

Dn =
1

(n!)2
∑
σ∈Sn

ε(σ )

∫∫
∆(X)∆(Y )

n∏
j=1

K (x j , yσ j )d
nαdnβ

=
1

(n!)2

∫∫
∆(X)∆(Y ) det[K (xi , y j )]i, j≤ndnαdnβ.

Finally, since ∆(X)∆(Y ) det[K (xi , y j )]i, j≤ndnαdnβ is permutation invariant, it suffices to
integrate over the region 0 < x1 < x2 < · · · < xn × 0 < y1 < y2 < · · · < yn , and, as a result

Dn =

∫∫
0<x1<x2<···<xn
0<y1<y2<···<yn

∆(X)∆(Y ) det[K (xi , y j )]i, j≤ndnαdnβ. (2.5)
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Due to the total positivity of the kernel K (x, y) the integrand is a positive function of all variables
and so the integral must be strictly positive. �

To simplify future computations we define [x] := (1, x, x2, . . .)T so that the matrix of
generalized bimoments (2.4) is simply given by:

I = 〈[x]|[y]T 〉. (2.6)

Now, let Λ denote the semi-infinite upper shift matrix. Then we observe that multiplying the
measure dα(x) by x i or, multiplying dβ(y) by y j , is tantamount to multiplying I on the left by
Λi , or on the right by (ΛT ) j respectively, which gives us a whole family of bimoment matrices
associated with the same K (x, y) but different measures. Thus we have

Corollary 2.1. For any nonnegative integers i, j the matrix of generalized bimoments Λi I(ΛT ) j

is TP.

We conclude this section with a few comments about the scope of Theorem 2.1.

Remark 2.2. Provided that the negative moments are well defined, the theorem then applies to
the doubly infinite matrix Ii, j , i, j ∈ Z.

Remark 2.3. If the intervals are R and K (x, y) = exy then the proof above fails because we
cannot re-define the measures by multiplying by powers of the variables, since they become then
signed measures, so in general the matrix of bimoments is not totally positive. Nevertheless the
proof above shows (with a = b = 0 or a, b ∈ 2N) that the matrix of bimoments is positive
definite and – in particular – the biorthogonal polynomials always exist, which is known and
proved in [18].

2.1. Biorthogonal polynomials

Due to the total positivity of the matrix of bimoments in our setting, there exist uniquely
defined two sequences of monic polynomials

p̃n(x) = xn
+ · · · , q̃n(y) = yn

+ · · ·

such that∫∫
p̃n(x )̃qm(y)K (x, y)dα(x)dβ(y) = hnδmn .

Standard considerations (Cramer’s Rule) show that they are provided by the following formulas

p̃n(x) =
1

Dn
det

I00 . . . I0n−1 1
...

...
...

In0 . . . Inn−1 xn



q̃n(y) =
1

Dn
det


I00 . . . I0n
...

...

In−10 . . . In−1n

1 . . . yn

 (2.7)

hn =
Dn+1

Dn
> 0, Dn := ∆00

n = det[Ii j ]0≤i, j≤n−1 (2.8)
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where D j > 0 by Eq. (2.5). For convenience we re-define the sequence in such a way that they
are also normalized (instead of monic), by dividing them by the square root of hn ;

pn(x) =
1

√
Dn Dn+1

det

I00 . . . I0n−1 1
...

...
...

In0 . . . Inn−1 xn

 , (2.9)

qn(y) =
1

√
Dn Dn+1

det


I00 . . . I0n
...

...

In−10 . . . In−1n

1 . . . yn

 . (2.10)

Thus 〈pn|qm〉 = δnm .
We note also that the BOPs can be obtained by triangular transformations of [x], [y]

p(x) = Sp[x], q(y) = Sq [y], [x] = [1, x, x2, . . .]t (2.11)

where Sp,q are (formally) invertible lower triangular matrices such that S−1
p (S−1

q )T = I , where,
we recall, I is the generalized bimoment matrix. Moreover, our BOPs satisfy, by construction,
the recursion relations:

xpi (x) = X i,i+1 pi+1(x)+ X i,i pi (x)+ · · · + X i,0 p0(x),

yqi (y) = Yi,i+1qi+1(y)+ Yi,i qi (y)+ · · · + Yi,0q0(y),

which will be abbreviated as

xp(x) = Xp(x), yq(y)T = q(y)T YT , (2.12)

where X and Y are Hessenberg matrices with positive entries on the supradiagonal, and p(x)q(y)
are infinite column vectors p(x)T := (p0(x), p1(x), p2(x), . . .)t , q(y)T := (q0(y), q1(y),
q2(y), . . .)T respectively.

The biorthogonality can now be written as 〈p|qT
〉 = I d where I d denotes the semi-infinite

identity matrix. Moreover

〈xp|qT
〉 = X, 〈p|yqT

〉 = YT . (2.13)

Remark 2.4. The significance of the last two formulas lies in the fact that the operator of
multiplication is no longer symmetric with respect to the pairing 〈•|•〉 and as a result the matrices
X and YT are distinct.

2.2. Simplicity of the zeros

In this section we will use the concept of a Chebyshev system of order n and a closely related
concept of a Markov sequence. We refer to [28,29,21] for more information. The following
theorem is a convenient restatement of Lemma 2 in [21], p.137. For easy display we replace
determinants with wedge products.
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Theorem 2.2. Given a system of continuous functions {ui (x)|i = 0, . . . , n} let us define the
vector field

u(x) =
[
u0(x), u1(x), . . . , un(x)

]T
, x ∈ U ⊂ R. (2.14)

Then {ui (x)|i = 0, . . . , n} is a Chebyshev system of order n on U iff the top exterior power

u(x0) ∧ u(x1) ∧ · · · ∧ u(xn) 6= 0 (2.15)

for all x0 < x1 < · · · < xn in U. More generally for a sequence of functions {ui (x)|i = 0, . . .},
if we denote the truncation of u(x) :=

[
u0(x), u1(x), . . .

]
to the first n + 1 components by

un(x), then {ui (x)|i = 0 . . .} is a Markov system iff the top exterior power

un(x0) ∧ un(x1) ∧ · · · ∧ un(xn) 6= 0 (2.16)

for all x0 < x1 < · · · < xn in U and all n ∈ N.

The following well known theorem is now immediate.

Theorem 2.3. Suppose {ui (x)|i = 0, . . . , n} is a Chebyshev system of order n on U, and suppose
we are given n distinct points x1, . . . , xn in U. Then, up to a multiplicative factor, the only
generalized polynomial P(x) =

∑n
i=0 ai ui (x), which vanishes precisely at x1, . . . , xn in U is

given by

P(x) = u(x) ∧ u(x1) ∧ · · · ∧ u(xn). (2.17)

Theorem 2.4. Denote by ui (x) =
∫

K (x, y)yi dβ(y), i = 0, . . . , n. Then {ui (x)|i = 0, . . . , n}
is a Chebyshev system of order n on R+. Moreover, P(x) as defined in Theorem 2.3 changes sign
each time x passes through any of the zeros x j .

Proof. It is instructive to look at the computation. Let x0 < x1 < · · · < xn , then using multi-
linearity of the exterior product,

P(x0) = u(x0) ∧ u(x1) ∧ · · · ∧ u(xn)

=

∫
K (x0, y0)K (x1, y1) · · · K (xn, yn)[y0]n ∧ [y1]n ∧ · · · ∧ [yn]ndβ(y0) · · · dβ(yn)

=
1
n!

∫
det[K (xi , y j )]

n
i, j=0∆(Y )dβ(y0) · · · dβ(yn)

=

∫
y0<y1<··· ,yn

det[K (xi , y j )]
n
i, j=0∆(Y )dβ(y0) · · · dβ(yn),

where [y]n =
[
y0, y1, · · · yn

]T
. Thus P(x0) > 0. The rest of the proof is the argument

about the sign of the integrand. To see how the sign changes we observe that the sign of P
depends only on the ordering of x, x1, x2, . . . , xn , in view of the total positivity of the kernel. In
other words, the sign of P is sgn(π) where π is the permutation rearranging x, x1, x2, . . . , xn in
an increasing sequence. �

Corollary 2.2. Let { fi (x) :=
∫

K (x, y)qi (y)dβ(y), |i = 0, . . .}. Then { fi (x)|i = 0, . . . , n} is a
Markov sequence on R+.
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Proof. Indeed, Theorem 2.2 implies that the group GL(n + 1) acts on the set of Chebyshev
systems of order n. It suffices now to observe that q j are obtained from {1, y, . . . , yn

} by an
invertible transformation. �

Remark 2.5. Observe that { fi (x)|i = 0, . . . , n} is a Markov sequence regardless of biorthogo-
nality.

Biorthogonality enters however in the main theorem.

Theorem 2.5. The zeros of pn, qn are all simple and positive. They fall within the convex hull of
the support of the measure dα (for pn’s) and dβ (for the qn’s).

Proof. We give first a proof for pn . The theorem is trivial for n = 0. For 1 ≤ n, let us suppose
pn has r < n zeros of odd order in the convex full of supp(dα). In full analogy with the classical
case, 1 ≤ r , since∫

pn(x) f0(x)dα(x) =
∫∫

pn(x)K (x, y)dα(x)dβ(y) = 0

by biorthogonality, forcing, in view of positivity of K (x, y), pn(x) to change sign in the convex
hull of supp(dα). In the general case, denote the zeros by x1 < x2 < · · · < xr . Using a
Chebyshev system fi (x), i = 0, . . . , r on R+ we can construct a unique, up to a multiplicative
constant, generalized polynomial which vanishes exactly at those points, namely

R(x) = F(x) ∧ F(x1) ∧ F(x2) ∧ · · · ∧ F(xr ) (2.18)

where

F(x) =
[

f0(x) f1(x) · · · fr (x)
]t
, x ∈ R.

It follows then directly from biorthogonality that∫
pn(x)F(x) ∧ F(x1) ∧ F(x2) ∧ · · · ∧ F(xr )dα(x) = 0. (2.19)

On the other hand, R(x) is proportional to P(x) in Theorem 2.3 which, by Theorem 2.4,
changes sign at each of its zeros, so the product pn(x)R(x) is nonzero and of fixed sign over
R+ \{x1, x2, . . . , xr }. Consequently, the integral is nonzero, since α is assumed to have infinitely
many points of increase. Thus, in view of the contradiction, r ≥ n, hence r = n, for pn is a
polynomial of degree n. The case of qn follows by observing that the adjoint K ∗ is also a TP
kernel and hence it suffices to switch α with β throughout the argument given above. �

Lemma 2.1. In the notation of Corollary 2.2 fn(x) has n zeros and n sign changes in the convex
hull of supp(dα).

Proof. Clearly, since {ui (x)|i = 0, . . . , n} is a Chebyshev system of order n on R+, the number
of zeros of fn cannot be greater than n. Again, from∫

fn(x)p0(x)dα(x) = 0,

we conclude that fn changes sign at least once within the convex hull of supp(dα). Let then
x1 < x2 < · · · < xr , 1 ≤ r ≤ n be all zeros of fn within the convex hull of supp(dα) at which
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fn changes its sign. Thus, on one hand,∫
ε

r∏
i=1

(x − xi ) fn(x)dα(x) > 0, ε = ±,

while, on the other hand, using biorthogonality we get∫
ε

r∏
i=1

(x − xi ) fn(x)dα(x) = 0, ε = ±,

which shows that r = n. �

In view of Theorem 2.3 the statement about the zeros of fn has the following corollary.

Corollary 2.3 (Heine-like Representation for fn).

fn(x) = Cu(x) ∧ u(x1) ∧ u(x2) · · · ∧ u(xn) (2.20)

where x j are the zeros of fn and C is a constant.

3. Cauchy BOPs

From now on we restrict our attention to the particular case of the totally positive kernel,
namely, the Cauchy kernel

K (x, y) =
1

x + y
(3.1)

whose associated biorthogonal polynomials will be called Cauchy BOPs. Thus, from this point
onward, we will be studying the general properties of BOPs for the pairing∫∫

pn(x)qm(y)
dα(x)dβ(y)

x + y
= 〈pn|qm〉. (3.2)

Until further notice, we do not assume anything about the relationship between the two measures
dα, dβ, other than what is in the basic setup of Definition 2.5.

3.1. Rank one shift condition

It follows immediately from Eq. (3.1) that

Ii+1, j + Ii, j+1 = 〈x
i+1
|y j
〉 + 〈x i

|y j+1
〉 =

∫
x i dα

∫
y j dβ, (3.3)

which, with the help of the shift matrix Λ and the matrix of bimoments I , can be written as:

ΛI + IΛT
= αβT ,

α = (α0, α1, . . .)
T , α j =

∫
x j dα(x) > 0,

β = (β0, β1, . . .)
T , β j =

∫
y j dβ(y) > 0.
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Moreover, by linearity and Eq. (2.13), we have

X+ YT
= πηT , π :=

∫
pdα, η :=

∫
qdβ,

p(x) := (p0(x), p1(x), . . .)
t , q(y) := (q0(y), q1(y), . . .)

t (3.4)

which connects the multiplication operators in Hα and Hβ . Before we elaborate on the nature of
this connection we need to clarify one aspect of Eq. (3.4).

Remark 3.1. One needs to exercise a great deal of caution using the matrix relation given by
Eq. (3.4). Its only rigorous meaning is in action on vectors with finitely many nonzero entries or,
equivalently, this equation holds for all principal truncations.

Proposition 3.1. The vectors π , η are strictly positive (have nonvanishing positive coefficients).

Proof. We prove the assertion only for π , the one for η being obtained by interchanging the roles
of dα and dβ.

From the expressions (2.10) for pn(x) we immediately have

πn =

√
1

Dn Dn+1
det

I00 . . . I0n−1 α0
...

...
...

In0 . . . Inn−1 αn

 . (3.5)

Since we know that Dn > 0 for any n ≥ 0 we need to prove the positivity of the other determi-
nant. Determinants of this type were studied in Lemma 4.10 in [26].

We nevertheless give a complete proof of positivity. First, we observe that

πn
√

Dn+1 Dn =
∑

σ∈Sn+1

ε(σ )

∫ n+1∏
j=1

x
σ j−1
j

n∏
j=1

y j−1
j

dn+1αdnβ
n∏

j=1
(x j + y j )

=

∫
∆(Xn+1

1 )

n∏
j=1

y j−1
j

dn+1αdnβ
n∏

j=1
(x j + y j )

. (3.6)

Here the symbol Xn+1
1 is to remind that the vector consists of n+1 entries (whereas Y consists of

n entries) and that the Vandermonde determinant is taken accordingly. Note also that the variable
xn+1 never appears in the product in the denominator. Symmetrizing the integral in the x j ’s with
respect to labels j = 1, . . . , n, but leaving xn+1 fixed, gives

πn
√

Dn+1 Dn =
1
n!

∫
∆(Xn+1

1 )∆(Y )
dn+1αdnβ
n∏

j=1
(x j + y j )

. (3.7)
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Symmetrizing now with respect to the whole set x1, . . . , xn+1 we obtain

πn
√

Dn+1 Dn =
1

n!(n + 1)!

∫
∆(Xn+1

1 )∆(Y )

× det


K (x1, y1) . . . K (xn+1, y1)

...
...

K (x1, yn) . . . K (xn+1, yn)

1 . . . 1

 dn+1αdnβ. (3.8)

Moreover, since the integrand is permutation invariant, it suffices to integrate over the region
0 < x1 < x2 < · · · < xn < xn+1 × 0 < y1 < y2 < · · · < yn , and, as a result

πn
√

Dn+1 Dn =

∫∫
0<x1<x2<···<xn+10<y1<y2<···<yn

∆(Xn+1
1 )∆(Y )

× det


K (x1, y1) . . . K (xn+1, y1)

...
...

K (x1, yn) . . . K (xn+1, yn)

1 . . . 1

 dn+1αdnβ. (3.9)

We thus need to prove that the determinant containing the Cauchy kernel 1
x+y is positive for

0 < x1 < x2 < · · · < xn+1 and 0 < y1 < y2 < · · · < yn . It is not difficult to prove that

det



1
x1 + y1

. . .
1

xn+1 + y1
...

...
1

x1 + yn
. . .

1
xn+1 + yn

1 . . . 1

 =
∆(Xn+1

1 )∆(Y )
n+1∏
j=1

n∏
k=1
(x j + yk)

(3.10)

and this function is clearly positive in the above range. �

3.2. Interlacing properties of the zeros

From (2.6) and (2.11) and (2.12) the following factorizations are valid for all principal
truncations:

I = S−1
p (S−1

q )T , X = SpΛ(Sp)
−1, Y = SqΛS−1

q .

Moreover, since I is TP, the triangular matrices S−1
p and S−1

q are totally nonnegative (TN) [15]
and have the same diagonal entries: the nth diagonal entry being

√
Dn/Dn−1. Furthermore, one

can amplify the statement about S−1
p and S−1

q using another result of Cryer [14] which implies
that both triangular matrices are in fact triangular TP matrices (all nontrivial in the sense defined
in [14] minors are strictly positive). This has the immediate consequence.

Lemma 3.1. All principal truncations X[n],Y[n] are invertible.
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Proof. From the factorization X = SpΛ(Sp)
−1 we conclude that it suffices to prove the claim

for ΛS−1
p [n] which in matrix form reads:

(S−1
p )10 (S−1

p )11

(S−1
p )20 (S−1

p )21 (S−1
p )22

@
@

@
@

@
@

0
...

... (S−1
p )n+1,n+1

(S−1
p )n+1,0 (S−1

p )n+1,1 . . . (S−1
p )n+1,n


.

However, the determinant of this matrix is strictly positive, because S−1
p is a triangular TP. �

Remark 3.2. This lemma is not automatic, since Λ[n] is not invertible.

We now state the main theorem of this section.

Theorem 3.1. X and Y are TN.

Proof. We need to prove the theorem for every principal truncation. Let n ≥ 0 be fixed. We will
suppress the dependence on n, for example X in the body of the proof means X[n] etc. First, we
claim that X and Y admit the L-U factorization: X = X−X+, Y = Y−Y+, where A+ denotes the
upper triangular factor and A− is the unipotent lower triangular factor in the Gauss factorization
of a matrix A. Indeed, X+ = (ΛS−1

p )+, Y+ = (ΛS−1
q )+ are upper triangular components of

TN matrices ΛS−1
p and ΛS−1

q and thus are totally nonnegative invertible bi-diagonal matrices by
Lemma 3.1.

From X+ YT
= πηT we then obtain

(YT
+)
−1X− + Y−X−1

+ =

(
(YT
+)
−1π

) (
ηT X−1

+

)
:= ρµT .

We need to show that vectors ρ, µ have positive entries. For this, notice that

ρ = ((Y+)
T )−1Spα = (((ΛS−1

q )+)
T )−1Spα,

µ = ((X+)
T )−1Sqβ = (((ΛS−1

p )+)
T )−1Sqβ.

Now, it is easy to check that if the matrix of generalized bimoments I is replaced by IΛT

(see Corollary 2.1) then Sp → (((ΛS−1
q )+)

T )−1Sp, while α is unchanged, which implies that
ρ is a new π in the notation of Proposition 3.1 and hence positive by the same Proposition.
Likewise, considering the matrix of generalized bimoments ΛI , for which β is unchanged,
Sq → (((ΛS−1

p )+)
T )−1Sq and µ is a new η in the notation of Proposition 3.1 implying the

claim.
Thus

ρ = Dρ1, µ = Dµ1,

where Dρ, Dµ are diagonal matrices with positive entries and 1 is a vector of 1s.
We have

D−1
ρ (YT

+)
−1X−D−1

µ + D−1
ρ Y−X−1

+ D−1
µ = 1 1T .

The first (resp. second) term on the left that we can call X̃ (resp. Ỹ
T

) is a lower (resp.
upper) triangular matrix with positive diagonal entries. The equality above then implies that
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(i) X̃ i j = Ỹi j = 1 for all i > j and (ii) X̃ i i + Ỹi i = 1 for all i . In particular, both X̃ i i and Ỹi i are
positive numbers strictly less then 1.

This means that X̃, Ỹ admit factorizations

X̃ = (I d − ΛT )−1L X , Ỹ = (I d − ΛT )−1LY ,

where

L X =

∞∑
i=0

X̃ i i Ei i + (1− X̃ i i )Ei+1 i , LY =

∞∑
i=0

Ỹi i Ei i + (1− Ỹi i )Ei+1 i .

Since all entries of bi-diagonal matrices L X , LY are positive, these matrices are totally nonneg-
ative and so are

X = YT
+(I d − ΛT )−1L X X+, Y = XT

+(I d − ΛT )−1LY Y+. � (3.11)

Corollary 3.1. X and Y are oscillatory matrices.

Proof. We give a proof for X. The factorization (3.11) we have just obtained shows that X is the
product of an invertible lower triangular TN matrix YT

+(I d − ΛT )−1 and a tri-diagonal matrix
J = L X X+. Note that L X has all positive values on the main diagonal and the first sub-diagonal.
Entries on the first super-diagonal of X+ coincide with corresponding entries of X and thus are
strictly positive by construction. Moreover, leading principal minors of X are strictly positive
(see the proof of Lemma 3.1), which implies that all diagonal entries of X+ are strictly positive
too. Thus J is a tri-diagonal matrix with all nontrivial entries strictly positive.

Since diagonal entries of YT
+(I d − ΛT )−1 are strictly positive and all other entries are

nonnegative, every zero entry of X implies that the corresponding entry of J is zero. In view
of that all entries on the first super- and sub-diagonals of X must be strictly positive, which,
by a fundamental criterion of Gantmacher and Krein (Theorem 10, II, [21]), ensures that X is
oscillatory. �

The interlacing properties for the zeros of polynomials pn, qn , as well as other properties
of Sturm sequences, follow then from Gantmacher–Krein theorems on spectral properties of
oscillatory matrices (see II, Theorem 13, in [21]). We summarize the most important properties
implied by Gantmacher–Krein theory.

Theorem 3.2. The sequences of BOPs {qn} and {pn} are Sturm sequences. Moreover,

1. their respective zeros are positive and simple,
2. the roots of adjacent polynomials in the sequences are interlaced,
3. the following alternative representations of the biorthogonal polynomials hold

pn(x) =

√
Dn

Dn+1
det(x − X [n − 1]), 1 ≤ n,

qn(y) =

√
Dn

Dn+1
det(y − Y [n − 1]), 1 ≤ n.

Remark 3.3. The fact that the roots are positive and simple follows indeed from the fact that X
and Y are oscillatory. Theorem 2.5, however, indicates that this property is true even for a more
general case when the totally positive kernel K (x, y) is not necessarily the Cauchy kernel.
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It should be mentioned that analogous results about the interlacing properties of roots
of special classes of polynomials associated with Hermite–Padé approximations of Nikishin
systems have appeared recently in [20,2].

4. Four-term recurrence relations and Christoffel–Darboux identities

We establish in this section a basic form of recurrence relations and an analog of classical
Christoffel–Darboux identities satisfied by {qn} and {pn}. First, we introduce the following
notation for semi-infinite, finite-band matrices.

Definition 4.1. Given two integers a ≤ b, a semi-infinite matrix A is said to have the support in
[a, b] if

j − i < a or j − i > b imply Ai j = 0 (4.1)

The set of all matrices with supports in [a, b] is denoted M[a,b].

The content of this section relies heavily on the relation (3.4) which we recall for convenience:

X+ YT
= πηT

= Dπ11T Dη

where Dπ , Dη respectively, are diagonal matrices of averages of p and q. Since the vector 1 is a
null vector of Λ− I d we obtain.

Proposition 4.1. X and Y satisfy:

1. (Λ− I d)D−1
π X+ (Λ− I d)D−1

π YT
= 0.

2. A := (Λ− I d)D−1
π X ∈ M[−1,2].

3. XD−1
η (ΛT

− I d)+ YT D−1
η (ΛT

− I d) = 0.

4. Â := XD−1
η (ΛT

− I d) ∈ M[−2,1].

As an immediate corollary we obtain the factorization property for X and Y .

Corollary 4.1. Let A, Â and

L := (Λ− I d)D−1
π , L̂ := D−1

η (ΛT
− I d),

respectively, denote matrices occurring in Proposition 4.1. Then

LX = A, XL̂ = Â, A ∈ M[−1,2], Â ∈ M[−2,1].

Likewise, Y admits a similar factorization:

YLT
= B, (L̂T )Y = B̂,

where B = −AT , B̂ = − ÂT .

Hence,

Corollary 4.2. p and q satisfy four-term recurrence relations of the form

x

(
pn(x)

πn
−

pn−1(x)

πn−1

)
= An−1,n+1 pn+1(x)+ An−1,n pn(x)

+ An−1,n−1 pn−1(x)+ An−1,n−2 pn−2(x),
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y

(
qn(y)

ηn
−

qn−1(y)

ηn−1

)
= B̂n−1,n+1qn+1(y)+ B̂n−1,nqn(y)

+ B̂n−1,n−1qn−1(y)+ B̂n−1,n−2qn−2(y),

for 1 ≤ n with the proviso that p−1 = q−1 = 0.

Proof. We give the proof for p(x) in matrix form. Indeed, from

xp(x) = Xp(x),

it follows that

x Lp(x) = LXp(x),

hence the claim, since L ∈ M[0,1] and LX = A ∈ M[−1,2]. �

Let us observe that L̂ has a unique formal inverse, represented by a lower triangular matrix. Let
us then define

p̂(x) = L̂−1p(x).

Theorem 4.1 (Christoffel–Darboux Identities for q and p).

(x + y)
n−1∑
j=0

q j (y)p j (x) = qT (y)[Π , (y − YT )L̂ ]̂p(x) (4.2)

where Π := Πn is the diagonal matrix diag(1, 1, . . . , 1, 0, . . .) with n ones (the entries are
labeled from 0 to n − 1). The explicit form of the commutators is:

[Π , (y − YT )L̂] = Ân−1,n En−1,n −

(
y

ηn
+ Ân,n−1

)
En,n−1

− Ân,n−2 En,n−2 − Ân+1,n−1 En+1,n−1, (4.3)

where Ai, j , Âi, j respectively, denote the (i, j)th entries of A, Â, occurring in Proposition 4.1.

Proof. We give the proof of Eq. (4.2). Since (y − Y)q = 0 it suffices to prove that the left hand
side equals qT Π (y − Y T )L̂p̂(x). From the definition of p̂ and Eq. (2.12) we obtain

(x + y)qT (y)Π p(x) = qT (y)Π yL̂p̂(x)+ qT (y)Π Xp(x)

= qT (y)Π yL̂p̂(x)+ qT (y)Π XL̂p̂(x),

which, after switching XL̂ with −YT L̂ in view of Proposition 4.1, gives Eq. (4.2). To get the
commutator equation (4.3) one needs to perform an elementary computation using the definition
of Â. �

We establish now basic properties of p̂ and its biorthogonal partner q̂ defined below.

Proposition 4.2. The sequences of polynomials

p̂ = L̂−1p, q̂T
= qT L̂ (4.4)

are characterized by the following properties

1. deg q̂n = n + 1, deg p̂n = n;
2.
∫

q̂ndβ = 0;
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3.
∫∫

p̂n(x )̂qm(y)
dαdβ
x+y = δmn;

4. q̂n(y) = 1
ηn+1

√
Dn+1
Dn+2

yn+1
+O(yn).

In addition

a. q̂ and p̂ satisfy the intertwining relations with q and p

yq̂T
= −qT Â,

xp = Âp̂; (4.5)

b. q̂ and p̂ admit the determinantal representations:

q̂n(y) =
1

ηnηn+1
√

Dn Dn+2
det


I00 . . . I0n+1
...

...

In−1 0 . . . In−1 n+1
β0 . . . βn+1

1 . . . yn+1

 (4.6)

p̂n(x) =
1

Dn+1
det


I00 . . . I0 n 1
...

...

In−1 0 . . . In−1 n xn−1

In0 . . . In n xn

β0 . . . βn 0

 (4.7)

c. β0
∫∫

p̂n(x)y j dαdβ
x+y = β j

∫∫
p̂n(x)

dαdβ
x+y , j ≤ n.

Proof. Assertions (1), (2) and (4) follow directly from the shape of the matrix L̂ . Assertion
(3) follows from 〈p,qt

〉 = 1 by multiplying it by L̂ on the right and by L̂−1 on the left.
Assertion (c) follows from assertions (1), (2) and (3); indeed from (2) and (3), it follows that
the polynomial p̂n is biorthogonal to all polynomials of degree ≤ n with zero dβ-average and
{β0 y j

− β j : 0 ≤ j ≤ n} is a basis for such polynomials.
The intertwining relations follow from the definitions of the matrices L̂, Â and of the

polynomials p̂, q̂.
The determinantal expression for q̂n follows by inspection since the proposed expression

has the defining properties (1) and (2) and is biorthogonal to all powers 1, x, . . . , xn−1. The
normalization is found by comparing the leading coefficients of q̂n =

1
ηn+1

qn+1 + O(yn). The
determinantal expression for p̂n(x) follows again by inspection; indeed if F(x)is the determinant
in (4.7) then

〈F(x)|y j
〉 = det


I00 . . . I0 n I0 j
...

...

In−1 0 . . . In−1 n In−1 j
In0 . . . In n In j
β0 . . . βn 0

 = −β j Dn+1 =
β j

β0
〈F(x)|1〉 (4.8)

where the determinants are computed by expansion along the last row. The proportionality
constant is again found by comparison. �

One easily establishes a counterpart to Theorem 4.1 valid for q̂ and p̂.
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Proposition 4.3 (Christoffel–Darboux Identities for q̂ and p̂). We have

(x + y)
n−1∑
j=0

q̂ j (y) p̂ j (x) = qT (y)[(x − X)L̂,Π ]̂p(x) = qT (y)[Π , (−x − Y T )L̂ ]̂p(x).

(4.9)

Remark 4.1. Observe that the commutators occurring in both theorems have identical structure;
they only differ in the variable y in Theorem 4.1 being now replaced by −x . We will denote
by A(x) the commutator [Π , (−x − YT )L̂] and by An(x) its nontrivial 3 × 3 block. Thus the
nontrivial block in Proposition 4.3 reads:

An(x) =

 0 0 Ân−1,n

− Ân,n−2
x
ηn
− Ân,n−1 0

0 − Ân+1,n−1 0

 (4.10)

while the block appearing in Theorem 4.1 is simply An(−y).

With this notation in place we can present the Christoffel–Darboux identities in a unified way.

Corollary 4.3 (Christoffel–Darboux Identities for q,p, and q̂, p̂). The biorthogonal polynomials
q,p, and q̂, p̂ satisfy

(x + y)
n−1∑
j=0

q j (y)p j (x) = qT (y)A(−y)̂p(x), (4.11)

(x + y)
n−1∑
j=0

q̂ j (y) p̂ j (x) = qT (y)A(x )̂p(x). (4.12)

5. Approximation problems and perfect duality

We will associate a chain of Markov functions associated with measures dα and dβ by taking
the Stieltjes’ transforms of the corresponding measures as well as their reflected, with respect to
the origin, images.

Definition 5.1. Define

Wβ(z) =
∫

1
z − y

dβ(y), Wα∗(z) =
∫

1
z + x

dα(x),

Wα∗β(z) = −
∫∫

1
(z + x)(x + y)

dα(x)dβ(y),

Wβα∗(z) =
∫∫

1
(z − y)(y + x)

dα(x)dβ(y). (5.1)

We recall now an important notion of a Nikishin system associated with two measures (see [28],
p. 142, called there a MT system of order 2).
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Definition 5.2. Given two measures dµ1 and dµ2 with disjoint supports ∆1, ∆2 respectively, a
Nikishin system of order 2 is a pair of functions

f1(z) =
∫
∆1

dµ1(x1)

z − x1
, f2(z) =

∫
∆1

dµ1(x1)

z − x1

∫
∆2

dµ2(x2)

x1 − x2
.

Remark 5.1. The definition of a Nikishin system depends on the order in which one “folds”
measures. If one starts from dµ2, rather than dµ1 one obtains a priory a different system. As we
show below the relation between these two Nikishin systems is in fact of central importance to
the theory we are developing.

The following elementary observation provides the proper framework for our discussion.

Lemma 5.1. Let dα∗ denote the measure obtained from dα by reflecting the support of dα
with respect to the origin. Then Wβ ,Wβα∗ and Wα∗ ,Wα∗β are Nikishin systems associated with
measures dβ and dα∗ with no predetermined ordering of measures.

The relation between these two Nikishin systems can now be readily obtained.

Lemma 5.2.

Wβ(z)Wα∗(z) = Wβα∗(z)+Wα∗β(z). (5.2)

Proof. Elementary computation gives:

Wβ(z)Wα∗(z) =
∫∫

1
(z − y)(z + x)

dα(x)dβ(y)

=

∫∫
1

(x + y)

[
1

z − y
−

1
z + x

]
dα(x)dβ(y),

which implies the claim. �

Remark 5.2. Eq. (5.2) was introduced in [26] for the DP peakons (see Lemma 4.7 there).
Observe that this formula is valid for any Nikishin system of order 2.

We formulate now the main approximation problem, modeled after that of [26].

Definition 5.3. Let n ≥ 1. Given two Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β we seek poly-
nomials Q(z), degQ = n, Pβ(z), degPβ = n − 1 and Pβα∗(z), degPβα∗ = n − 1, which satisfy
Padé-like approximation conditions as z→∞, z ∈ C±:

Q(z)Wβ(z)− Pβ(z) = O
(

1
z

)
, (5.3a)

Q(z)Wβα∗(z)− Pβα∗(z) = O
(

1
z

)
, (5.3b)

Q(z)Wα∗β(z)− Pβ(z)Wα∗(z)+ Pβα∗(z) = O
(

1

zn+1

)
. (5.3c)

Remark 5.3. In the case that both measures have compact support we can remove the condition
that z ∈ C± since all the functions involved are then holomorphic around z = ∞.
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Remark 5.4. In the terminology used for example in [33] the triplets of polynomials Q, Pβ ,
Pβα∗ provide a Hermite–Padé approximation of type I to the Nikishin system Wβ ,Wβα∗ and,
simultaneously, a Hermite–Padé approximation of type I I to the Nikishin system Wα∗ ,Wα∗β .

Simultaneous approximations were first studied in [30]. Their algebraic properties were in-
vestigated in [32,31] via an approach similar to the one we employed above.

Definition 5.4. We call the left hand sides of approximation problems (5.3) Rβ , Rβα∗ and Rα∗β
respectively, referring to them as remainders.

The relation of the approximation problem (5.3) to the theory of biorthogonal polynomials q
and p is the subject of the next theorem.

Theorem 5.1. Let qn(y) be defined as in (2.10), and let us set Q(z) = qn(z) Then Q(z) is the
unique, up to a multiplicative constant, solution of the approximation problem (5.3). Moreover,
Pβ , Pβα∗ and all the remainders Rβ , Rβα∗ and Rα∗β are uniquely determined from Q with the
help of the formulas:

Pβ(z) =
∫

Q(z)− Q(y)

z − y
dβ(y), Pβα∗(z) =

∫∫
Q(z)− Q(y)

(z − y)(x + y)
dα(x)dβ(y), (5.4a)

Rβ(z) =
∫

Q(y)

z − y
dβ(y), Rβα∗(z) =

∫∫
Q(y)

(z − y)(x + y)
dα(x)dβ(y), (5.4b)

Rα∗β(z) = −
∫∫

Q(y)

(z + x)(x + y)
dα(x)dβ(y) =

∫
Rβ(x)

z − x
dα∗(x). (5.4c)

Proof. We start with the first approximation problem involving Q(z)Wβ(z). Writing explicitly
its first term we get:∫

Q(z)

z − y
dβ(y) =

∫
Q(z)− Q(y)

z − y
dβ(y)+

∫
Q(y)

z − y
dβ(y).

Since
∫ Q(z)−Q(y)

z−y dβ(y) is a polynomial in z of degree n − 1, while
∫ Q(y)

z−y dβ(y) = O( 1
z ),

we get the first and the third formulas. The second and fourth formulas are obtained in an
analogous way from the second approximation problem. Furthermore, to get the last formula
we compute Pβ and Pβα∗ from the first two approximation problems and substitute into the third
approximation problem, using on the way Lemma 5.2, to obtain:

RβWα∗ − Rβα∗ = Rα∗β .

Substituting explicit formulas for Rβ and Rβα∗ gives the final formula. To see that Q(z) is pro-
portional to qn(z) we rewrite −Rα∗β as:∫∫

Q(y)

(z + x)(x + y)
dα(x)dβ(y) =

∫∫
Q(y)

(x + y)

[
1

z + x
−

1− (−( x
z ))

n

z + x

]
dα(x)dβ(y)

+

∫∫ n−1∑
j=0

(−x) j

z j+1

Q(y)

(x + y)(z + x)
dαdβ

=

∫∫
Q(y)

(x + y)

[
(−x

z )
n

z + x

]
dα(x)dβ(y)+

∫∫ n−1∑
j=0

(−x) j

z j+1

Q(y)

(x + y)(z + x)
dαdβ
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To finish the argument we observe that the first term is already O( 1
zn+1 ), hence the second

term must vanish. This gives:∫∫
x j Q(y)

x + y
dα(x)dβ(y) = 0, 0 ≤ j ≤ n − 1,

which characterizes uniquely (up to a multiplicative constant) the polynomial qn . �

Remark 5.5. In the body of the proof we used an equivalent form of the third approximation
condition, namely

RβWα∗(z)− Rβα∗(z) = Rα∗β(z) = O
(

1

zn+1

)
. (5.5)

By symmetry, we can consider the Nikishin systems associated with measures α and β∗

with the corresponding Markov functions Wα,Wαβ∗ and Wβ∗ ,Wβ∗α . We then have an obvious
interpretation of the polynomials pn .

Theorem 5.2. Let pn(x) be defined as in (2.10), and let us set Q(z) = pn(z). Then Q(z) is
the unique, up to a multiplicative constant, solution of the approximation problem for z → ∞,
z ∈ C±:

Q(z)Wα(z)− Pα(z) = O
(

1
z

)
, (5.6a)

Q(z)Wαβ∗(z)− Pαβ∗(z) = O
(

1
z

)
, (5.6b)

Q(z)Wβ∗α(z)− Pα(z)Wβ∗(z)+ Pαβ∗(z) = O
(

1

zn+1

)
, (5.6c)

where Pα, Pαβ∗ are given by formulas of Theorem 5.1 after switching α with β.

Clearly, one does not need to go to four different types of Nikishin systems in order to
characterize qn and pn . The following corollary is an alternative characterization of biorthogonal
polynomials which uses only the first pair of Nikishin systems.

Corollary 5.1. Consider the Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β . Then the pair of
biorthogonal polynomials {qn, pn} solves:

1. Q(z) = qn(z) solves Hermite–Padé approximations given by Eq. (5.3),

Q(z)Wβ(z)− Pβ(z) = O
(

1
z

)
,

Q(z)Wβα∗(z)− Pβα∗(z) = O
(

1
z

)
,

Q(z)Wα∗β(z)− Pβ(z)Wα∗(z)+ Pβα∗(z) = O
(

1

zn+1

)
.
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2. Q(z) = pn(−z) solves switched (Type I with Type II) Hermite–Padé approximations

Q(z)Wα∗(z)− Pα∗(z) = O
(

1
z

)
, (5.7a)

Q(z)Wα∗β(z)− Pα∗β(z) = O
(

1
z

)
, (5.7b)

Q(z)Wβα∗(z)− Pα∗(z)Wβ(z)+ Pα∗β(z) = O
(

1

zn+1

)
. (5.7c)

We finish this section with a few results needed for the Riemann–Hilbert problem approach to
biorthogonal polynomials {qn, pn} which will be presented in the next section.

Definition 5.5. We define the auxiliary vectors in addition to the main polynomial vectors
q

0
(w) := q(w) and p

0
(z) := p(z), as

q
1
(w) :=

∫
q(y)

dβ(y)
w − y

, q
2
(w) :=

∫
q1(x)

w − x
dα∗(x), (5.8)

p
1
(z) :=

∫
p(x)dα(x)

z − x
, p

2
(z) :=

∫
p1(y)

z − y
dβ∗(y). (5.9)

Moreover,

p̂
1
(z) := L̂−1

(
p

1
(z)+

1
β0
〈p|1〉

)
= L̂−1p

1
(z)− 1, (5.10)

p̂2(z) :=
∫

p̂1(y)

z − y
dβ∗(y). (5.11)

Here 1 is the vector of ones.1

Remark 5.6. Note that the definition above unifies the approximants and their respective
remainders (see Theorem 5.1), thus, for example, q

1
(w) = Rβ(w),q

2
(w) = Rα∗β(w) etc. The

definition of “hatted” quantities is justified below.

Theorem 5.3 (Extended Christoffel–Darboux Identities). Let a, b = 0, . . . 2. Then

(w + z)qT
a
(w)Π p

b
(z) = qT

a
(w)A(−w)̂p

b
(z)− F(w, z)ab (5.12)

where

F(w, z) =

0 0 1
0 1 Wβ∗(z)+Wβ(w)

1 Wα(z)+Wα∗(w) Wα∗(w)Wβ∗(z)+Wα∗β(w)+Wβ∗α(z)

 . (5.13)

1 The formula β−1
0 〈̂pn , 1〉 = −1 follows directly from the determinantal expression in Proposition 4.2.
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Proof. The proof goes by repeated applications of the Christoffel–Darboux Identities given
by Theorem 4.1 and Padé approximation conditions (5.3). The details have been relegated to
Appendix A. �

We point out that if we set w = −z in the CDI’s contained in Theorem 5.3, the left hand side
vanishes identically and the right hand side contains terms of the form qa(−z)A(z)̂p

b
(z) minus

Fab(−z, z). The main observation is that the second term is constant, independent of both z and
n, and hence one ends up with the perfect pairing (see [5]) between the auxiliary vectors. For
the reader’s convenience we recall the definition of A(z) to emphasize the implicit dependence
on the index n hidden in the projection Π .

Theorem 5.4. (Perfect Duality)
Let

J =

0 0 1
0 1 0
1 0 0

 .
Then

qT
a
(−z)A(z)̂p

b
(z) = Jab, where A(z) = [(z − X)L̂,Π ].

Proof. The only nontrivial entry to check is (2, 2). In this case, after one substitutes w = −z
into Wα∗(w)Wβ∗(z)+Wα∗β(w)+Wβ∗α(z), one obtains the identity of Lemma 5.2. �

There also exists an analog of the extended Christoffel–Darboux identities of Theorem 5.3 for
the “hatted” quantities.

We first define:

Definition 5.6. For a = 0, 1, 2,

q̂T
a
:= qT

a
L̂. (5.14)

The following identities follow directly from the respective definitions.

Lemma 5.3.

wq̂T
a (w) =

{
qT

a (w)Y
T L̂, a = 0, 1

qT
2 (w)Y

T L̂ − 〈1|̂qT
0 〉, a = 2.

(z − X)L̂p̂b(z) =


0, b = 0,
〈p0|z + y〉

β0
, b = 1,

−〈p0|1〉 +
〈p0|z + y〉Wβ∗(z)

β0
, b = 2.

Theorem 5.5 (Extended Christoffel–Darboux Identities for q̂a, p̂b). Let a, b = 0, . . . 2. Then

(w + z)̂qT
a (w)Π p̂b(z) = qT

a (w)A(z)̂pb(z)− F̂(w, z)ab (5.15)

where

F̂(w, z) = F(w, z)−
w + z

β0

0 1 Wβ∗(z)
0 Wβ(z) Wβ(w)Wβ∗(z)
1 Wα∗β∗(w) Wα∗β∗(w)Wβ∗(z)

 . (5.16)
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Proof. We give an outline of the proof. For a = 0, 1, in view of Lemma 5.3

(w + z)̂qT
a (w)Π p̂b(z) = qT

a (w)A(z)̂pb(z)+ qT
a (w)Π (z − X)L̂p̂b(z).

The second term equals, again by Lemma 5.3,

qT
a (w)Π


0, b = 0,
〈p0|z + y〉

β0
, b = 1,

−〈p0|1〉 +
〈p0|z + y〉Wβ∗(z)

β0
, b = 2.

Now, one goes case by case, using biorthogonality of qT
0 and p0, and the definition of qT

1 (w).
After a few elementary steps one arrives at the claimed result. The computation for a = 2 is only
slightly more involved. From Lemma 5.3 we obtain:

(w + z)̂qT
2 (w)Π p̂b(z) = qT

2 (w)A(z)̂pb(z)− 〈1|̂q0〉Π p̂b(z)+ qT
2 (w)Π (z − X)L̂p̂b(z).

In view of biorthogonality of q̂T
0 and p̂, after some intermediate computations, one obtains:

〈1|̂q0〉Π p̂b(z) =


1, b = 0

Wα(z)+
〈1|1〉
β0

, b = 1,

Wβ∗α(z)+
〈1|1〉
β0

Wβ∗(z), b = 2.

Likewise,

qT
2 (w)Π (z − X)L̂p̂b(z) =



0, b = 0
w + z

β0
Wα∗β(w)−Wα∗(w)+

〈1|1〉
β0

, b = 1,

w + z

β0
Wβ∗(z)Wα∗(w)−Wα∗β(w)

−Wβ∗(z)Wα∗(w)+
〈1|1〉
β0

Wβ∗(z), b = 2,

and the claim follows. �

6. Riemann–Hilbert problems

In this section we set up two Riemann–Hilbert problems characterizing the Cauchy BOPs
that enter the Christoffel–Darboux identities of the previous section. This is done in anticipation
of possible applications to the study of universality for the corresponding two-matrix model.
Moreover, since the Christoffel–Darboux kernels contain also the hatted polynomials, it is useful
to formulate the Riemann–Hilbert problems for those polynomials as well. Similar Riemann–
Hilbert problems were posed in [1,33].

We will also make the assumption (confined to this section) that the measures dα, dβ are
absolutely continuous with respect to Lebesgue’s measure on the respective axes. Thus one

can write dα
dx = e−

U (x)
h̄ ,

dβ
dy = e−

V (y)
h̄ , for the respective (positive!) densities on the respective

supports: the signs in the exponents are conventional so as to have (in the case of an unbounded
support) the potentials U, V bounded from below. The constant h̄ is only for convenience when
studying the asymptotics of biorthogonal polynomials for large degrees (small h̄).
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Since the Christoffel–Darboux identities involve the expressions q
a
Ap̂

b
, we are naturally led

to characterize the sequences q and p̂. However, the other sequences can be characterized in a
similar manner by swapping the roles of the relevant measures and symbols.

6.1. Riemann–Hilbert problem for the q-BOPs

We will be describing here only the RHP characterizing the polynomials qn(y), where the
characterization of the polynomials pn(x) is obtained by simply interchanging α with β (see for
example Theorem 5.2).

We consider the real axis R oriented as usual and define

Eq(n)0 (w) :=
[
qn−2(w) qn−1(w) qn(w)

]t
, Eq(n)

1
(w) :=

∫
Eq(n)(y)

dβ(y)
w − y

,

Eq(n)
2
(w) :=

∫
Eq(n)1 (x)

dα∗(x)
w − x

. (6.1)

For simplicity of notation we will suppress the superscript (n) in most of the following discus-
sions, only to restore it when necessary for clarity; the main point is that an arrow on top of the
corresponding vector will denote a “window” of three consecutive entries of either the ordinary
vector q (index a = 0), or the auxiliary vectors q

a
(index a = 1, 2, see Definition 5.5) which, as

we might recall at this point, combine the polynomials and the corresponding remainders in the
Hermite–Padé approximation problem given by Theorem 5.1. Some simple observations are in
order. The vector Eq

1
(w) is an analytic vector which has a jump discontinuity on the support of

dβ contained in the positive real axis. As w→∞ (away from the support of dβ) it decays as 1
w

.
Its jump discontinuity is (using Plemelj formula)

Eq
1
(w)+ = Eq1

(w)− − 2π i
dβ
dw
Eq

0
(w), w ∈ supp(dβ). (6.2)

Looking at the leading term at w = ∞ we see that

Eq
1
(w) =

1
w

[
ηn−2 ηn−1 ηn

]t
+O(1/w2). (6.3)

The vector Eq
2
(w) is also analytic with a jump discontinuity on the reflected support of dα (i.e. on

supp(dα∗)). In view of Theorem 5.1, recalling that q2 are remainders of the Hermite–Padè ap-
proximation problem of type II, we easily see that

Eq
2
(w) =

[
cn−2

(−w)n−1

cn−1

(−w)n

cn

(−w)n+1

]t

(1+O(1/w)),

cn := 〈x
n
|qn〉 =

√
Dn+1

Dn
> 0. (6.4)

The jump discontinuity of Eq
2

is

Eq
2
(w)+ = Eq2

(w)− − 2π i
dα∗

dw
Eq

1
(w) w ∈ supp(dα∗). (6.5)
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The behavior of Eq
0
(w) at infinity is

Eq
0
(w) =

[
wn−2

cn−2

wn−1

cn−1

wn

cn

]t

(1+O(1/w)), (6.6)

with the same cn’s as in (6.4).
Define the matrix

Γ (w) :=

=:Nq︷ ︸︸ ︷1 −cnηn 0
0 1 0

0 (−1)n−1 ηn−2

cn−2
1




0 0 cn

0
1

ηn−1
0

(−1)n

cn−2
0 0


×[Eq(n)

0
(w), Eq(n)

1
(w), Eq(n)

2
(w)] (6.7)

Proposition 6.1. The matrix Γ (w) is analytic on C\supp(dβ)∪supp(dα∗). Moreover, it satisfies
the jump conditions

Γ (w)+ = Γ (w)−

1 −2π i
dβ
dw

0

0 1 0
0 0 1

 , w ∈ supp(dβ) ⊂ R+

Γ (w)+ = Γ (w)−

1 0 0

0 1 −2π i
dα∗

dw
0 0 1

 , w ∈ supp(dα∗) ⊂ R−

(6.8)

and its asymptotic behavior at w = ∞ is

Γ (w) = (1+O(w−1))

wn 0
0 w−1 0
0 0 w−n+1

 . (6.9)

Moreover, Γ (w) can be written as:

Γ (w) =


cnηn 0 0

0
1

ηn−1
0

0 0
(−1)n−1ηn−2

cn−2


q̂n−1 q̂1,n−1 q̂2,n−1

qn−1 q1,n−1 q2,n−1
q̂n−2 q̂1,n−2 q̂2,n−2

 . (6.10)

Proof. All the properties listed are obtained from elementary matrix computations. �

Remark 6.1. An analogous problem with the roles of α, β, etc., interchanged, characterizes the
monic orthogonal polynomials pn−1(x) of degree n − 1 in x .

Corollary 6.1. Given n ∈ N, the absolutely continuous measures dβ ⊂ R+ and dα∗ ⊂ R−, and
assuming the existence of all the bimoments Ii j there exists a unique matrix Γ (w) solving the
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RHP specified by Eqs. (6.8), (6.9). The solution characterizes uniquely the polynomials qn−1 as
well as q̂n−1. In particular, the normalization constants cn−1, ηn−1 (i.e. the “norm” of the monic
orthogonal polynomials and the β average of the qn−1) are read off the following expansions

Γ2,1(w) =
1

cn−1ηn−1
wn−1

+O(wn−2),

Γ2,3(w) = (−1)n
cn−1

ηn−1wn +O(w−n−1) (6.11)

or, equivalently,

1

η2
n−1

= (−1)n lim
w→∞

wΓ2,1(w)Γ2,3(w), c2
n−1 = (−1)n lim

w→∞
w2n−1 Γ2,3(w)

Γ2,1(w)
. (6.12)

Proof. Given dβ and dα∗ it suffices to construct the Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β

followed by solving the Hermite–Padé approximation problems given by Eqs. (5.3). The
existence of the solution is ensured by the existence of all bimoments Ii j (see Eq. (2.4) for the
definition). Then one constructs the polynomials q̂ j , finally the matrix Γ (w) using Eq. (6.10). By
construction Γ (w) satisfies the Riemann–Hilbert factorization problem specified by Eqs. (6.8)
and (6.9). Since the determinant of Γ (w) is constant in w (and equal to one), the solution of
the Riemann–Hilbert problem is unique. The formulas for ηn−1 and cn−1 follow by elementary
matrix computations. �

Remark 6.2. By multiplication on the right with a diagonal matrix Y(w) := Γ (w)diag(exp
(− 2V+U ?

3h̄ ), exp( V−U ?

3h̄ ), exp( 2U ?
+V

3h̄ )) one can reduce the RHP to an equivalent one with constant
jumps. It then follows that Y(w) solves a linear ODE with the same singularities as V ′,U ?′;
for example if U ′, V ′ are rational functions then so is the coefficient matrix of the ODE and
the orders of poles do not exceed those of V ′,U ′. In this case it can be shown [6] that the
principal minors of the matrix of bimoments are isomonodromic tau-functions in the sense of
Jimbo–Miwa–Ueno [22].

6.2. Riemann–Hilbert problem for the p̂-BOPs

Referring to the defining properties of p̂n(x) as indicated in Proposition 4.2 we are going to
define a second 3× 3 local RHP that characterizes them.

Define

Êp0(z) :=
[

p̂n−2(z) p̂n−1(z) p̂n(z)
]t (6.13)

and Êp1,2(z) as the same windows of the auxiliary vectors p̂1,2 introduced in Definition 5.5. We
first study the large z asymptotic behavior of p̂0,n(z), p̂1,n(z), p̂2,n(z).

Lemma 6.1. The asymptotic behavior at z→∞, z ∈ C± is given by:

p̂0,n(z) = −
ηn

cn
zn(1+O(1/z)), (6.14)

p̂1,n(z) = −1+O(1/z), (6.15)

p̂2,n(z) = (−1)n
cn+1ηn+1

zn+2 (1+O(1/z)). (6.16)
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Proof. We give a proof for p̂1,n(z) =
∫ p̂0,n(x)

z−x dα(x)+ 1
β0
〈 p̂0,n|1〉. The first term is O( 1

z ), while
the second term can be computed using biorthogonality and the fact that p̂0,n = −(ηn p0,n +

ηn−1 p0,n−1 + · · · + η0 p0,0). Thus the second term equals − η0
β0
〈p0,0|1〉 = −1, since η0 =

q0β0, hence the claim for p̂1,n(z) follows. The remaining statements are proved in a similar
manner. �

For reasons of normalization, and in full analogy with Eq. (6.7), we arrange the window of all
p̂s wave vectors into the matrix

Γ̂ (z) =

=:N p̂︷ ︸︸ ︷
0 0 −

cn

ηn
0 −1 0

(−1)n

cn−1ηn−1
0 0


1 −1 0

0 1 0
0 −1 1

 [
Êp(z), Êp1(z), Êp2(z)

]
. (6.17)

Proposition 6.2. The matrix Γ̂ (z) is analytic in C\(supp(dα)∪supp(dβ∗)). Moreover, it satisfies
the jump conditions

Γ̂ (z)+ = Γ̂ (z)−

1 −2π i
dα
dz

0

0 1 0
0 0 1

 , z ∈ supp(dα) ⊆ R+ (6.18)

Γ̂ (z)+ = Γ̂ (z)−

1 0 0

0 1 −2π i
dβ∗

dz
0 0 1

 , z ∈ supp(dβ∗) ⊆ R−,

and its asymptotic behavior at z = ∞ is

Γ̂ (z) =
(

1+O
(

1
z

))zn 0 0
0 1 0

0 0
1
zn

 . (6.19)

Γ̂ (z) can be written as:

Γ̂ (z) =


cn 0 0
0 −1 0

0 0
(−1)n

cn−1


 p0,n p1,n p2,n

p̂0,n−1 p̂1,n−1 p̂2,n−1
p0,n−1 p1,n−1 p2,n−1

 . (6.20)

The existence and uniqueness of the solution of the Riemann–Hilbert problem (6.18), (6.19)
is proved in a similar way to the proof of Corollary 6.1.

Corollary 6.2. Given n ∈ N, the absolutely continuous measures dα ⊂ R+ and dβ∗ ⊂ R−,
and assuming the existence of all the bimoments Ii j there exists a unique matrix Γ (z) solving the
RHP specified by Eqs. (6.18), (6.19). The solution characterizes uniquely the polynomials p̂n−1
and pn .
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Appendix. Proof of extended Christoffel–Darboux identities

Theorem A.1 (Extended Christoffel–Darboux Identities Theorem 5.3). Let a, b = 0, . . . 2. Then

(w + z)qT
a
(w)Π p

b
(z) = qT

a
(w)A(−w)̂p

b
(z)− F(w, z)ab (A.1)

where

F(w, z) =

0 0 1
0 1 Wβ∗(z)+Wβ(w)

1 Wα(z)+Wα∗(w) Wα∗(w)Wβ∗(z)+Wα∗β(w)+Wβ∗α(z)

 . (A.2)

Proof. The proof goes by repeated applications of the Christoffel–Darboux Identities given by
Theorem 4.1 and Padé approximation conditions (5.3). We observe that all quantities with labels
a = 1, 2 have asymptotic expansions around∞ in the open half-planes C± (they are holomor-
phic expansions in the case of compactly supported measures dα, dβ). We will subsequently call
the part of the expansion corresponding to negative powers of z or w, of a function f (z, w) the
regular part of f and denote it ( f (z, w))−,z , ( f (z, w))−,w respectively. In all cases the regular
parts are obtained by subtracting certain polynomial expressions from functions holomorphic in
C± and as such the regular parts are holomorphic in these half-planes with vanishing limits at
∞ approach from within the respective half-planes.

We will only indicate the main steps in computations for each entry, denoted below by (a, b).
(0, 1): With the help of the first approximation condition, we have

qT
1 (w)Π p0(z) =

(∫
qT

0 (w)Π p0(z)

w − y
dβ(y)

)
−,w

.

Using the Christoffel–Darboux Identities and the notation of Corollary 4.3 we get

qT
1 (w)Π p0(z) =

(∫
qT

0 (w)A(−w)̂p0(z)

(w + z)(w − y)
dβ(y)

)
−,w

=

∫
qT

0 (y)A(−w)̂p0(z)

(w + z)(w − y)
dβ(y)+

(∫
(qT

0 (w)− qT
0 (y))A(−w)̂p0(z)

(w + z)(w − y)
dβ(y)

)
−,w

,
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where we dropped the projection sign in the first term because A(−w) is a polynomial of degree
one. Using now the partial fraction decomposition

1
(w + z)(w − y)

=
1

z + y

(
1

w − y
−

1
w + z

)
,

we get that(∫
(qT

0 (w)− qT
0 (y))A(−w)̂p0(z)

(w + z)(w − y)
dβ(y)

)
−,w

= −

(∫
(qT

0 (−z)− qT
0 (y))[Π , (−z − YT )L̂ ]̂p0(z)

(w + z)(z + y)
dβ(y)

)
−,w

.

Observe that (−z − YT )L̂p̂0(z) = 0, qT
0 (−z)(−z − YT )L̂ = 0 and qT

0 (y)(−z − YT )L̂ =
−(y + z)qT

0 (y)L̂ so(∫
(qT

0 (w)− qT
0 (y))A(−w)̂p0(z)

(w + z)(w − y)
dβ(y)

)
−,w

=

(∫
(qT

0 (y))(z + YT )L̂Π p̂0(z)

(w + z)(z + y)
dβ(y)

)
−,w

=

∫
qT

0 (y)L̂Π p̂0(z)

w + z
dβ(y) = 0,

because the β averages of q̂ are zero. Thus

(w + z)qT
1 (w)Π p0(z) = qT

1 (w)A(−w)̂p0(z).

(2, 0): Using the second Padè approximation condition and biorthogonality we easily obtain

RT
βα∗(w)Π p0(z) =

RT
βα∗(w)A(−w)̂p0(z)+ 1

w + z
.

Now, substituting this formula into the formula for the third approximation condition, written
as in Eq. (5.5), gives:

RT
α∗β(w)Π p0(z) =

RT
α∗β(w)A(−w)̂p0(z)− 1

w + z
.

Restoring the collective notation of qa,pa we obtain :

(w + z)qT
2 (w)Π p0(z) = qT

2 (w)A(−w)̂p0(z)− 1.

(0, 1): To compute qT
0 (w)Π p1(z) we use the Padè approximation conditions (5.6), in particular

the first condition gives us:

qT
0 (w)Π p0(z)Wα(z)− qT

0 (w)Π Pα(z) = qT
0 (w)Π Rα(z).
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We observe that this time we have to project on the negative powers of z. Thus the goal is to
compute

(
qT

0 (w)Π p0(z)Wα(z)
)
−,z . We have(∫

qT
0 (w)Π p0(z)dα(x)

z − x

)
−,z

=

(∫
qT

0 (w)A(−w)̂p0(z)dα(x)

(z − x)(w + z)

)
−,z

=

(∫
qT

0 (w)A(−w)̂p0(x)dα(x)

(z − x)(w + z)

)
−,z

+

(∫
qT

0 (w)A(−w)(̂p0(z)− p̂0(x))dα(x)

(z − x)(w + z)

)
−,z

.

We see that the first term is already regular in z. To treat the second term we perform the partial
fraction expansion 1

(z−x)(w+z) =
1

w+x [
1

z−x −
1

w+z ] and observe that the term with 1
z−x does not

contribute, while the second term

−

(∫
qT

0 (w)A(−w)(̂p0(z)− p̂0(x))dα(x)

(w + x)(w + z)

)
−,z

= −

(∫
qT

0 (w)A(−w)(̂p0(−w)− p̂0(x))dα(x)

(w + x)(w + z)

)
−,z

=

∫
qT

0 (w)A(−w)̂p0(x)dα(x)

(w + x)(w + z)
.

Thus

qT
0 (w)Π p1(z) =

qT
0 (w)A(−w)L̂

−1p1(z)

w + z
−

qT
0 (w)A(−w)L̂

−1p1(−w)

w + z
.

In other words,

(w + z)qT
0 (w)Π p1(z) = qT

0 (w)A(−w)L̂
−1(p1(z)− p1(−w)).

More explicitly, the second term above can be rewritten as

−qT
0 (w)A(−w)L̂

−1p1(−w) = qT
0 (w)Π

∫
p(x)dα(x).

On the other hand

qT
0 (w)A(−w)

∫∫
p̂(x)dα(x)dβ(y)
β0(x + y)

= qT
0 (w)Π

∫∫
(w + x)p(x)dα(x)dβ(y)

β0(x + y)

= qT
0 (w)Π

∫
p(x)dα(x)+ qT

0 (w)Π
∫∫

(w − y)p(x)dα(x)dβ(y)
β0(x + y)

.

Now the second term qT
0 (w)Π

∫∫ (w−y)p(x)dα(x)dβ(y)
β0(x+y) = 0 because qT

0 (w)Π 〈p(x)|•〉 is a pro-

jector on polynomials of degree ≤ n − 1 and thus wqT
0 (w)Π 〈p(x)|1〉 − qT

0 (w)Π 〈p(x)|y〉 =
w − w = 0, hence

(w + z)qT
0 (w)Π p1(z) = qT

0 (w)A(−w)̂p1(z),

where p̂1(z) = L̂−1(p
1
(z)+ 1

β0
〈p|1〉) as advertised earlier.

(1, 1): We use again the Padè approximation conditions (5.6), this time multiplying on the left
by qT

1 (w)Π and projecting on the negative powers of z, to obtain:(
qT

1 (w)Π p0(z)Wα(z)
)
−,z
= qT

1 (w)Π p1(z).
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With the help of the result for the (0, 1) entry, after carrying out the projection, we obtain

(w + z)qT
1 (w)Π p1(z) = qT

1 (w)A(−w)̂p1(z)

+qT
1 (w)A(−w)

(∫
p̂(x)dα(x)
w + x

−
1
β0
〈̂p|1〉

)
.

We claim that

qT
1 (w)A(−w)

(∫
p̂(x)dα(x)
w + x

−
1
β0
〈̂p|1〉

)
= −1.

Indeed, the left hand side of the equation equals:

1
β0

qT
1 (w)Π

∫∫
(y − w)p(x)dα(x)dβ(y)

x + y
=

1
β0

∫
qT

0 (ξ)

w − ξ
Π (〈p|y〉 − w〈p|1〉)dβ(ξ)

=
1
β0

∫
ξ − w

w − ξ
dβ(ξ) = −1.

Thus

(w + z)qT
1 (w)Π p1(z) = qT

1 (w)A(−w)̂p1(z)− 1.

(2, 1): This time we use projections in both variables, one at a time, and compare the results.
First, let us use the projections in z. Thus

qT
2 (w)Π p1(z) =

(
qT

2 (w)Π p0(z)Wα(z)
)
−,z
.

Carrying out all the projections we obtain an expression of the form:

qT
2 (w)Π p1(z) =

qT
2 (w)A(−w)̂p1(z)

w + z
−

Wα(z)+ F(w)

w + z
.

Observe that, since qT
2 (w) is O(1/w) and the first term on the right is much smaller, F(w) =

O(1). More precisely, by comparing the terms at 1/w on both sides, we conclude that in fact,
F(w) = O(1/w). Now, we turn to the projection in w, resulting in an expression of the form:

qT
2 (w)Π p1(z) =

qT
2 (w)A(−w)̂p1(z)

w + z
−

Wα∗(w)+ G(z)

w + z
.

This, and the fact that F(w) = O(1/w), implies that F(w) = Wα∗(w),G(z) = Wα(z). Hence

(w + z)qT
2 (w)Π p1(z) = qT

2 (w)A(−w)̂p1(z)− (Wα(z)+Wα∗(w)).

(0, 2): We use the projection in the z variable and the fact that by the Padè approximation condi-
tion (5.5), after exchanging α with β, p2(z) = p1(z)Wβ∗(z) − Rαβ∗(z). Using the result for the
(0, 1) entry we obtain:

qT
0 (w)Π p2(z) =

qT
0 (w)A(−w)p1(z)Wβ∗(z)

w + z
−

(
qT

0 (w)A(−w)p0(z)Wαβ∗(z)

w + z

)
−,z

.

Carrying out the projection and reassembling terms according to the definition of p̂2(z) we ob-
tain:

qT
0 (w)Π p2(z) =

qT
0 (w)A(−w)̂p2(z)

w + z
−

qT
0 (w)Π 〈p0|1〉

w + z
=

qT
0 (w)A(−w)̂p2(z)

w + z
−

1
w + z

.
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(1, 2): We use the projection in the z variable and the Padè approximation condition p2 = p1(z)
Wβ∗(z)− Rαβ∗(z). Consequently,

qT
1 (w)Π p2(z) = qT

1 (w)Π p1(z)Wβ∗(z)− qT
1 (w)Π Rαβ∗(z)

=

(
qT

1 (w)A(−w)̂p1(z)− 1

w + z

)
Wβ∗(z) −

(
qT

1 (w)Π p0(z)Wαβ∗(z)
)
−,z
.

Using the existing identities and carrying out the projection in the second term we obtain:

(w + z)qT
1 (w)Π p2(z) = qT

1 (w)A(−w)̂p2(z)−Wβ∗(z)−Wβ(w).

(2, 2): The computation is similar to the one for (1, 2) entry; we use both projections. The pro-
jection in the z variable gives:

qT
2 (w)Π p2(z) =

qT
2 (w)A(−w)̂p2(z)

w + z
+

F(w)− (Wα∗(w)+Wα(z))Wβ∗(z)+Wαβ∗(z)

w + z
.

On the other hand, carrying out the projection in the w variable we obtain:

qT
2 (w)Π p2(z) =

qT
2 (w)A(−w)̂p2(z)

w + z
+

G(z)− (Wβ(w)+Wβ∗(z))Wα∗(w)+Wβα∗(w)

w + z
.

Upon comparing the two expressions and using Lemma 5.2 we obtain F(w) = −Wα∗β(w),
hence

(w + z)qT
2 (w)Π p2(z) = qT

2 (w)A(−w)̂p2(z)−Wα∗β(w)

− (Wα∗(w)+Wα(z))Wβ∗(z)+Wαβ∗(z)

= qT
2 (w)[Π ,A(−w)]̂p2(z)− (Wα∗(w)Wβ∗(z)+Wα∗β(w)+Wβ∗α(z)),

where in the last step we used again Lemma 5.2. �
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