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ABSTRACT 

We characterize a wide class of maximal algebras of Toeplitz plus Hankel matrices 
by exploiting properties of displacement operators. 

1. INTRODUCTION 

Various authors used algebras of Toeplitz plus Hankel matrices in applica- 
tion areas such as spectral problems for Toeplitz matrices [2, 3], precondition- 
ing techniques for the conjugate gradient method [8, 13], and displacement 
operator based decompositions of matrices [5, 6, 9]. They introduced one or 
more algebras in a rather ad hoc fashion. In this paper we study algebras of 
Toeplitz plus Hankel matrices in a systematic way. In particular we give a 
precise characterization of a wide class of these algebras by using the 
displacement operators as our main tool and by developing some results 
obtained in [1] (see also [4]). 

A systematic study of algebras of Toeplitz matrices has been performed in 
[14] with a more direct approach. See also [11]. 

The outline of the paper is as follows. In Section 2 we recall some 
relations known as orthogonality conditions for displacement operators. In 
Section 3 we give a characterization of Toeplitz plus Hankel structure by 
means of a specific displacement operator. In Section 4 we state the main 
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result of the paper concerning certain maximal algebras of Toeplitz plus 
Hankel matrices. In Section 5 we present some examples. 

Throughout the paper we denote by C the complex field and by C" and 
C "×" the spaces of the n-vectors and of the n × n matrices with entries in C 
respectively. We denote by e~, i = 1 . . . . .  n, the vectors of the canonical basis 
of C", and we set e = E~= 1el . We denote by J E C "×" the reversion matrix, 
i.e. j = (~i , , - j+l) ,  i , j  = 1, , n, where 6p q = 1 if p = q and 5_ q = 0 
otherwise. Finally, by 3-and  ",,~ we denote the linear spaces of Woep~tz and 
Hankel matrices respectively [A = (ai, j )  is a Toeplitz matrix if ai. j = a)_i; 
B = (bi. i )  is a Hankel matrix if b~, i =/3j+i]. 

2. DISPLACEMENT OPERATORS AND 
ORTHOGONALITY CONDITIONS 

In 1979 Kailath et al. [12] introduced and studied various linear operators 
.SF.. C "xn ~ C n×" of the general form .YE(A) = A - N A M ,  with N and M 
nilpotent matrices. They were called displacement operators, and this termi- 
nology has also been used for other linear operators studied thereafter in the 
spirit of the work of Kailath. The main motivation for the interest in the 
displacement operators has been the extension of effective techniques for 
Toeplitz matrix computations to more general classes of dense structured 
matrices. A recent reference to this wide subject is [4]. 

Here we consider displacement operators of the form 

 x(A) = A X -  XA, (2.1) 

with X ~ C "×". Note that the operators ~ are nonsingular, while the 
operators Sax are singular. More precisely, given X, the kernel of the 
operator _oca x is the set Z ( X )  = {A ~ C"×nIAX = XA}, which is a matrix 
algebra known as the centralizer of X. The theory of centralizers is discussed 
in [7]. 

First of all we need to characterize the range of Sax . The same problem 
has been addressed by Gader in [10]: he studied a singular [though not of the 
form (2.1)] displacement operator go, and he found necessary and sufficient 
conditions on a matrix B in order that B = go(A) for some A. He called 
such conditions orthogonality conditions, since they provide a convenient 
restatement of the orthogonality relation between the range of a linear 
operator and the kernel of its adjoint. 

The ideas of Gader have been extended to all the operators of the form 
(2.1) in [9], and have been further discussed in [5]. An interesting algebraic 
development of Gader's ideas can also be found in [15]. 
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Let A =(ai, j) and B = ( b / , j )  be in C "×" and let " o "  denote the 
entrywise matrix product, i.e., A o B = (a~,jb,,j). Let tr denote the trace 
operator, defined as tr A = X~"_- la,, ,. This yields 

e T ( A o B ) e  = ~ ai,jbi, j = t r ( A B T ) .  
i,j=l 

LEMMA 2.1. Let X ~ C "×". For every A ~ C "×" and every B ~ Z(X)  
we have 

eT[.'.'.~x( A)o BT]e = tr[.oC~x( A)B] = O. 

Conversely, let M ~ C "× n. If  for every B ~ Z(X)  we have 

er (M o Br)e  = t r (MB)  = O, 

then M belongs to the range of  .W x. 

Proof. The proof can be obtained by direct inspection or by noting that 
the lemma simply restates the orthogonality relation between the range of the 
operator Sax and the kernel of its adjoint with respect to the scalar product 
(A,  B) = tr(ABU). • 

By using Lemma 2.1 it is possible to prove the following result. 

THEOaEM 2.1. Let X, A ~ C °x" . If  B ~ Z(X) and .7"~x(A) = 
~'~= 1 X m NT then 

T T xmB Ym = O. 
m=l 

Proof. 

xTBTy m = ~ eT[(xmyT) ° BT]e 
m = l  m = l  

)) = e T ~ x m y T  o B  T e = 

I . \  m = l  

eT[..~x( A) o BT]e = O. 
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3. CROSS-SUM CONDITION, TOEPLITZ PLUS HANKEL 
MATRICES, AND DISPLACEMENT OPERATORS 

Let A = (a t  j) with i , j  = 1 . . . . .  n. Suppose that the entries of A satisfy 
the following cross-sum condition: 

ai_l,  j + ai+l, j = ac j_  1 + ai,j+ 1, i , j  = 2 . . . . .  n - 1. (3.1) 

What kind of matrix is A? Obviously, every Toeplitz matrix satisfies the 
condition (3.1) as well as every Hankel matrix. Since the condition (3.1) is 
linear, every Toeplitz plus Hankel matrix must satisfy it. But what about the 
converse? If a matrix satisfies the condition (3.1) must it be Toeplitz plus 
Hankel? The answer is yes: the condition (3.1) is a "local" characterization of 
Toeplitz plus Hankel structure. Actually, this fact seems to be very little 
known, even if it is implicit in the results obtained by Bini in [1] (see also [4]). 
Here, in the line of the work of Bini but with a slightly different technique, 
we use the concept of displacement operator as our main tool for proving the 
previous characterization. In Section 4 the same concept will be used for 
studying the algebras of Toeplitz plus Hankel matrices. 

First of all, let us restate the condition (3.1) in a more convenient form. 
Let us consider the matrix 

T = 

'0 1 0 
1 0 1 

0 1 ". 

... 0 

" ' "  0 

" • 

0 

0 1 

1 0 

and the linear operator -~r; see (2.1). In addition, let us define the linear 
space 

= {elu  + e ,u~  + u3e T + u,er, lu, ~ C"}. 

The elements of ,~' will be called f rame  matrices. If we denote by S the 
(n - 2) × n matrix defined as 

" "  
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then the property of being a frame matrix can be expressed by using S, 
namely, B ~ ~ '  iff SBS r = O. 

Now, a simple direct check shows that A = (a i ,) satisfies the condition 
(3.1) iff Sat(A) ~ ~ ' .  Putting it another way, A satis~es the condition (3.1) iff 
A ~ 2 ~, where 2 ~ is the inverse image under .Z~aT of ~ ,  i.e., 

z '=  {a 

Thus, we have to prove that 2 ~ is the space of Toeplitz plus Hankel matrices. 
To achieve this result we collect in the following proposition some informa- 
tion on the kernel of the operator -~r, i.e., the algebra ~" = Z(T). For more 
details the reader is referred to [3, 9]. 

PROPOSITION 3.1. 

(1) We have dim r = n. 
n - 1  i (2) We have z = {Y',i=oaiT la i ~ C}. As a consequence, every matrix in z 

is symmetric and persymmetric and thus centrosymmetric. 
(3) Let T k = pk_ l(T), where pk(A), with k = 1 . . . . .  n, is the characteris- 

tic polynomial of the k × k top left submatrix of  T, and p0(A) = 1. Then 
e~ T k = e[. Moreover, the set {T 1 . . . . .  T,} is a basis of  the algebra z. 

Actually, under suitable hypotheses, the results listed in Proposition 3.1 
hold for a wide class of matrix algebras known as Hessenberg algebras, see 
[9]. 

Now, we are ready to prove the main result of this section. 

THEOREM 3.1. Let J and ,,~ be the linear spaces of Toeplitz and Hankel 
matrices respectively. Then 

2~= 3-+X<. 

Proof. First of all, observe that dim5 r =  dim,,~= 2n - 1. Moreover, 
the space J-A,,~U has dimension 2, since it is spanned by the two checkered 
matrices 

ti °1 1 0 
0 1 

° . °  

° . .  

. o .  , 

0 1 0 
1 0 1 
0 1 0 

o . .  

. ° .  

° . .  

Thus we have dim(3-+ , ,~ = 4n - 4. 
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Since, as already observed, both Toeplitz and Hankel matrices satisfy the 
condition (3.1), we have ~ ' c  ~" and ,,~¢'c ~ ,  so that 5r+,g/___ ~-~. 

Now, we will show that dim ~-~ = 4n - 4. 
Remember that the algebra ~" is the kernel of the operator -~r. Hence, if 

we denote with .Ear(~) c ~  the image of~-~ under -~r, we have 

d i m ~ =  dim(z n ~ )  + dim.~'r(~ ). (3.2) 

From the inclusion 3-+,,W_c ~-~ we get dima,~'>_- 4n - 4, and obviously we 
have dim(~" N Z )  = dim ~" = n. Now, we want to obtain some information 
about dim Sat (~-~). 

If  B = elu~ + e,urz + u3erl + u4 er ~Sar(~) ,  then, by virtue of Theo- 
rem 2.1 and Proposition 3.1 the following equalities must hold: 

e~Tku 1 + ernTku2 + ur3Tj, e,  + ur4Tke, = O, k = 1 . . . . .  n ,  

i.e., by using the symmetry and persymmetry of the matrices T k (see 
Proposition 3.1), 

e[u 1 +ern+,_ku2 + u r e k  + u r 4 e , , + l _ k = O ,  k =  1 . . . . .  n. 

We can write the preceding equalities in a more compact form: 

u a + J u  2 + u 3 + j u  4 = o. 

This means that the entries in, say, the first column of B are completely 
determined when the remaining 3n - 4 nonzero entries of B are given. Thus 
dim .~r(~-~) ~< 3n - 4. Hence the equality (3.2) can hold only if dim ~ = 4n 
- 4 and dim . ~ r ( ~ )  = 3n - 4, proving the thesis and also the inclusion 
r c j + x < .  • 

4. ALGEBRAS OF TOEPLITZ PLUS HANKEL MATRICES 

Let A be in C "×", and consider .2aT(A), the image of A under the 
operator .EPr defined in Section 3. In the following we will make use of the 
(n - 2)-vectors 

a r = e r a s  r, ~r u = e'(. .~T(A) S T, 

aT = e r A s  T, ~ = er.Z~'r( A ) S  T, 

aw = SAc1, aw = S-'~T( A ) e l ,  

a E = SAc , ,  ~E = SSar( A ) e , ,  

(4.1) 
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which lie on the borders of the matrices A and SaT(A) as shown here: 

aT 
A = aw at  .Z.c¢7. ( A )  = 

aT 

105 

Proof. (4.2): obvious. (4.3): by induction on m. • 

THEOREM 4.1. Let A ~ ~-+ 2~. Then A 2 ~ 3 -+  ,,$1iff MN = O. 

Proof. As we already observed in Section 3, A 2 is 
Hankel matrix iff .Z~'T(A 2) is a frame matrix, or, in 
S.~T( A2)S T = O. Since, by Lemma 4.1, 

"~T ( A Z ) = "~T ( A ) A + A.~T ( A ) , 

we have that A 2 is a Toeplitz plus Hankel matrix iff 

S[..~T(A) A + A..oqar ( A)] S r = 0. (4.4) 

a Toeplitz plus 
other terms, iff 

By means of these vectors we construct the following matrices: 

aT 
aT 

M = ( a w  at  [t w [rE), N = aT 

a T 

In this section the images under 2 T of products of matrices will be 
considered. For this reason, let us state the following: 

LEMMA 4.1. Let A and X be in C" ×". The following equations hold: 

.ZPx ( AB ) =.Z~'x ( A ) B + A.Z~'x ( B ) ; (4.2) 

.,C4x( A I A  2 "'" Am) = ~ A 1 "'" A k _ , 2 x (  Ak )Ak+ 1 "'" A m. (4.3) 
k = l  
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Taking into account the structures of S and of .7PT(A), which is a frame 
matrix, we have also 

and 

S. T( A)AST = (aw l 
4 J' 

SA T(A)S T= (aw 

The thesis follows from these equalities and from Equation (4.4). 

COROLLARY 4.1. I f  both A and A 2 are in • + X ,  then rank M + rank N 
<<,4. 

Proof. By Theorem 4.1 we have M N  = 0; thus null M >/rank N. The 
thesis is proved by taking into account the equality rank M + null M = 4. • 

In the following a special kind of frame matrices is involved, that is, 
matrices V of the form 

V = aele ~ + /3eneVn + ae,e~n + Tene t  = 
0 0i) 0 0 ... 0 

0 0 ... 0 

T 0 "" 0 

where a , /3 ,  T, 8 ~ C. We call these matrices corner matrices. The following 
lemmas hold. 

LEMMA 4.2. Let V be a corner matrix. Then, f o r  any matrix A,  .~T( A)  
is a f rame  matrix i f f  .~T+v(  A)  is a f rame  matrix. 

Proof. We have 

S ~ + v ( A ) S  ~ = S ~ ( A ) S  ~ + S .~v (A )S  ~ 

---- S .~ fT (  A ) S  T -I- S A V S  T - S V A S  r 

= S_~T(A)S ~, 
since ( S V )  T = VS r = O. 
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LEMMA 4.3. Let V and V'  be two corner matrices in C nxn with n >~ 4. 
I f  Z(T + V )  = Z(T + V ' )  then V = V' .  

Proof. We have (T + V ) ( T  + V ' )  = (T + V ' ) (T  + V),  which gives 
TV'  + VT + VV'  = V ' T  + TV + V 'V .  A direct inspection of both the sides 
of this equation shows that V and V' must be the same comer matrix. • 

The next theorem shows that the centralizers of matrices having the form 
T + V, where V is a comer matrix, are algebras of Toeplitz plus Hankel 
matrices. 

THEOREM 4.2. Let V be a corner matrix. Then Z(T + V )  c_ J - +  ~ .  

Proof. If A ~ Z(T + V),  then 2 T + v ( A )  = 0, which means that 
Sat+ v(A)  is a frame matrix, thus by Lemma 4.2 also -~ar(A) is a frame matrix. 
In other words, A ~ ~ - +  X. • 

It is not true that every algebra in 3-+,,W is a centralizer Z(T + V )  for a 
comer matrix V. However this is the case under suitable hypotheses. First of 
all let us introduce the following Condition 1, involving some of the vectors 
defined in (4.1): 

CONDITION 1. (a n, a s) and (a w, a t )  are pairs of linearly independent 
vectors. 

If a matrix A ~ 3-+,,W satisfies Condition 1, then we are able to give a 
criterion for A to belong to a centralizer Z(T + V).  

THEOREM 4.3. Let A, A 2, and A a be in J + ,~. Moreover, assume that 
A satisfies Condition 1. Then there exists a corner matrix V such that 
A ~ Z ( T +  V).  

Proof. By virtue of Condition 1 and Corollary 4.1, we have rank M = 
rank N = 2, and therefore two 2 x 2 complex matrices F and F '  exist such 
that 

(aw ae )  = (  aw a E ) F '  

and 

[~ a 7" 
= F  N 
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By Theorem 4.1 we have 
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(F)ta ) MN=(aw a~)(I2× e F ' )  12×2 I a~ = 0 ,  

and this implies, by Condition 1, 

F+F'  = 0 .  

Set 

and let us consider the image of A under -~v, where 

V = otele ~ +fle, ern + 6e,er, + Tene ~ ---- (el  

(4.5) 

en)Fle~]. (4.6) 

Since A is a Toeplitz plus Hankel matrix, by I~mma 4.2 both SaT(A) and 
SaT+ v(A) are frame matrices. Moreover, we have 

and 

thus 

S-~fr( A) = (Sw 5~)( e~)e.r =( aw ae)F,( e~)e.T 

S..~v(A) = SAV- SVA = SAV = (aw a~) eV~ , 

S _ ~ + v ( A )  = S.~( A) + S.~v( A) 

leT.] = o, ( 4 . 7 )  
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as a consequence of Equation (4.5). We can see in the same way that 

-~T+v(A) ST = 0. (4.8) 

Equations (4.7) and (4.8) imply that ..~T+v(A) is a comer matrix, that is, 

( eT ) 
e 1 (4.9) . .~T+v(A ) = (e ,  . ) C  eT " , 

where C ~ C 2xz 
Now let us exploit the assumption that also A 3 is in ~ r + y ,  which is 

equivalent to say 

or, by Lemma 4.2, 

s-~T( A 3) S T = 0, 

S.~T+v(A3)S r = 0. (4.10) 

We observe that by Equation (4.3), 

.~x(A a) = .~x ( A ) A 2 + A.~x ( A ) A + A 2.C.c.~x ( A ) , 

thus we obtain from Equations (4.10), (4.7), and (4.8) 

S.SaT+V( A) A2S T + SA..~w+v( A) AS T + SA2.~7.+v( A) S T 

= SA"~T+ v ( A )  AS T = O. 

This equation, taking into account Equation (4.9) and the structure of S, can 
be rewritten as 

SA-~T+ v ( A )  AS T 

a '(e t  ee 
a  c(a t aT] = 0 ,  

() la ) e") C e TeT (e  1 e n ) l a  T 
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which, by Condition 1, implies C = 0, and therefore (4.9) becomes 

= 0 ,  

which is the thesis. • 
The fact that a Toeplitz plus Hankel matrix A satisfies Condition 1 has 

deep consequences for any algebra of Toeplitz plus Hankel matrices contain- 
ing A. 

THEOREM 4,4. Let s t  be an algebra of Toeplitz plus Hankel matrices. I f  
there exists a matrix A E ~ satisfying Condition 1, then for any comer matrix 
V such that A ~ Z(T + V) we have ~¢ c Z(T + V). 

Proof. Let B be in ~¢, and set 

gT = eT~T+v( B)S T, 

bw = S-~T+v( B)el,  

T 
= en.,WT+v(B)S T, 

D~ = S.~T.v( B)en. 

We will prove that B ~ Z(T + V). We have that AB, being in ~¢ too, is a 
Toeplitz plus Hankel matrix, and therefore .Wr(AB) =S~T(A)B + A_WT(B) 
is a frame matrix. By Lemma 4,2, this means S.~T+v(AB)S T = 
S.~T + v( A)BS T + SA.~T + v( B)S ~ = 0. This equation, since .~T + v( A) = O, 
gives 

SA_  +v(B)S = o. ( 4 . 1 1 )  

"~T+ V(B) is a frame matrix; thus Equation (4.11) can be rewritten in terms of 
the vectors lying on the borders of A and of -~T+v(B): 

(aw a~)([gTI [,;l --0, 

which implies, by Condition 1, gT = gs r = 0. 
If we exploit the fact that BA ~ sl, we find that bw = g~ = 0. Thus we 

have that ..WT+v(B) is a comer matrix: 

.~r+v(B) =(e: en)c(e~) 
T ' 

e n  

(4.12) 

where C ~ C 2×2. 
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Finally, in order to show that C = 0, we note that ABA ~ d  and 
therefore .~T+v(ABA) is a frame matrix, that is 

S-~T+ V (ABA) S T = O. (4.13) 

Observe that, by Equation (4.3), we have 

.ZPT+v( ABA ) =f~T+v( A)BA + A.~T+v( B ) A  + AB.~T+v( A ) 

= A..~-r+ v( B) A; 

thus Equations (4.12) and (4.13) give 

SA.f~T+v(B)AS T= (aw a E ) c | a ~  I [ ~  = 0 .  
~ 

This equation, by Condition 1, implies C = 0, and by (4.12) 

.~r+v( B) = 0 ,  

thus concluding the proof. • 
As a consequence of Theorem 4.4, a Toeplitz plus Hankel matrix satisfy- 

ing Condition 1 can belong to a centralizer Z(T + V) for a unique comer 
matrix V. This is shown by the following: 

COROLLARY 4.2. Let A satisfy Condition 1. I f  A E Z(T + V) (~ Z(T + 
V'), then V = V'. 

Proof. As A obeys Condition 1, both Z(T + V) and Z(T + V') can be 
taken as the algebra ~¢ involved in Theorem 4.4, which implies Z(T + V) = 
Z(T + V'). By Lemma 4.3, this means V = V'. • 

An algebra is maximal in 3 -+ , ,~  if it is not a proper subalgebra of an 
algebra in 3 -+ ,~ .  The next theorem gives a characterization of all maximal 
algebras in 3 - +  X containing a matrix satisfying Condition 1. 

THEOREM 4.5. For any corner matrix V, Z(T + V) is a maximal algebra 
of Toeplitz plus Hankel matrices. 

Conversely, let ~ be a maximal algebra of Toeplitz plus Hankel matrices. 
If  there exists a matrix A ~ satisfying Condition 1, then ~¢ = Z(T + V) 
for a unique corner matrix V. 
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Proof. If V is a given comer matrix, then Z(T + V ) c . ~ ' + ~ ,  by 
Theorem 4.2. If  ~¢ is an algebra such that 

z(T + v)  

then ,a¢ agrees with the assumptions of Theorem 4.4, as T + V satisfies 
Condition 1. Henceforth 

 _cz(r + v).  

The above inclusions prove that ~¢ = Z(T + V), that is Z(T + V) is maxi- 
mal. 

Let us turn to the converse statement. By virtue of Theorem 4.3, we have 
that a comer matrix V exists such that A ~ Z(T + V). By applying Theorem 
4.4 to ~¢ we obtain the inclusion ~¢' _ Z(T + V). The equality d = Z(T + V )  
follows from the maximality of .a¢. The uniqueness of V is a consequence of 
Corollary 4.2. • 

5. EXAMPLES 

Throughout this section we use the upper shift matrix U = ( ~ i + 1  J)' 
i , j  = 1 . . . . .  n, and the matrices T and S defined in Section 3. Unless 
otherwise stated, matrices are square of order n. 

The results in Section 4 completely characterize the matrix algebras of the 
form Z(T + V). Various of these algebras have been used for applicative 
purposes. For example, the algebras Z(T + V) with V = 8el er + 7e,  e: r 
where (8, 7) ~ {(1, 1 ) , ( - 1 , - 1 ) }  have been used in [5]. The ones with 

T w h e r e  (or t )  ~ {(0, 0),  (1,  1), V = o te le  ~ + f l e n e  n 
( -  1, - 1), (1, - 1), ( -  1, 1)} and where (or,/3) = (0, 1) have been used in [6] 
and in [16] respectively. 

Actually, to our knowledge, the algebras Z(T + V )  and their suhalgebras, 
together with the Toeplitz triangular matrices (defined later on), are the only 
algebras in 3 - +  X that have received attention in the literature. Nonetheless, 
it would be interesting to obtain a complete map of the algebras in ~a'+X. 
Perhaps the examples in this section will be of some interest. 

In the second part of the Theorem 4.5 the following two hypotheses 
appear: 

(Hpl) ~¢ is a maximal algebra of Toeplitz plus Hankel matrices; 
(Hp2) there exists a matrix A ~ ~¢ satisfying Condition 1. 
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The first one is not really restrictive (clearly, once one has found maximal 
algebras, one can study their subalgebras). Concerning the second one, we 
note that (1) it is fairly simple to check and (2) it allows us to characterize 
precisely the algebras Z ( T  + V ) .  Moreover, conditions of linear dependence 
of the vectors a w ,  a~ ,  a w ,  ire and a N, a s, aN, as might be used in order to 
locate other maximal algebras in 3 -+ , ,~  not satisfying hypothesis (Hp2). At 
this regard, let us consider a couple of examples. 

EXAMPLE 5.1. Let T ~ C (n-2)×(n-2) with n/> 2 and let .~z be the 
linear space of all matrices A ~ C "×n such that 

A = 

° ' "  0 

B 

0 "" 0 

where B ~ Z ( T ) .  It is easy to check that ~" is an algebra in 3 -+ , ,~  of 
dimension n + 2. Clearly ~/" does not satisfy hypothesis (Hp2). 

Observe (and compare with Theorem 4.1) that the algebra ~" is the set of 
the matrices in 3 -+ , ,~  such that a w = a ~  = a  N = a  s = 0 .  In the next 
example we consider the matrices in J+,,~," such that a w ---- at. = a w  = [tF. 

= 0 .  

EXAMPLE 5.2. First of all, let us define the following matrices: 

i if i > j ,  
[T1],. j = if i ~<j and i + j  is even, 

if i ~< j and i + j is odd, 

i if i >j, 
[Tz],, j = if i ~ < j a n d i + j i s e v e n ,  

if i ~ < j a n d i + j i s o d d ,  
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i , j  = 1 . . . . .  n, and 

A = 
T 1 - J T  2 i f n i s e v e n ,  I T  2 - JT 1 i f n i s e v e n ,  

T l JT 1 i f n i s o d d ,  B =  IT2 JT~ i f n i s o d d .  

Obviously I, ] ,  A, B are linearly independent matrices (it is sufficient to 
compare their first rows) and belong to ~r+,,W.. Using the identifies 

AJ = B + J if n is even, 

AB = 0 if n is even, 

AJ = A - I + J if n is odd, 

BJ = B if n is odd, 

whose simple proof is left to the reader, we can construct the following 
multiplication tables: 

I J A B I J A B 
i i 1 a B I I I A B 
J J i - B  - A  j j I - A  - B  
A A B + J  A 0 A A A - I + J  A B 
B B A - I  B 0 B B B 0 0 

n even, n odd. 

From these tables we deduce that the linear space ,~' = span{l, J, A, B} is 
closed under multiplication and hence it is an algebra of dimension 4 in 
~ ' +  X. Clearly this algebra does not satisfy hypothesis (Hp2). 

REMARK 5.1. Let ~¢ be an algebra in 3 + , ~  that does not satisfy 
hypothesis (Hp2). Then ,~¢ and /o r  ,act are made up of matrices A such that 
a w and a E are linearly dependent. In fact, if A and B were matrices in ,a¢ 
such that a w and a E are linearly independent and b N and b s are linearly 
independent, the matrix a A  + ~B would satisfy Condition 1 for certain ot 
and /3. In the following let us assume that ~¢ is an algebra made up of 
matrices A such that a w and a t are linearly dependent. There are two 
possibilities: 

(i) There exists a vector u such that a w = Aau and a E =/~Au for any 
A ~ .  This is the case for the algebras presented in Examples 5.1 and 5.2. 

(ii) There exist two linear independent vectors u and v and two matrices 
A, B ~ ¢  such that a w = u and b w = v (or a t = u and b E = v).This is the 
case for the algebra of the Toeplitz triangular matrices, presented later on. 
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Let us consider case (ii). If  A and B are as before and aa = Aaa w = Aau 
and bp = Asb  w = ABv then A A = A 8 = A. Moreover if C ~ d  and c E = 0 
then Cw = 0. With these observations at hand it is possible to prove that the 
vector w = ( - A, 0 . . . .  ,0, 1) r is a common eigenvector of all the matrices in 
a¢. We leave the verification to the reader. II 

We close the paper showing that hypotheses (Hpl )  and (Hp2) are 
independent. In fact, all of the following four cases can occur: 

(el)  (Hpl )  true, (Hp2) true; 
(c2) (Hpl )  false, (Hp2) true; 
(c3) (Hpl )  false, (Hp2) false; 
(c4) (Hpl )  true, (Hp2) false. 

Case (cl): Let .a¢ = Z ( T )  = r c 3 - +  ~ Hypothesis (Hpl )  is true, since 
the first part of Theorem 4.5 implies that a¢ is a maximal algebra in 3 - +  X. 
Hypothesis (Hp2) is also true, since T ~ a¢" satisfies Condition 1. Observe that 
the algebra Z(T ~) is such that Z ( T )  c Z (T  z) and dim Z ( T )  < dim Z(T2), 
but this is not a contradiction, since Z(T  2) ¢: 3 - +  X .  

Case (c2): Let us set C = U + en er and consider the algebra ~¢ = Z ( C )  
c ~,, known as the algebra of circulant matrices (see [7]). The equality 
C r = C n-1 yields C + C r ~ ¢ .  Since C + C T satisfies Condition 1, hypoth- 
esis (Hp2) is true. Nevertheless, hypothesis (Hp1) is false. In fact, it turns out 
that Z(C) c Z(C + C r)  and dim Z ( C )  < dim Z(C + CT); see [5]. More- 
over, Z(C + C r)  = Z (T  + V )  with V = erie r + el eT. Therefore, by Theo- 
rem 4.2, Z(C  + C ~) c J+, ,W. 

Case (c3): Let ~¢ = span{/, eer}. Hypothesis (Hp2) is false since no 
matrix in a¢ satisfies Condition 1. Hypothesis (Hp1) is false as well, since, for 
example, we have a ¢ c  Z ( C )  and dim a¢ < dim Z(C) .  

Case (c4): Finally, let us consider the algebra a¢' = Z(U),  known as the 
algebra of Toeplitz upper triangular matrices. Hypothesis (Hp2) is false, since 
a w = S A e  1 = a s = SAren = 0 for every matrix A ~a¢. However, we will 
show that ~¢ is a maximal algebra in 3-+,~,,  i.e., hypothesis (Hp1) is true. 

Let 5 r c 3 - +  ~ be an algebra such that 

a¢" ___ 5 r . (5.1) 

For every F ~ r w e  have U2F, FU z, U 2 FU 2 E 9-and  

= o ,  

ev )s = o, 

S . ~ r ( U 2 F U Z ) S T  = O. 
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By applying L e m m a  4.1, the  previous relations can be  rewri t ten as 

s . ~ ( t ~ ) e s  * + SU~Z,( e ) s  ~ = o, 

S . ~ , ( F ) U ~ S  ~ + S F _ ~ , ( U ~ ) S  ~ = 0, 

s ~ ( v 2 ) r v 2 s  ~ + s v 2 ~ , (  F)v~s  • + s v 2 r ~ , ( v ~ ) s  • = o. 

Hence ,  taking into account  that  .~T(F) is a f rame matrix, we obtain 

F = 

o ol) 
. ~ ( F )  = 0 

. . .  01) 
Let  us set G = F - if, where  ff is the  Toepl i tz  uppe r  t r iangular  matrix such 
that  e~ff = eTF. W e  have 

G = 

i 0 ... 0 0 

0 ... 0 

z , ( G )  -- 

l! ° 0 ..- 0 
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Moreover, since T = U + U r, 
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.Z~'r(G ) = GU - UG + GUr  - UrG.  (5.2) 

I f  we use the relation (5.2) and take into account the structures of  G and 
Sat(G), we can proceed by induction on i to show that Ge i = 0, i = 1 . . . . .  n. 
Hence G = 0 and F --- F, so that 

(5.2) 

The relations (5.1) and (5.3) yield ~r  = ~¢, and this proves that ~ is maximal 
in ~" = ,~. 

REFERENCES 

1 D. Bini, On a Class of Matrices Related to Toeplitz Matrices, Tech. Report 
TR83-5, Computer Science Dept, State Univ. of New York at Albany, 1983. 

2 D. Bini and M. Capovani, Fast parallel and sequential computations and spectral 
properties concerning band Toeplitz matrices, Calcolo 20:177-189 (1983). 

3 D. Bini and M. Capovani, Spectral and computational properties of band 
symmetric Toeplitz matrices, Linear Algebra Appl. 52/53:99-126 (1983). 

4 D. Bini and V. Pan, Improved parallel computations with Toeplitz-like and 
Hankel-like matrices, Linear Algebra Appl. 188/189:3-29 (1983). 

5 E. Bozzo, Algebras of higher dimension for displacement decompositions and 
computations with Toeplitz plus Hankel matrices, Linear Algebra Appl., to 
appear. 

6 E. Bozzo and C. Di Fiore, On the use of certain matrix algebras associated with 
discrete trigonometric transforms in matrix displacement decomposition, SIAM J. 
Matrix Anal. Appl. to appear. 

7 P.J. Davis, Circulant Matrices, Wiley, New York, 1979. 
8 F. Di Benedetto, Analysis of preconditioning techniques for ill-conditioned 

Toeplitz matrices, SIAM J. Sci. Statist. Comput., to appear. 
9 C. Di Fiore and P. Zellini, Matrix decompositions using displacement rank and 

classes of commutative matrix algebras, Linear Algebras Appl., to appear. 
10 P. Gader, Displacement operator based decompositions of matrices using circu- 

lants or other group matrices, Linear Algebra Appl. 139:111-131 (1990). 
11 N. Huang and R. Cline, Inversion of persymmetric matrices having Toeplitz 

inverses, J. Assoc. Comput. Mach. 19:437-444 (1972). 
12 T. Kailath, S. Kung, and M. Morf, Displacement rank of matrices and linear 

equations, J. Math. Anal. Appl. 68:39-407 (1979). 



R. BEVILACQUA, N. BONANNI, AND E. BOZZO 118 

13 T. K. Ku and C.-C. J. Kuo, Preconditioned iterative methods for solving 
Toeplitz-plus-Hankel systems, SIAM J. Numer. Anal. 30:824-845 (1993). 

14 T. Shalom, On algebras of Toeplitz matrices, Linear Algebra Appl. 96:211-226 
(1987). 

15 W. Waterhouse, Displacement operators relative to group matrices, Linear 
Algebra Appl. 169:41-47 (1992). 

16 P. Zellini, Algebraic and computational properties of a set of (0, 1) matrices with 
prescribed sum, Linear and Multilinear Algebra 17:355-373 (1985). 

Received 21 December 1993; final manuscript accepted 30 October 1994 


