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We discuss the relationships among Jacobi matrices, orthogonal polynomials, spectral measure,
moments, minors, Gaussian quadrature, resolvents and continued fractions in the simplest setting,
namely the finite-dimensional one. The formal structure is essentially the same as that in the
infinite-dimensional setting, where it leads into the rich analytic world of orthogonal polynomials
on the real line. When the underlying measure is finitely supported, however, the analysis becomes
trivial and the algebraic relationships are readily apparent.

Jacobi canonical form

We work in a real (complex) inner product space of dimension n, in particular Rn (Cn) with
standard basis (e1, . . . , en) and standard inner product 〈·, ·〉.

Equivalence classes of symmetric (Hermitian) matrices A ∼ QAQ∗ up to orthogonal (unitary)
conjugation are canonically represented by diagonal matrices with ordered eigenvalues. Equiv-
alence classes of pairs (A,v) ∼ (QAQ∗, Qv), where v is a normalized cyclic vector for A (i.e.
v, Av, . . . , An−1v are linearly independent), are canonically represented by (J, e1) where J is a
Jacobi matrix :

Jij > 0 for |i− j| = 1

Jij = 0 for |i− j| ≥ 2,

or in other words

J =


a1 b1
b1 a2 b2

b2
. . .

. . .
. . . an−1 bn−1

bn−1 an

 (1)

with bi > 0.

Theorem 1. Let A be an n×n Hermitian matrix and let v be an A-cyclic unit vector. Then there
exists a unique orthonormal basis (v1, . . . ,vn) starting with v1 = v with respect to which A is in
Jacobi form, i.e. such that Jij = 〈vi, Avj〉 is a Jacobi matrix.

Proof. To show existence, apply the Gram-Schmidt process to the cyclic basis (v, Av, . . . , An−1v).

Exercise 1. Verify that this works. Hint: Rather than using formulas, use that the output of
Gram-Schmidt,

(v1, . . . ,vn) = GS(u1, . . . ,un),

is characterized by
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(i) vk ∈ span{u1, . . . ,uk}

(ii) vk ⊥ {u1, . . . ,uk−1}

(iii) 〈vk,uk〉 > 0

(iv) ‖vk‖ = 1.

To show uniqueness we first make the following observation.

Exercise 2. If J is a Jacobi matrix, then e1 is cyclic and

GS(e1, Je1, . . . , J
n−1e1) = (e1, . . . , en)

reproduces the standard basis.

Now suppose J, J ′ = QJQ∗ are both Jacobi and Qe1 = e1, i.e. (J, e1) ∼ (J ′, e1). Then, since
GS is coordinate-independent,

(e1, . . . , en) = GS(e1, J
′e1, . . . , J

′n−1e1)

= GS(Qe1, QJe1, . . . , QJ
n−1e1)

= QGS(e1, Je1, . . . , J
n−1e1)

= (Qe1, . . . , Qen).

Orthogonal polynomials

Let σ ∈ P(R) be a probability measure with finite support, # suppσ = n; write

σ =

n∑
i=1

q2i δλi (2)

with λ1 < · · · < λn and qi > 0,
∑

i q
2
i = 1. Then L2(σ) is an n-dimensional inner product space.

Consider the function x 7→ x, which we write just as x; consider now the linear operator of
multiplication by x, which we denote also simply by x. Note that x is self-adjoint with eigenvalues
λi and corresponding orthonormal eigenvectors 1

qi
1λi .

Exercise 3. The constant function 1 is a cyclic vector for x. Hint: What does it mean to vanish
in L2(σ)?

Let J be the associated Jacobi matrix, i.e. (x,1) ∼ (J, e1). Then the Jacobi basis is

GS(1, x, . . . , xn−1) = (p0, p1, . . . , pn−1),

comprising the normalized orthogonal polynomials with respect to σ.
In coordinates, (1) reads

Jek = bk−1ek−1 + akek + bkek+1;

in the original basis, this relation becomes the three-term recurrence

xpk−1 = bk−1pk−2 + akpk−1 + bkpk. (3)
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Here we have taken b0 = bn = 0. For k = 1 the recurrence is initialized with p0 = 1, and in this
way p1, . . . , pn−1 are determined by the coefficients, i.e. by J . For k = n we find that the degree n
polynomial

(x− an)pn−1(x)− bn−1pn−2(x)

vanishes in L2(σ), i.e. its zeros coincide with the eigenvalues λi; this polynomial is therefore pro-
portional to the characteristic polynomial det(x− J).

The same reasoning can be applied to the leading principal k × k minor Jk. Now the recur-
rence (3) truncates with bk replaced by 0; we obtain the same p1, . . . , pk−1, and find that pk(x) is
proportional to det(x− Jk).

Writing

x̂ =

 p0(x)
...

pn−1(x)

 ,

one can express (3) as
Jx̂ = xx̂.

This identity holds in L2(σ), i.e. at the eigenvalues x = λi. We deduce that the corresponding
eigenvectors of J are λ̂i. One can also obtain this fact directly using orthonormality:〈

pk,
1
qi
1λi
〉

=

∫
pk(x) 1

qi
1λi(x)σ(dx) = qi pk(λi),

so the normalized eigenvector is qiλ̂i. In particular, the e1-component is just qi.

Spectral measure

It is natural to ask whether the above procedure can be reversed: Given a Jacobi matrix, does (3)
generate the orthogonal polynomials with respect to some measure of the form (2)?

Slightly more generally, given a Hermitian matrix A, one can form its spectral measure at a
vector v. That is, if A has spectral decomposition A =

∑n
i=1 λiuiu

∗
i , let qi = |〈ui,v〉| and define

σ = σA,v by (2).

Exercise 4. This measure has the characterizing property that, for any polynomial p,∫
p(x)σA,v(dx) = 〈v, p(A)v〉 . (4)

An advantage of (4) is that it makes no reference to the spectral decomposition.

Exercise 5. Show that v is A-cyclic if and only if # suppσA,v = n. Hint: Deduce this assertion
from the identity

∫
p(x)2 σA,v(dx) = ‖p(A)v‖2, derived from (4).

In the latter situation A has distinct eigenvalues and can be viewed as the multiplication x on
L2(σA,v); by (4) the pair (A,v) is then unitarily equivalent to (x,1). In particular, one can begin
with a Jacobi matrix J and form σ = σJ,e1 , its spectral measure at e1. Then J may be viewed as
representing the multiplication x on L2(σ) in the basis of orthogonal polynomials. In summary:

Theorem 2. Jacobi matrices J as in (1) are in natural bijective correspondence with finitely
supported measures σ as in (2). Given σ, one obtains J as representing the multiplication x on
L2(σ) in the basis of orthogonal polynomials. Given J , one obtains σ as the spectral measure of J
at e1.
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Moments

Given σ as in (2), let

mk =

∫
xk σ(dx) (5)

be its kth moment. Notice that knowledge of m1, . . . ,m2n−2 is sufficient to reconstruct the orthog-
onal polynomials (p0, p1, . . . , pn−1) = GS(1, x, . . . , xn−1). If we also know m2n−1, we can recover J
by

Jij = 〈ei, Jej〉 =

∫
pi−1(x)x pj−1(x)σ(dx).

One can then recover σ = σJ,e1 . In particular, all moments may be obtained directly from J
using (4):

mk =
(
Jk
)
11
. (6)

Exercise 6. Show directly that the first k elements of the list of moments (m1,m2,m3, . . .) and the
first k elements of the list of Jacobi coefficients (a1, b1, a2, b2, . . .) uniquely determine one another.
Hint: Proceed by induction, expanding the right-hand side of (6).

Either way we conclude the following.

Theorem 3. A probability measure supported on n real points is determined by its first 2n − 1
moments. (The normalization requirement may be removed by including the zeroth moment.)

The previous exercise shows a little more: If Jk is the leading k×k principal minor of J and σk =
σJk,e1 , then the first 2k−1 moments of σk match those of σ. Thus σk is the optimal approximation
of σ among measures supported on k points, in the sense that integrals of polynomials of degree up
to 2k− 1 agree exactly. We have stumbled upon Gaussian quadrature, sometimes used as a rule in
numerical analysis. By an earlier observation we find that the support of σk is precisely the zero
set of pk, a result known as the “fundamental theorem of Gaussian quadrature”.

A lingering question is when some given numbers are actually the moments of a measure.

Theorem 4. A sequence of real numbers (m0, . . . ,m2n−1) is given by (5) for some σ as in (2) if
and only if the Hänkel matrix

M =
(
mi+j

)n−1
i,j=0

=


m0 m1 · · · mn−1
m1 m2 · · · mn
...

...
. . .

...
mn−1 mn · · · m2n−2


is positive definite.

Proof. To see why the condition is necessary, observe that mi+j =
〈
xi, xj

〉
L2(σ)

. That is, M is the

Gram matrix of the monomials 1, x, . . . , xn−1. Thus M ≥ 0 automatically; in fact M > 0 since the
monomials are linearly independent.

Towards sufficiency, consider an n-dimensional vector space with basis x0, . . . ,xn−1. Since
M > 0 we can define an inner product through 〈xi,xj〉 = mi+j , extended bilinearly. Let T be the
shift operator, defined by Txk = xk+1 for k = 0, . . . , n− 2.

Exercise 7. There is a unique way to define Txn−1 so that 〈xi, Txn−1〉 = mi+n for 0 ≤ i ≤ n− 1.

Now let σ = σT,x0 . Then for 0 ≤ i, j ≤ n− 1,∫
xi+j+1 σ(dx) =

〈
x0, T

i+j+1x0

〉
= 〈xi, Txj〉 = mi+j+1.
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Resolvents and continued fractions

There is a certain rational function that unifies the above representations.
Once again, take A Hermitian with spectral decomposition

∑n
i=1 λiuiu

∗
i . Define the resolvent

R(z) = (A− z)−1 for z ∈ C \ {λ1, . . . , λn}. Fix a vector v and let qi = |〈ui,v〉|.

Exercise 8. The Stieltjes transform of the spectral measure σ = σA,v is given by

S(z) =

∫
σ(dx)

x− z
=

n∑
i=1

q2i
λi − z

= v∗R(z)v. (7)

With v = e1 we find that S(z) = R11(z), the (1, 1)-entry of the resolvent. Let A(1) be the
(1, 1)-principal minor of A and let R(1)(z) = (A(1) − z)−1 be its resolvent; write

A =

(
a b∗

b A(1)

)
.

Exercise 9. Prove the identity

R11(z) =
1

a− z − b∗R(1)(z)b
. (8)

Hint: It is a special case of the easily verified Schur complement formula, which gives the upper-left
block of

(
A B
C D

)−1
as (A−BD−1C)

−1
.

Exercise 10. The vector e1 is A-cyclic if and only if the rational function S has n distinct poles
λ1 < · · · < λn. In this case it has n − 1 distinct zeros µ1 < · · · < µn−1 interlaced strictly with its
poles, i.e. λ1 < µ1 < λ2 < · · · < µn−1 < λn.

Assuming this situation, the zeros of S have a natural interpretation as well. From (8) they
coincide with the poles of b∗R(1)b; but b∗R(1)b is the Stieltjes transform of σA(1),b, so its poles

are the eigenvalues of A(1). Furthermore, given λ1, . . . , λn together with µ1, . . . , µn−1 one can
reconstruct

S(z) =
(µ1 − z) · · · (µn−1 − z)
(λ1 − z) · · · (λn − z)

.

(The multiplicative constant is correct since both sides are ∼ −1/z at ∞.)

If A is in Jacobi form (1) we can go further. In this case b∗R(1)b = b21R
(1)
11 , and we can iterate

(8) to obtain the continued fraction expansion

S(z) =
1

a1 − z −
b21

a2 − z −
b22

. . . −
b2n−1
an − z

.

In particular, A can be recovered directly from S. Explicitly one computes

a1 = 1/S(z) + z
∣∣
z=∞

b21 = z
(
1/S(z) + z − a

)∣∣
z=∞

S(1)(z) = −
(
1/S(z) + z − a

)
/b21
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and iterates with S(1) in place of S. This procedure gives a way to obtain the Jacobi form of any
pair (A,v) from the rational function S.

Finally, the moments mk =
∑n

i=1 q
2
i λ

k
i are related to the Taylor expansion of S at infinity.

Provided that |z| > max1≤i≤n |λi| we can expand (7) around z =∞ to obtain

S(z) = −1

z

∞∑
k=0

mk

zk
.

This representation incidentally gives yet another way to see that the first 2n−1 moments determine
S. For suppose S and S′ as above have mk = m′k for k = 1, . . . , 2n− 1; then their difference S−S′
has a zero of order at least 2n+ 1 at ∞. But S − S′ can have at most 2n poles, contradicting the
fact that a rational function has the same number of zeros as poles—unless of course it vanishes
identically.

In summary, the following data are equivalent ways to represent the pair (A,v):

• the spectral measure of A at v;

• the eigenvalues of A together with those of its principal minor with respect to v;

• the Jacobi form of A with respect to v;

• the first 2n− 1 moments of the spectral measure of A at v.

There are four corresponding representations of the rational function S(z):

q21
λ1 − z

+ · · ·+ q2n
λn − z

=
(µ1 − z) · · · (µn−1 − z)
(λ1 − z) · · · (λn − z)

=
1

a1 − z −
b21

. . . −
b2n−1
an − z

= −1

z

∞∑
k=0

mk

zk
,

i.e. as partial fraction decomposition, polynomial quotient, continued fraction expansion and Taylor
series. These relations induce bijections (in fact diffeomorphisms) between the domains{

(λ1, . . . , λn, q1, . . . , qn) : λ1 < · · · < λn, qi > 0, q21 + · · ·+ q2n = 1
}
,{

(λ1, . . . , λn, µ1, . . . , µn−1) : λ1 < µ1 < λ2 < · · · < µn−1 < λn
}
,{

(a1, . . . , an, b1, . . . , bn−1) : bi > 0
}
,{

(m1, . . . ,m2n−1) : (mi+j)
n−1
i,j=0 > 0

}
.
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