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Abstract 
 

In this paper, a new and efficient approach based on the generalized Laguerre matrix 

method for numerical approximation of the linear differential-difference equations (DDEs) 

with variable coefficients is introduced. Explicit formulae which express the generalized 

Laguerre expansion coefficients for the moments of the derivatives of any differentiable 

function in terms of the original expansion coefficients of the function itself are given in the 

matrix form. In the scheme, by using this approach we reduce solving the linear differential 

equations to solving a system of linear algebraic equations, thus greatly simplify the 

problem. In addition, several numerical experiments are given to demonstrate the validity 

and applicability of the method. 
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1.  Introduction  

Orthogonal polynomials play a prominent role in pure, applied and computational mathematics, 

as well as in the applied sciences and many other fields of numerical analyses such as 

quadratures, approximation theory and so on [Gautschi (2004), Dunkl and Xu (2001), Marcellan 

and Assche (2006) and Askey (1975)]. In particular, these polynomials play a significant role in 

the spectral methods, which have been successfully applied in the approximation of partial, 

differential and integral equations. Three most widely used spectral versions are the Galerkin, 

collocation and Tau methods. Their utility is based on the fact that if the solution sought is 

smooth, usually only a few terms in an expansion of global basis functions are needed to 

represent it to high accuracy [Gottlieb and Orszag (1977), Boyd (2000), Canuto et al. (2006) and 

(1984), Trefethen (2000), Hesthaven et al. (2009) and Ben-yu (1996)]. We note at this point that 

numerical methods for ordinary, partial and integral differential equations can be classified into 

the local and global categories. The finite-difference and finite-element methods are based on 

local arguments, whereas the spectral methods are in the global class [Shen et al. (2011) and 

Funaro (1992)]. Spectral methods, in the context of numerical schemes for differential equations, 

belong to the family of weighted residual methods, which are traditionally regarded as the 

foundation of many numerical methods such as finite element, spectral, finite volume and 

boundary element methods. Also the linear DDEs with variable coefficients and their solutions 

play a major role in the branch of modern mathematics and arise frequently in many applied 

areas. Therefore, a reliable and efficient technique for their solution is extremely important. The 

analytic results on the existence and uniqueness of solutions to the second order linear DDEs 

have been investigated by many authors [Agraval and Oregan (2009) and King et al. (2003)], 

however the existence and uniqueness of the solution for DDEs under these conditions is beyond 

the scope of this paper. We assume that the DDEs which we consider in this paper with their 

conditions have solutions. During the last decades, several methods have been used to solve 

high-order linear DDEs such as Adomian's decomposition method [ Wazwaz (2010), Aminataei 

and Hussaini (2007) and (2010)], Taylor collocation method [Gulsu et al. (2006), Gulsu and 

Sezer (2006), Sezer and Gulsu (2005) and Gulsu and Sezer (2005)], Haar functions method 

[Maleknejad and Mirzaee (2006), Reihani and Abadi (2007)], Tau method [Ortiz and Samara 

(1981), Vanani and Aminataei (2011) and Ortiz(1978)], Wavelet method [Danfu and Xufeng 

(2007)], Hybrid function method [Hsiao (2009)], Legendre wavelet method [Razzaghi and 

Yousefi (2005)], collocation method based on Jacobi, Laguerre and Legendre polynomials 

[Imani et al. (2011), Vanani and Aminataei (2012) and Aminataei and Vanani (2013)], Taylor 

polynomial solutions [Sezer and Dascioglu (2006)], Boubaker polynomial approach [Akkaya and 

Yalcinbas (2012)], and Bernoulli polynomial approach [Erdem and Yalcinbas (2012)]. In this 

paper, we develop a new and efficient approach to obtain the numerical solution of the general 

linear DDEs with variable coefficients of the form 
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with the conditions  
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The main advantage of our work is its consideration of the general linear DDEs (1) with respect 

to (2), whereas the other papers only considered particular cases of our general problem. Also 

using the generalized Laguerre polynomials as the basis functions for numerical approximation 

whereas the classical Laguerre polynomials are particular cases of them, is another advantage. 

The remainder of our paper is organized as follows: In Section 2, we introduce the properties of 

generalized Laguerre polynomials and their basic formulation required for our subsequent 

development. Section 3, is devoted to the operational matrices of the generalized Laguerre 

polynomials (derivative and moment) with some useful theorems. Section 4, summarizes the 

application of the generalized Laguerre polynomials to the solution of problem (1) and (2). Thus, 

a set of linear equations is formed and a solution of the considered problem is introduced. 

Section 5, is devoted to approximations by the generalized Laguerre polynomials and a useful 

theorem. In Section 6, the proposed method is applied for three numerical experiments. An 

application of the method for a higher order linear differential equation is presented in Section 7. 

Finally, we make a brief conclusion in Section 8. Note that we have computed the numerical 

results by Matlab (version 2013) programming. 

 

 

2.  The Generalized Laguerre Polynomials  

 

In this part, we define the generalized Laguerre polynomials and their properties such as their 

Sturm-Liouville ODEs, three-term recursion formula, etc. Let  (0, ),    then the Laguerre 

polynomials are denoted by  ( )( 1),nL x     and they are the eigen-functions of the Sturm-

Liouville problem  

 

 1 ( ) ( ) 0,   ,x x

n n nx e x e L x L x x     
 

 








 
 

with the eigenvalues n n  [Funaro (1992)]. 

Laguerre polynomials are orthogonal in 2 ( )
w

L    space with the weight function ( ) ,xw x x e

  

satisfying in the following relation  
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where  ,m n  is a Kronecker delta function. The explicit form of these polynomials is in the 
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form 
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These polynomials are satisfied in the following three-term recurrence formula 

 

1 1( 1) ( ) (2 1 ) ( ) ( ) ,  ( )n n nn L x n x L x n L x          
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The case 0  leads to the classical Laguerre polynomials, which are used most frequently in 

practice and will simply be denoted by  nL x . An important property of the Laguerre 

polynomials is the following derivative relation [Funaro (1992)]:   
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Further, ( )( ( )) k

iL x are orthogonal with respect to the weight function ,kw  i.e., 
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where k

n k

 

 is defined in equation (3). 

 

A function 2( ) [0, ),wy x L


  can be expressed in terms of the generalized Laguerre polynomials 

as  
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where the coefficients ia are given by  
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In practice, only the first 1m  terms of the generalized Laguerre polynomials are considered. 

Then we have  
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( ) ) ( ) ( ,
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where the generalized Laguerre polynomials coefficients vector A and the generalized Laguerre 

polynomials vector 
( ) ( )L x

are given by 

 

 0 1, ,..., ,
T

mA a a a
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0 1( ) ( ), ( ),..., ( ) .
T
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Remark 1.  
 

From equation (1), for , 0,k jh  we conclude that   

 

( )

, ,

0

( ) ( ) ; 1.
n

i i

n k j i k j

i

L h x E h x  


                                                                                     (7) 

 

Now, from remark 1 and the following theorem 1, we can obtain the matrix relation between the 

generalized Laguerre polynomials space (set) ( ) ( ) ( )

0 , 1 , ,{ ( ), ( ),..., ( )}k j k j n k jL h x L h x L h x   and 

standard polynomial space (set) as the following  
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where K and T are lower triangular matrices 
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Theorem 1.  
 

The matrices K and T are invertible if and only if , 0.k jh   

 

Proof:  
 

For establishing the invertibility of matrix ,K it is sufficient to show that ( ) 0,Det K                                                                                                                                                     

where ( )Det K is a determinant of the square matrix K. But because K is a lower triangular 

matrix, then we have 
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but from , 0,k jh  it is sufficient to establish that 
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Now from equation (4), it is not difficult to see that 

 

 
0

0.
n

i

i

E
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The invertibility of matrix T along similar lines of discussion of matrix K is obvious. Therefore, 

the proof is completed.  

 

Now from equations (8) and (9), we obtain the following important matrix relation 

 

 
( ) ( ) ( ) 1

0 , 1 , , 0 1( ), ( ),..., ( ) ( ), ( ),..., ( ) , 0.
T T

k j k j n k j nL h x L h x L h x KT L x L x L x                  (12) 

 

 

3.  The Operational Matrices of the Generalized Laguerre Polynomials                                                                                 

      (Derivative and Moment) 
 

In this section, we present the operational matrices of the generalized Laguerre polynomials 

(derivative and moment). To do this, first we introduce the concept of the operational matrix. 
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3.1.  The Operational Matrix 

 

Definition 1.  

 

Suppose 0 1[ , ,..., ],n    where 0 1, ,..., n   are the basis functions on the given interval [ , ].a b   

The matrices n nE  and n nF  are named as the operational matrices of derivatives and integrals, 

respectively, if and only if  

 

( ) ( ),
d

t
t

E t
d
  and ( ) ( ).

x

a
t dt F t   

 

Further assume 0 1[ , ,..., ],ng g g g named as the operational matrix of the product, if and only if 

 

( ) ( ) ( ).T

gx x G x                                                                                                             (13) 

                                               

In other words, to obtain the operational matrix of a product, it is sufficient to find , ,i j kg in the 

relation 

, ,

0

( ) ( ) ( ),
i j

i j i j k k

k

x x g x  




                                                                                                (14) 

 

which is called the linearization formula [Eslahchi and Dehghan (2011)]. Operational matrices 

are used in several areas of numerical analyses and continue to be important in various subjects 

such as integral equations [Razzaghi and Ordokhani (2001)], differential and partial differential 

equations [Khellat and Yousefi (2006)], etc. Also many textbooks and papers have employed the 

operational matrices for spectral methods. 

 

Remark 2. 

 

The reason for using the equalities (8), (9), (10) and (11) is that for some bases such as 

polynomial basis, the integral of a polynomial with degree ,n is a polynomial with degree 1,n 

so it cannot be represented with a polynomial with degree .n   A similar inference can be drawn 

for the product of two bases. 

 

Remark 3.  
 

The reason for using three parameters , , ,i j k for the product of two functions ( )i x and ( )j x is 

that the coefficients , , ,i j kg completely depend on two functions ( )i x and ( ).j x  

 

Remark 4.  

 

In the general case, the coefficient matrix ,G and the coefficients , ,i j kg of equations (13) and 

(14) respectively, are different for different bases, and in the following we obtain these 
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coefficients for the generalized Laguerre polynomials. To this goal, we use the following two 

important formulas 
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By combining the relations (15) and (16), we obtain  
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So the considered coefficients are obtained. Now we present the following theorem. 

 

Theorem 2.  
 

If we consider the generalized Laguerre approximation 
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where  

 

,

1, ,

0,   ,
i j

i j
D

i j


 


                                                                                                                 (17) 

 

and 

 

,

( ), 1,

,           ,
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0,    otherwise.
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Proof:   
 

First, we obtain the operational matrix with respect to the derivative operator. For this goal, we 

must obtain a matrix D which satisfy the following formula 
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but by using equation (16), we can obtain the matrix D as the following  
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Now by j-times repeating the formula (19), we can obtain the operational matrix with respect to 
( ) ( )jy x as the following 
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Also for obtaining the operational matrix with respect to the moment operator we must obtain a 

matrix G, which satisfy the following relation 
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0 0
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but by using equation (5), we can obtain the matrix G as the following 
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Now by j-times repeating the formula (21), we can obtain the operational matrix with respect to 
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Now using formulae (20) and (22), yield 
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so the proof is complete.   
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Theorem 3.  
 

If c R and 0,  then 

 
1

0 1 0 1( ), ( ),..., ( ) ( ), ( ),..., ( ) ,
T T

n c nL x c L x c L x c W T L x L x L x                
 

where cW is a lower triangular matrix  

 

  ( , ),

0, ,

, ,
c ji j

i

i j
W

D i j


 


                                                                                                (23) 

 

and 
( , ) ,

j
j k

i i

k i

k
D E c

i

 



 
  

 
 where iE  is defined in equation (4). 

 

Proof:  
 

From equation (7), we have  

 

( )

0 0 0

( ) ( )  ,  
n n i

i i j j

n i i

i i j

i
L x c E x c E c x

j

   

  

 
     

 
                                                               

 

so if we define 

 

( , ) ,
j

j k

i i

k i

k
D E c

i

 



 
  

 
  

 

therefore we have 

 

( ) ( , )

0

( ) .
n

n i

n i

i

L x c D x 



                                                                                                      (24)   

                                                                                               

Using obtained result from equation (24), we have  

 
( ) ( ) ( )

0 1( ), ( ),..., ( ) 1, ,..., , 0,
T T

n

n cL x c L x c L x c W x x                
 

where cW is given in equation (23), and using formula (12), we obtain 

 
( ) ( ) ( ) 1 ( ) ( ) ( )

0 1 0 1( ), ( ),..., ( ) ( ), ( ),..., ( ) ,
T T

n c nL x c L x c L x c W T L x L x L x                
 

therefore 1

cW T  is the shift operational matrix and the proof of theorem is complete.  
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Now by theorem 3, we can obtain the modified version of theorem 2, for generalized Laguerre 

polynomials as  

 

     ,

( ) ( ) 1 ( )

, , ( ) ( ), 0.
k t

T
T

i k T i j

k t k t fx y h x f B L x G D A W KT L x                             

 

 

4.  The Method of Solution 
 

In this section, we describe our new approach for solving the linear differential-difference 

equations with variable coefficients (1), with respect to the conditions (2). Our approach is based 

on approximating the exact solution of equation (1), by truncating the generalized Laguerre 

expansion as 

 

 ( ) ( )

0

( ) ( ) ( ) ,
m

T

i i

i

y x a L x L x A 



                                                                                    (25) 

 

where 0 1[ , ,..., ] ,T

mA a a a and ( ) ( ) ( ) ( )

0 1( ) ( ), ( ),..., ( ) .
T

mL x L x L x L x                                                                                              

 

Also we assume that the coefficients , ( )k jA x have the Taylor series expansion in the following 

form  

 

( )

, ,

0

( ) .
jm

j i

k j k i

i

A x e x


                                                                                                             (26) 

 

Now by substituting equations (25) and (26) into equation (1), we obtain 

 
1 1

0 0

( ) ( ) ( 1) ( 1)

, , , , , 1 , 1

1 0 1 0

(0) ( )

, ,0 ,0

1 0

( ) ( )

... ( ) ( ),

j j j js m s m

j i j j i j

k i k j k j k i k j k j

k i k i

s m
i j

k i k k

k i

e x y h x f e x y h x f

e x y h x f f x

 

 

 

   

 

  

  

 



                                 (27)    

                    

Therefore, from equation (27), we must simplify  ( ) ( )i jx y x as the following       

 

 

   ,

( ) ( ) ( ) ( )

, , , , ( )

0

1 ( )

( ) ( ) ( )

( ),
k t

m
T

i j i

k j k j i i k j k j j

i

TT
i j

f

x y h x f a L h x f L x B

G D A W KT L x

 











 
                                              (28)    

                        

where D and ,G are defined in equations (17) and (18), respectively. Also we approximate the 

right hand side of equation (1), as 
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 ( ) ( )

0

( ) ( ) ( ) ,
m

T

i i

i

f x b L x L x B 



                                                                                     (29)     

                              

where  0 1, ,..., ,
T

mB b b b and ( ) ( ) ( ) ( )

0 1( ) ( ), ( ),..., ( ) .
T

mL x L x L x L x                                                                                               

 

Using equations (28) and (29), into equation (27), we obtain 

 

 

   

( ) ( ) ( ) ( 1) ( ) (0) ( )

, ( ) , ( 1) , (0)

1 0 1 0 1 0

( ) ( )

( ) ....

( ) ( ) .

j j j j j js m s m s m
T

j i j i i

i k j i k j i k

k i k i k i

T T

L x e B e B e B

L x F L x B



 





     

 
   

 



  

 

 

Now, from linear independency of the generalized Laguerre polynomials, we conclude that 

 

,F B                                                                                                                                  (30) 

 

where 0 1[ , ,..., ].mF f f f                                                                                                                                     

 

Therefore, from identity (30), we have a system of 1m   algebraic equations of 1m   unknown 

coefficients  0,.., .ia i m  Finally, we must obtain the corresponding matrix form of the 

boundary conditions. For this purpose from equation (2), the values 
( ) ( )jy a  can be written as 

 

   ( ) ( )( ) ( ) , [0, ).
T T

j jy a L a D A a  
                                                                           (31) 

 

Substituting equation (31), in the boundary conditions (2) and then simplifying it, we obtain the 

following matrix form 

 

 ( ) ( )

, ,

0 0

( ) ( ) , [0, ).
j j

T
l i

i l i i i l l i

i i

b y a L a b D A a 
 

 
    

 
                                                 (32) 

 

Now from equations (30) and (32), we have 1m j  algebraic equations of 1m   unknown 

coefficients. Thus for obtaining the unknown coefficients, we must eliminate j arbitrary 

equations from these 1m j  equations. But because of the necessity of holding the boundary 

conditions, we eliminate the last j equations from equality (30). Finally, replacing the last j

equations of equality (30) by the j equations of equality (32), we obtain a system of 1m   

equations of 1m   unknowns  0, , .ia i m
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5.  Approximations by Generalized Laguerre Polynomials 
 

 Now in this section, we present a useful theorem which shows the approximations of functions 

by the generalized Laguerre polynomials. For this purpose, let us define { 0 }x x   ∣ and 

 
( ) ( ) ( ) ( )

0 1{ ( ), ( ),..., ( )}.N nJ span L x L x L x   
 

 

 The 2

( ) ( )wL    orthogonal projection ( ) 2 ( ): ( )N NL J    is a mapping in a way that for any 

2( ) ( ),y x L   we have ( ) ( )( ) , 0,      .N Ny y J       

 

Due to the orthogonally, we can write 
1

( ) ( )

0

( ) ( ),
N

N k k

k

y c L x 




  where   ( 0,1,..., 1)ic i N   

constants are in the following form  

 

2
( )

( )

( )

1
( ), .

w

i k L
k

c y x L





    

 

In the literature of spectral methods, ( ) ( )N y is named as the generalized Laguerre expansion of 

( )y x and approximates ( )y x on (0, ).  In the spectral methods, by substituting the 

generalized Laguerre expansion ( ) ( )N y  in the DDEs and their boundary conditions, we obtain a 

residual term which is symbolically showed by ( )Res x  as a function of , ,x N  and .  Different 

strategies for minimizing a residual term ( ),Res x  lead to the different versions of spectral 

methods such as Galerkin, Tau and collocation methods. For instance, in the collocation methods 

the residual term Res(x) is vanished in particular points named as collocated points. Also 

estimating the distance between ( )y x  and its generalized Laguerre expansion as measured in 

the weighted norm .
w

 is an important problem in numerical analysis. The following theorem 

provides the basic approximation results for generalized Laguerre expansion. 

 

Theorem 4.   
 

We have 

 

( )

( ) ( )/2( ( ) ) ( ) ,l
m

l m
l m

N wl mw

d d
y y N y x

dx dx




 


   
( )0 ,     ( ),ml m y B       

 

where 

 

 
2 2

( ) ( ) { : ( ),  0 }.
l

l
m

w wl

d y
B y L L l m

dx  
         
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Theorem 4 states that if the function 
( )( ) ( ),my x B    or in other words the function ( ),y x  is 

sufficiently continuous, we recover spectral decay of the expansion coefficients, i.e., kc∣ ∣  decays 

faster than any algebraic order of 1/ .N  This result is valid independent of specific boundary 

conditions on  .y x  

 

Proof:    
 

See Funaro (1992).  

 

 

6.  The Test Experiments 
 

 In this section, some numerical experiments are given to illustrate the properties of the method 

and all of them were performed on a computer using a program written in Matlab 2013. 

 

 Experiment 1.  
 

Consider the following second-order linear differential equation with variable coefficients 

[Kesan (2003)]: 

 
2( ) ( ) ( ) 1 , 1 1,

(0) 1, (0) 2 (1) ( 1) 1.

y x xy x xy x x x x

y y y y

        

                                                                    (33) 

 

Now we approximate the exact solution of equation (33), by  

 

 
6

( ) ( )

0

( ) ( ) ( ) ,
T

i i

i

y x a L x L x A 



  

                                                                                  

where 0 1 6A = [a ,a ,...,a ].
 
Also we expand the right hand side of  equation (33) as 

 

 
6

2 ( ) ( )

0

1 ( ) ( ) ,
T

i i

i

x x b L x L x B 



     where  1,2,3 / 2,0,0,0,0 .B                                                                                                                           

 

First, we reduce equation (33) into the following matrix form  2 .
T

D GD G A B                                                                                                                           

Also its boundary conditions as 

 

 
6

( ) ( )

0

(0) (0)  1.
T

i i

i

a L L A 



   
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Figure 1. The comparison between exact and approximate solutions of 14n  and 

3/ 2   of experiment 1 

 

Table 1. The comparison between present method ( 6n   and 3)  and the 

approximate solutions of Taylor method  4n  of experiment 1. 

  x  Present method  

 

Taylor  

method   

         

  -1.0  -1.0000000000  -0.9999999999   

  -0.8  -0.8000000000  -0.7999999996   

  -0.6  -0.6000000000  -0.5999999998   

  -0.4  -0.3879999999  -0.4000000000   

  -0.2  -0.1889999999  -0.2000000000   

  0.0  -0.9999999999  -1.0000000000   

  0.2  0.1999999999  0.2000000000   

  0.4  0.3899999999  0.4000000000   

  0.6  0.6000000000  0.5999999999   

  0.8  0.8000000000  0.7999999997   

  1.0  1.0000000000  0.9999999988   

          

 

and  

 

 
6

( ) ( )

0

(1) (1)  1.
T

i i

i

a L L A 



   

 

By implementation of our method which is presented in section 4, and also after the augmented 

matrices of the system and boundary conditions are computed, we obtain the numerical 

solutions. The comparison between our method and Taylor method is shown in table 1. Also the 

approximate and exact solutions are shown in Figure 1. 
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Experiment 2.  
 

Consider the second-order linear differential equation: 

 
2( 1) ( ) ( ) 1,x y x y x                                                                                                        (34) 

 

with the boundary conditions y(0)=0,   y(1)=1.The exact solution of equation (34) is  

   

( ) .y x x  
 

Now we approximate the exact solution of equation (34), by  

 

 
5

( ) ( )

0

( ) ( ) ( ) ,
T

i i

i

y x a L x L x A 




 

 

where 0 1 5A = [a ,a ,...,a ].  Also we expand the right hand side of equation (34) as 

 

 
5

( ) ( )

0

1 ( ) ( ) ,
T

i i

i

b L x L x B 



  where  1,0,0,0,0,0 .B                                                                                                                                     

 

Now, first we reduce equation (34) into the following matrix form  2 2 2 .
T

G D D D A B                                                                                                                  

Also its boundary conditions as  

 

 
5

( ) ( )

0

(0) (0)  0,
T

i i

i

a L L A 



 
 

 

and  

 

 
5

( ) ( )

0

(1) (1)  1.
T

i i

i

a L L A 



 
 

 

By implementation of our method which is presented in section 4, and also after the augmented 

matrices of the system and boundary conditions are computed, we obtain the solution y(x)=x,  

which is the exact solution. 

 

Experiment 3.  
 

Consider the third-order linear differential equation: 

 
2 ( ) ( ) 2,x y x y x    
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y(0) = 0, y(1) = 1, y(-1)=1.                                                                                                   (35) 

 

Now we approximate the exact solution of equation (35) by 

 

 
5

( ) ( )

0

( ) ( ) ( ) .
T

i i

i

y x a L x L x A 




 

 

Also we expand the right hand side of equation (35) as  

 

 
5

( ) ( )

0

2 ( ) ( ) ,
T

i i

i

b L x L x B 



                                                                                                          

 

where [2,0,0,0,0,0].B    

 

Now we must reduce equation (35) into the following matrix form 

 

 2 3 2 ,
T

G D D A B    

 

and also its boundary conditions as 

 

  
5

( ) ( )

0

(0) (0) 0,
T

i i

i

a L L A 



       

 

 
5

( ) ( )

0

(1) (1) 1,
T

i i

i

a L L A 



   

 

and 

 

 
5

( ) ( )

0

( 1) ( 1) 1.
T

i i

i

a L L A 



     

 

After the augmented matrices of the system and boundary conditions are computed, we obtain 

the solution
2( ) ,y x x  which is the exact solution. 

 

7.  Application of the Method for the High-Order Linear Differential Equation 
 

In this section, we report the numerical results obtained for a high-order linear differential 

equation by the aforementioned procedure. This shows that it is straightforward to extend the 

method to the high-order linear differential equations as follows. 

 

Experiment 4.  
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Let us consider the eighth-order linear differential equation [Kurt and   Sezer  (2008) and 

Golbabai and   Javidi (2007)]: 

 
(8) ( ) ( ) 8 , 0 1,xy x y x e x      

 

with the initial conditions  

 

 

(4) (5)

(6) (7)

(0) 1, (0) 0, (0) 1,

(0) 2, (0) 3, (0) 4,

(0) 5, (0) 6.

y y y

y y y

y y

    

      

   

 

 

 

Table 2. The comparison between the exact and approximate solutions of HPM, MDM 

and present methods of experiment 4 
x Exact Present method HPM method MDM method      
 

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 
     

0.1 0.9946538262 0.9946538261 0.9946538263 0.9946538262      
0.2 0.9771222065 0.9771222063 0.9771222065 0.9771222014 

     

0.3 0.9449011653 0.9449011651 0.9449011653 0.9449010769      

0.4 0.8950948185 0.8950948183 0.8950948186 0.8950941522      

0.5 0.8243606353 0.8243606351 0.8243606356 0.8243574386      

0.6 0.7288475201 0.7288475205 0.728847522 0.7288359969      
0.7 0.6041258122 0.6041258121 0.6041258211 0.6040917111 

     
0.8 0.4451081856 0.4451081852 0.445108220 0.4450208387 

     
0.9 0.2459603111 0.2459603101 0.2459604249 0.2457599482 

     

1.0 0.0000000000 0.0000000000 3.326
710  4.212943

410  
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Figure 2. The comparison between the exact and approximate solutions of 12n  and 

2  of experiment 4 

 

Table 3. The comparison between the exact and approximate solutions of present and 

Taylor methods of experiment 4 
x Exact Present method Taylor method     

0.0 1.0000000000 1.0000000000 1.0000000000     
0.1 0.9946538262 0.9946538261 0.9946538266     
0.2 0.9771222065 0.9771222063 0.9771222093     
0.3 0.9449011653 0.9449011651 0.9449011752     
0.4 0.8950948185 0.8950948183 0.8950948487 

    
0.5 0.8243606353 0.8243606351 0.8243607328 

    
0.6 0.7288475201 0.7288475205 0.7288478604 

    
0.7 0.6041258122 0.6041258121 0.6041269662 

    
0.8 0.4451081856 0.4451081852 0.4451117669     
0.9 0.2459603111 0.2459603101 0.2459703618     
1.0 0.0000000000 0.0000000000 2.57 

510  

 

The exact solution of this equation is ( ) (1 ) .xy x x e   By implementation of our method which 

is presented in section 4, and also after the augmented matrices of the system and boundary 

conditions are computed, we obtain the numerical solutions. The comparison between our 

method and other numerical methods are shown in tables 2 and 3. Also the exact and 

approximate solutions are shown in figure 2. 

 

We see that our method, HPM and MDM methods obtain better results than the other methods 

for this experiment. These methods rather than the Taylor polynomial set obtain better results 

near the corner of interval. In other words, in the interior points between 0 and 1, the Taylor 

method gives better results. This matter is seen by [Aminataei and Hussaini (2007) and (2010)] 

also, which is due to the affinity of Taylor series to the origin. 
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8.  Conclusion  

In this paper, we have introduced a new and efficient approach for numerical approximation of 

the linear differential-difference equations. The method is based on the approximation of the 

exact solution with the generalized Laguerre polynomials approximation with variable 

coefficients by Taylor series expansion. Implementation of the method reduces the problem to a 

system of algebraic equations. Some test experiments are presented for showing the accuracy and 

efficiency of the present method with the other methods such as HPM, MDM and Taylor series. 

Application of the method for numerical solution of high-order linear differential equations is 

also considered. In addition, we would like to emphasize that the main importance of the present 

scheme is considering the general linear DDEs (1) and (2), whereas the other manuscripts only 

considered the particular cases of our general problem. Further, using the generalized Laguerre 

polynomials as the basis functions for numerical approximation whereas the classical Laguerre 

polynomials are particular cases of them is another advantage of the present study. 
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