Uncovering aNew

L-function

Andrew R. Booker

n March of this year, my student, Ce Bian,

announced the computation of some “degree

3 transcendental L-functions” at a workshop*

at the American Institute of Mathematics

(AIM). This article aims to explain some of the
motivation behind the workshop and why Bian’s
computations are striking. I begin with a brief
background on L-functions and their applications;
for a more thorough introduction, see the survey
article by Iwaniec and Sarnak [2].

L-functions and the Selberg Class
There are many objects that go by the name of
L-function, and it is difficult to pin down exactly
what one is. In one of his last published papers
[5], the late Fields medalist A. Selberg tried an
axiomatic approach, basically by writing down the
common properties of the known examples. This
resulted in what is generally known as the “Selberg
class”. Before discussing the list of axioms, it is
helpful to consider a few concrete examples.

The simplest and most familiar example of an
L-function is the Riemann C-function,

= 1
Cs)=>n*= [] ——,
~ me 1 =P
n=1 p prime

which encodes information about the prime num-
bers. Using either formula above, one can see that
C(s) is an analytic function of complex numbers s
with R (s) > 1. However, as discovered by Riemann,
C has an analytic continuation to the entire complex
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plane, with the exception of a simple pole at s = 1.
Moreover, it satisfies a “functional equation”: If

y(s) =Tr(s) 1= m5/°T(s/2) and A(s) = y(s)C(s)
then
(1) A(s) = A(1 —s).

By manipulating the C-function using the tools of
complex analysis (some of which were discovered
in the process), one can deduce the famous Prime
Number Theorem, that there are asymptotically
about 1on primes p < x as x — .

Other L-functions reveal more subtle properties.
For instance, inserting a multiplicative character
X :(Z/qZ)* — Cin the definition of the C-function,
we get the so-called Dirichlet L-functions,

1
Lis, )= [] ————-
nprimelix(p)p N

(Here we extend the definition of x by setting
X (p) = 0 when p divides g.) It turns out that these
also continue to entire functions and satisfy a
functional equation similar to (1): If

Ir(s) if x(-1) =1,
yls.x) = {F[R(S c1) itx(-=—1 0
A(s,x) = y(s,X)L(s,X)
then
(2) A8, X) = €xq"*SA(1 - 5,X),

where €, is a certain constant of absolute value 1
and X is the conjugate character. The Dirichlet
L-functions encode information about primes in
arithmetic progressions, which is revealed by ma-
nipulations similar to those for the C-function; in
particular, Dirichlet’s theorem says that the primes
distribute themselves evenly among the invertible
residue classes modulo g.
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Another example arises from arithmetic ge-
ometry. Given an elliptic curve E of the form
y? = x3 + ax + b with a,b € Q, one can consider
the number of solutions, #E(F,), to its defin-
ing equation reduced modulo prime numbers p.
Based on the fact that about half of the numbers
mod p are squares, a simple heuristic analysis
suggests that there are roughly p such solutions,
and indeed a theorem of Hasse implies the sharp
bound |p - #E(F,)| < 2,/p. Thus, it is natural to

consider the normalized quantity A(p) = %ﬁ(m
(As in the case of the Dirichlet L-functions, there
are finitely many primes for which the definition
needs some adjustment, such as those dividing the
denominators of a and b. The conductor of E is an
integer N whose prime factorization contains all of
these exceptional primes.) We can then associate
an L-function, called a Hasse-Weil L-function in this
case, given by the product

1
L(s,E) = ,
mﬂne 1=A(p)p~ + xn(P)p~>

where xy(p) = 0 if p divides N and 1 otherwise.
Again from the definition and Hasse’s bound we see
that L(s, E) is analytic for R(s) > 1. However, the
Shimura-Taniyama-Weil conjecture, now a theorem
of Wiles et al., implies that L(s, E) continues to an
entire function and satisfies a functional equation:
If

y(s,E) =Tr(s)[g(s +1) and
A(s,E) = y(s,E)L(s,E)

then
A(S,E) = egNY2SA(s, E),

for a certain € € {+1}. As is now well known, the
analytic properties of these L-functions lie at the
heart of Wiles’ proof of Fermat’s Last Theorem.

So what do these examples have in common?
One difficulty with Selberg’s approach is that it is
not obvious which properties should be considered
intrinsic and which not, and there is no general
agreement on that point. A few things are clear,
however:

e An L-function should be given by an Euler

product. In all known cases, it takes the
form

1
Lis) = n fr(p=5)’

p prime

where f, is a polynomial of a fixed degree
¥ > 1, with the exception of at most finite-
ly many primes p, for which the degree
can be smaller than usual. Moreover, the
product should converge absolutely for s
with R (s) > 1, and thus define an analytic
function in that region.
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e [(s) should continue to an entire function,
with the exception of at most finitely many
poles on the line R (s) = 1. Moreover, the
analytically continued function should sat-
isfy a functional equation of the following
form: If

y(s) =] [Tr(s +p;) and
j=1
A(s) = y(s)L(s),

for certain complex constants u;, then
A(s) = eNVZSA(1 - 3),

where N is a positive integer and € is a
constant of absolute value 1. (Note that
the above examples are all of this form; in
particular, A(s,x) = A(8,x).)

It is also expected that all of the functions
in the Selberg class satisfy an analogue of the
Riemann hypothesis, i.e., all zeros of the completed
function A(s) should have real part % It would
seem sensible to include that as an axiom, but for
the fact that not a single instance of the Riemann
hypothesis is yet known to be true!

Langlands’ Philosophy

Another common feature of the examples above is
that they are all generating functions for sequences
that occur naturally in number theory. In order
to extract the information that they contain, one
needs to know the nice analytic properties (i.e.,
analytic continuation and functional equation) that
the generating functions possess. However, as is
apparent from the example of elliptic curves, those
properties can be difficult to establish. Fortunately,
we have a source of L-functions with good analytic
properties, known as automorphic forms or modu-
lar forms. The problem is thus reduced to showing
that an L-function of arithmetic interest is equal
to one arising from an automorphic form; this is
in fact what Wiles et al. proved in their resolution
of the Shimura-Taniyama-Weil conjecture.

The study of automorphic forms is a discipline
in its own right, called the Langlands program,
after R. P. Langlands, who was arguably the first to
understand the scope for applying them to num-
ber theory. In particular, Langlands predicted the
existence of certain “functorial transfers” between
different types of automorphic forms, which may
be viewed as a (largely conjectural) set of rules
governing the expected equalities of L-functions.

Maass Forms

After accounting for all of these equalities, it turns
out that there are far more automorphic forms,
each with an associated L-function, than there
are L-functions that can be properly interpreted
as generating functions. Thus, there are many
so-called “transcendental L-functions”, which are
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associated to automorphic forms but not obviously
connected to number theory. The most classical
examples are known as Maass forms, after H. Maass,
who was the first to construct them. These are
functions f on the hyperbolic upper half plane
H={z=x+iy € C:y > 0}, equipped with

the Riemannian metric ds® = M, which are
modular, in the sense that
az+b
3 =
o A=)

for all matrices (9%) in a discrete subgroup T
of SL(2,R), the group of orientation-preserving
isometries of H.

The prototypical case is I = SL(2, Z), for which
an even Maass form® has a Fourier series expansion
of the type

@)  f(z2) = > A(n)yKi(21rny) cos(2mnx),
n=1

where ¥ and A(n) are certain real constants and
K, is the classical K-Bessel function. Thus, to
describe a Maass form completely, one need only
specify the numbers r and A(n). For any choice of
these data, f is an eigenfunction of the hyperbolic
3

Laplace operator A = div o grad = y? ( axzz + %) of

eigenvalue i + r2. However, there is only a discrete
set of values of r and A (n) for which (4) is invariant
under SL(2, Z). Given such a form, the associated
L-function is the series

L(s,f) = > An)n”%,
n=1

which converges absolutely for R (s) > 1. However,
as a consequence of the SL(2,7)-invariance of f,
L(s,f) continues to an entire function and satisfies
the following functional equation: If

y(s,f) =Ir(s +ir)Igx(s —ir) and
A(s,f) =y (s,f)L(s,f)
then
A(s,f) = A1 = s,f).
Moreover, by choosing a suitable basis for the
(3 + r?)-eigenspace’ of A, one can always ensure
that the coefficients A(n) are multiplicative as a

function of n, which is equivalent to the existence
of an Euler product formula

L(s,f) = []

p prime

1
—Ap)p=s+p>’

Thus, these functions belong to the Selberg class.

2Meaning even as a function of x. There are also odd
forms, which have cosine replaced by sine in their Fourier
expansions.

3The eigenspaces are conjectured to be simple, and all
numerical evidence to date supports this conclusion.
Thus, if f is normalized so that A(1) = 1 then A(n) is
automatically multiplicative.
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With a few exceptions arising from instances
of the Langlands functoriality conjectures, no ex-
plicit examples of Maass forms are known. In fact,
the data associated to a typical Maass form are
believed to be transcendental, which explains the
terminology above; thus, in a sense one can never
know a typical form exactly, and all constructions
of them are approximate and numerical. (This
is in contrast to the more classical holomorphic
modular forms, which have algebraic data and can
be described by explicit formulas.)

Applications

That begs the question why number theorists
should be interested in these functions at all.
The answer lies in the relatively recent realiza-
tion that in order to deduce information about
a single L-function (an algebraic one, say), it is
often beneficial to embed it in a “family” of similar
L-functions and study the whole set of them at
once.” Many examples and applications of this
notion are discussed in the survey paper by Michel
[3]. T highlight two recent examples here.

e Hilbert’s 11th problem asks which algebraic
integers in a number field are represented
by values of a fixed quadratic form (e.g.,
which ones are sums of three squares?).
It was only recently solved completely by
J. Cogdell, 1. Piatetski-Shapiro, and P. Sar-
nak [1], utilizing the full spectral theory of
Maass forms over number fields.

e The following problem was raised at the
AIM workshop in March:

Given a large number X > 0, how quick-
ly can one determine the structure of the
ideal class groups of the quadratic fields
Q(Vd) for0 <d < X?

If one is allowed to assume the truth of
the (generalized) Riemann hypothesis then
there are known algorithms for computing
such class groups very quickly—in “essen-
tially linear time” O, (X'*¢) for each € > 0.
The catch is that one cannot be sure that
the results of the computation are correct
without the Riemann hypothesis. Howev-
er, given a fast algorithm for computing
the eigenvalues and Fourier coefficients of
Maass forms, such as the one discussed
below, it turns out that one can certify
the results of the computation uncondi-
tionally, again in essentially linear time.
This has been implemented in practice by
M. Jacobson et al.,, and is currently the

‘While the applications to L-functions are recent, this
method of attack was already familiar to number theorists
from Deligne’s proof of the Weil conjectures, including a
finite analogue of the Riemann hypothesis that remains
some of our best evidence to date in favor of the version
for L-functions.
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fastest known method of computing real
quadratic class groups!

The Workshop

In recognition of the important role that compu-
tation plays concerning automorphic forms and
L-functions, the AIM workshop in March was an
attempt to unify and extend the known computa-
tional techniques. More precisely, it addressed the
following question:

To what extent can we

(A) compute the data (i.e., Laplacian eigenval-
ues and Fourier coefficients) of automorphic
forms, and

(B) prove theorems about them?

There are good reasons for separating the ques-
tion into two parts; while there is a long history of
computations of this type, most notably algorithms
for Maass forms due to H. Stark and D. Hejhal, the
issue of rigorously proving the correctness of the
computations has only recently been addressed.
Moreover, in many situations, such as when giving
numerical evidence for a conjecture, rigorous re-
sults are not necessary and may even be overkill.
With that in mind, the sort of answer that we seek
to this question is again best illustrated by the case
of SL(2,7), for which we have the following:

(A) Some 50,000 values of ¥ have been comput-
ed approximately (to 6 or 7 decimal place
precision), with heuristic justifications of
their correctness, including some very large
values (which are computationally more
difficult). This is work of H. Then, based on
an algorithm of Hejhal.

The first 2000 r-values (in increasing order
of size) have been rigorously computed to
better than 40 decimal place accuracy. The
eigenspaces turn out to be simple, and for
each one the first several Fourier coeffi-
cients have been rigorously computed. This
is work in preparation with A. Strombergs-
son, based on joint work with A. Venkatesh.
Moreover, in this case we have the following
theoretical result:

(B

=~

Theorem. Given A, D = 0, there is an algo-
rithm that will compute all discrete eigen-
values of A onSL(2,7Z)\H in [0, A] to within
107P in polynomial time in A, D. Up to stan-
dard heuristic assumptions (the simplicity
of the spectrum, in particular) that can be
checked at run time, this also yields the first
several Fourier coefficients of each form.

These results represent the best that one can
hope for in terms of computation. However, it
would be misleading to describe them as typical,
nearly all success so far has been limited to the
classical Maass forms and holomorphic modular
forms. Indeed, “most” of the automorphic forms
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of interest have never been observed directly. I
describe some of these more general forms in the
next section.

Higher Degree Automorphic Forms

An alternative way to realize the upper half plane
is as the quotient of its isometry group by the
stabilizer of any point, i.e., SL(2, R)/ SO(2, R). This,
in turn, is isomorphic to the projective quotient
GL(2,R)/0O(2,R) - R*, and any element of the
latter group has (by the Iwasawa decomposition) a
unique representative of the form (¥ }) with y > 0,
which is associated via these identifications to the
element x + iy € H. Expressing the elements in this
form has the advantage that the linear fractional
transformations in (3) turn into left-multiplication
by group elements.

Another advantage is that it is now clear how to
generalize the upper half plane and automorphic
forms to higher-dimensional spaces; one simply
replaces SL(2,R) by a Lie group, SO(2,R) by a
maximal compact subgroup, and I' by a co-finite
(with respect to Haar measure) discrete subgroup.
For example, “degree 3 hyperbolic space” is the
quotient

SL(3,R)/SO(3,R) = GL(3,R)/ O(3,R) - R*,

and the Iwasawa decomposition in this case says
that any element has a unique representative of
the form z = xy, where

1 X12  X13 Y1)e
X = 1 xo3 and y = N )
1 1

with x12, X13, X23, V1,2 € R and y,y, > 0. Taking
I' = SL(3,7Z) gives rise to degree 3 automorphic
forms, which are functions on the double coset
space SL(3,7)\ SL(3,R)/SO(3, R). Such forms have
a Fourier expansion akin to (4), but with a two-
parameter set of coefficients, A(n,m) € C:

(5)

f(z) = Z i i 7A(n,m)w nmm z
= = nm u,v 1 g .

gerg\r2 n=1
Here T? consists of all integer matrices of the
b , . , -
form (? d 1) with determinant +1, I'2 c I'? is the

subgroup of unipotent ones, and W, , is “Jacquet’s
Whittaker function”. The latter is a suitable re-
placement for the classical K-Bessel function and
cosine from (4); in degree 3 it has two parameters,
u,v € R, which are analogous to the parameter r.

The associated L-function in this case is given
by the Dirichlet series

L(s,f) = > A(n,1)n"*,

n=1

converging absolutely for R(s) > 1. Again it is
always possible to choose the form so that we have
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an Euler product formula, this time of the form

(6) )
[ -

L(s,f) = L |
! pprimel—A(P,l)lﬂ S+ A(p,1)p=2s —p=3s

Moreover, it turns out that f is determined by its
L-function, in the following sense. Let f be the
“dual” form, for which (u, v) is replaced by (v, u)
and the A(n, m) by their complex conjugates. Then
we have the following identity, due to Bump:

S 5 Amm) _ LisufL(szf)

n=1m=1 nstms2 C(Sl +SZ)

In particular, this shows that all A(n,m) are de-
termined by the 1-dimensional sequence A(n,1).
Thus, working with the L-function eliminates some
of the redundancy that is present in the Fourier
expansion (5).

The Converse Theorem

One can also define so-called “twisted”
L-functions, as follows. Let x be a Dirichlet
character of conductor g. Then we define
L(s,f xx) = >, A(n,1)x(n)ns. Further, if x has
parity a € {0, 1}, meaning x(—1) = (—1)9, then we
set

2u +
y(suvx)—l"ug<s+a—1 u V)

u+2v)

FR(s+a+iu7V)rng<s+a+i

and A(s,f x x) = y(s,u,v,x)L(s,f X X).

It follows from the fact that { is an automorphic
form that all of the twisted L-functions have nice
analytic properties. In particular, A(s,f x x) has
analytic continuation to an entire function and
satisfies the following functional equation relating
f toits dual and Y to its conjugate:

(7) A(S;f X X) = €;q3(1/2—3')/\(1 _ S,fX ?),

where € is the factor from (2).

Remarkably, these analytic properties actually
characterize the degree 3 automorphic forms;
precisely, we have the follow result:

Theorem (Jacquet, Piatetski-Shapiro, Shalika). Sup-
pose L(s,f) is an Euler product of the form given
in (6) such that all complete twisted L-functions
A(s,f X Xx) extend to entire functions of finite order
and satisfy (7). Then L(s,f) is the L-function of a
degree 3 automorphic form.

Similar results are known for automorphic forms
of arbitrary degree, although the set of objects
that one must twist by grows with the degree. (For
instance, for degree 4 one has to twist by all degree
2 automorphic forms, including the Maass forms.)
Collectively these results are known simply as the
“converse theorem”. They give strong support to
Langlands’ philosophy that automorphic forms are
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the right source for L-functions with nice analytic
properties, and they have found many applica-
tions in the Langlands program. For instance, the
theorem above is the key point in the proof of
one of the first cases of Langlands’ conjectures
to be confirmed, called the Gelbart-jacquet lift,
given a Maass form with parameters r and A(p),
it associates a degree 3 automorphic form with
parameters u = v = 2r and A(p,1) = A(p)? — 1.
This application in turn motivated the proof of the
theorem.

Bian’s Computations

Besides its theoretical uses, the converse theorem
also points to a method for computing automor-
phic forms, as follows. For his computations, Bian
considered the following smooth sums, which are
linear functionals on a sequence A(n) of complex
numbers, with parameters u,v,X > 0 and x a
Dirichlet character:

8) SUAM},u,v,X,x) =
1 0
ﬁgmmx(may(n/x,m,

where F,,(y,X) = fxiso1 Y (8,1, v, X)y 0 ds.
This F is related to Jacquet’s Whittaker function
Wy, and it has properties similar to those of the
K-Bessel function, i.e., it oscillates for small y, but
eventually settles down (at a point depending on u
and v) and tends rapidly to 0 as y — oo. Thus, with
the cost of a small error, the series in (8) can be
truncated at a point roughly proportional to X. If
one imagines choosing the A(n) randomly from a
fixed distribution of mean 0, then the sum is the
result of taking a random walk of length X in the
complex plane; the central limit theorem predicts
that such a sum typically has size on the order of
VX. Thus, for a random choice of the A(n)’s, S
should typically be of size 1.

However, if the A(n) happen to be the coeffi-
cients of the L-function of an automorphic form,
then S has a very different behavior. Precisely, the
analytic properties and functional equation (7) of
the twisted L-functions are equivalent, by Mellin
inversion, to the identity

9 SHA(n,1D)}uv,X,x) =
exSHAMm, D)} u,v,q%/X, X).

For X much larger than g3, the right-hand side is
a short sum, and thus S is very small. Moreover,
(9) gives a linear equation relating the real and
imaginary parts of the A(n, 1), which can be tested
for any X at least as large as the point of symmetry,
. In particular, if we consider only the central
point X = g3/ for every Dirichlet character x of
conductor g < Q, then we get a system of equations
involving roughly Q3/2 unknowns. The key point
is that there are asymptotically about 2 Q2 such
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characters as Q — . Thus, if Q is large enough
then we will have an overdetermined system, and
for a given choice of parameters u and v we can
test the consistency of the system of equations by
computing the least squares solution.

Figure 1. Bian’s initial scan and first example.

Bian’s computations followed this approach,
though he used more values of X in order to
reduce Q and relied on other known data about the
possible locations of (u,v). In particular, using a
completely different method, S. Miller [4], who was
the first to prove existence of the degree 3 forms in
question (non-constructively), had earlier ruled out
values of u and v that are both smaller than about
10. We also know the first several Gelbart-Jacquet
lifts, which occur on the line u = v; the first
has u = v = 19.06739.... Thus, Bian elected to
search the square region with 10 < u, v < 20. With
parameters of that size, it turns out that for each
choice of u and v one ends up with a (non-sparse)
system of equations in about 10,000 real variables.
One important practical point is that solving such
systems is now well within the capabilities of a
standard desktop PC; it seems unlikely that it could
have been done a decade ago°.

Above is an image of Bian’s initial scan, which
contains about 2,500 sample points. The “hot” ar-
eas indicate places where the system of equations
is close to consistent. The inset image shows a
zoomed and rescaled version around the warm
point near the lower right-hand corner, which
was Bian’s first example. This indeed turns out to
correspond to an automorphic form, with parame-
ters (u,v) =~ (18.902415,11.761250), as do three

*However, after seeing Bian’s results at the workshop,
David Farmer, Sally Koutsoliotas, and Stefan Lemurell pre-
sented a similar method that seems to detect degree 3
forms with substantially smaller systems of equations. It
remains to be seen which method, or combination of the
two, will be preferable in the long run.
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other points that Bian zoomed in on before the
workshop®.

Checking the Results

One of the ironies of our lack of concrete examples
of higher degree automorphic forms is that we
have many conjectures about objects that have
never been observed. However, when a purported
example presents itself, these conjectures make it
easy to tell whether the example is genuine or not.

1.2

11.761250,18.902415 ——
|trace| on SU(3) ----

1.6

first Gelbart-Jacquet lift ——
Sato-Tate ----

1.4}
1.2}

1L
0.8F

0.6}

0.4}

0.2}

0

0 05 ! 15 2 25 3
Figure 2. First 500 [A(p, 1)| for Bian’s first
example vs. distribution of absolute trace on

SU(3, C) (top) and for first Gelbart-Jacquet lift
vs. Sato-Tate distribution (bottom).

Firstly, as in the case of Maass forms for SL(2, Z),
the spectrum for these degree 3 forms is thought
to be simple, meaning that there is at most one
form for each pair (u,v). One consequence is
that the Dirichlet coefficients of any form will
automatically be multiplicative; in particular, all
A(n,1) are determined by the ones for n prime.

5The very hot points on or near the u = v line arise from
another image of degree 2 forms, known as Eisenstein
series; like the Gelbart-Jacquet lifts, these are well under-
stood. The points of greatest interest lie off of the line of
symmetry.
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This turns out to be true (numerically, to several
decimal places) for Bian’s examples, a fact that
was never imposed in the scanning process, which
used only linear algebra.

A second, more thorough test is of the dis-
tribution of A(p,1) for prime p. The Langlands
conjectures imply that as p — o, A(p, 1) has the
same distribution as that of the trace of matrices
chosen randomly from SU(3, C) according to Haar
measure. The top portion of Figure 2 compares
a histogram of values of |A(p,1)| from Bian’s
first example, for the first 500 primes, against
the distribution of the absolute trace on SU(3, C).
The bottom shows a similar picture for the first
Gelbart-Jacquet lift. The difference in behavior
of these two examples is striking, but easy to
explain; the Fourier coefficients of the lifted form
are determined by those of the underlying Maass
form, and hence their distribution is a distorted
version of the distribution of the trace on SU(2, C),
the so-called Sato-Tate distribution, rather than
that of a “generic” degree 3 automorphic form.

Figure 3. Plot of L(s,f) along R(s) = 3.

Yet a third prediction is the Riemann hypoth-
esis. In an impressive display of computational
prowess, M. Rubinstein tested this in real time at
the workshop using Bian’s data, as Bian and I were
speaking. Figure 3 shows a graph of L(% +it,f) for
Bian’s first example, with the phase divided out to
make it real-valued, as computed by Rubinstein.
The picture confirms that the first several zeros
are in the expected location.

Given that Bian’s examples pass all of these
tests, there is very little room for doubt that he has
computed genuine degree 3 automorphic forms.
Nevertheless, there is still no proof of this. In
essence, the computation of degree 3 forms has
now reached the point where that of degree 2
Maass forms stood for over twenty years. The
rigorous verifications and passage to degree 4 and
higher should keep us busy for a few more!
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