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ABSTRACT

We put special attention in this paper on the Chebyshev polynomials of the fourth kind
because they are much less known and less studied than others. The representation problem
of analytic functions in series of such polynomials is considered, and the important role
of the Chebyshev functions of the second kind in solving them is emphasized. For analytic
functions, the remainder term of Gauss quadrature rules can be represented as a contour
integral with a complex kernel function. The kernel function related to the Gauss quadrature
for Chebyshev polynomials of the fourth kind is especially studied on elliptic contours
and the points of its maximum are specified.
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PRELIMINARIES

Definitions and elementary properties of the different Chebyshev polynomials are
given and the corresponding functions of the second kind are discussed.

Definitions and some elementary properties

The orthogonal polynomials, called Chebyshev polynomials of the third and fourth
kind (Gautschi 1992), are less well-known than the traditional first and second kind
polynomials introduced as

sin(n + 1)6

T.(x) =cosnfd and U,(x)= snd

: (1.

where x = cos 8, 0 € [0, ] (Szegd 1975, Rivlin 1990). As a consequence of (1.1) and
Euler’s formulas, the Chebyshev polynomials of the first and second kind can be
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defined by the equalities (Szegd 1975)

T(x) = ((x—i—x/xz—) ( x2—1>”>,

(x4 Ve 1) (x - var—1)" (12
2V =1 '

Some basic properties of all four kinds of Chebyshev polynomials with respect to
the weight functions (1 + x)*(1 — x)* with o = +1/2 and f = +£1/2 are summarized
in the literature (Mason 1993). In the paper cited, it is shown how well-known
properties of first kind Chebyshev polynomials could be extended also to the second,
third and fourth kind polynomials.

The Chebyshev polynomials V,(x) and W,(x) of the third and fourth kind,
respectively, are defined on the interval [—1, 1] by the formulas

Un(x) =

1y in(n + 10
V,(x) = 5’@ and  W,(x) = w (1.3)
COS§ Slni

where x = cos 8, 6 € [0, n]. The polynomials (1.1) are special cases of the Jacobi
polynomials and contain only even or only odd powers of x according to whether
n is even or odd. Thus the polynomials (1.3) are cosine polynomials in 6 of degree
n. These polynomials are orthogonal with respect to the non-symmetric weight
functions wi(x) = (1 + %21 = x)7"? and wa(x) = (1 — x)"2(1 + x)"/2, respect-
ively, on the interval [—1, 1]. The orthogonal properties of these polynomials are

as follows:
\/ W) W) = {0 ngm (1L.4)

f,/HXV(x)Vm(x)dx_{?t’;fm . (1.5)

Many identities involving Chebyshev polynomials are paraphrases of well-known
trigonometric identities. For example, the simple trigonometric formulas

2n+1 1 2n+3 2n—1
cOos 3 9-0059_5(005 5 0 + cos 3 6),

. 2n+1 . 1/. 2n+3 . 2n—1
sin 7 9~sm0—§(sm 5 @ + sin 5 ())

lead to the recurrence relation
Yor(x)=2xY,(x)— Y,1, n=1,2,3,. 1.6)

and all Chebyshev polynomials including those of the third and fourth kind satisfy
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this recurrence relation. In particular, from (1.3) and (1.6), it is clear that
Vo) =1, V(x) =2x—1, Vo(x) =4x> =2x —1,...,
Wo(x) =1, Wi(x) =2x+1, Walx) =4x’ +2x—1,...,

and hence, the leading coefficient of W, (x) is 2. In fact it is seen that the Chebyshev
polynomials of the third and fourth kind are related by

Wa(x) = (=1)"Va(—x). (1.7)

Hence, it is normally sufficient to establish properties for fourth kind Chebyshev
polynomials and to deduce analogous properties for the third kind Chebyshev
polynomials using essentially (1.7). Our subsequent considerations in this paper
require us to point out the existing relation between the Chebyshev polynomials
of the second and fourth kind (Mason 1993). If

u:‘ll—;{ x=cosf, 0€[0,n],

then from (1.1) and (1.3) it follows immediately that

sin((2n + 1) arccos u)

Walx) = = Un(u), (1.8)

sin =
2

and likewise the relation
Va(x) = u Topp1 () (1.9)

holds.
The zeros of the Chebyshev polynomials are real, distinct and located in the
interval (—1, 1), and for 7,(x) and U,(x) are given by

) 2k —1 ) k
55{ :cos—zn—n and 7, :cosn+ln, k=1,2,...,n,

respectively. By means of formulas (1.7) and (1.9) it is easy to conclude that the zeros
of V,(x) and W,(x) are given by

2k —1 2k —1

n) n}

yg( :c052n+ln and xf( :—cosmn,k:l,l...,n,
respectively.

Functions of second kind

The recurrence Eq. (1.6), with respect to the Chebyshev polynomials of the fourth
kind, has another solution given by the formula

O.(W; 2) :/l w_4(x)_W”Qde

—1 zZ—X

,n=0,1,2,.... (1.10)
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These functions are holomorphic in the region C \ {—1, 1] and known as functions of
the second kind. Indeed, in view of the above recurrence equation and the orthogonal
property (1.4), one can show that for n > 1 and z € C\ -1, 1],

1 1 U T—x
300 (W:2) = 20,(W3 ) + 3 001 (W) = _/_1 VT Wadx = 0.

Each Chebyshev system of functions of the second kind satisfies the recurrence
relation (1.6) of the orthogonal polynomials. As paraphrases of trigonometric
integrals, certain formulas (Bateman & Erdelyi 1953 [10.11:(47) and (48)]) mean
in the context of the definition (1.10) that the Chebyshev polynomials can be treated
as functions of the second kind. It is not difficult to establish a similar relationship
between the functions {1.10) and the Chebyshev polynomials of the third kind.

Let us set
1 1
x =cos0, uz\/? and y=cosg, v= %—_y

Then according to (1.8) and (1.10),
1 1 1
Qn( w; y) = —/ \/1_—7(]2,,(14) — du
v Jo u+v uU—0v
I !
- if =2 8e® g, i/ Ji—2 8,
2o J_; u+v 2o J_y

Uu—2o

By applying a formula (Bateman & Erdelyi 1953 [10.11:(48)]) we get the
representation

(W y) =m0 Tan 1 (0),
which because of (1.9) becomes

Qn(W; y) = nVn(y)-

Finally, we note that formula (1.7) implies the equality

0u(V52) = (=)' Qu(W; —2), (I.1D

where the function of the second kind Q,(V; z) related to wi(x) is defined likewise as
in (1.10)

SERIES REPRESENTATIONS OF ANALYTIC FUNCTIONS

The extremal properties of the Chebyshev polynomials are essentially used in the
expansion theory of real-valued functions in series of these polynomials. Particular
attention is paid to the rate of convergence of the partial sums of the Chebyshev
expansions (Szegd 1975, Suetin 1976, Rivlin 1990). Our principal concern in this
section is the representation problem of holomorphic functions in series of the
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Chebyshev polynomials of the fourth kind. We employ some methods (Rusev 1984)
to emphasize the important role that the functions of the second kind (1.10) play
in series expansion of analytic functions.

Christoffel-Darboux formula

For further consideration we will prove the validity of the Christoffel-Darboux
formula related to Chebyshev polynomials of the fourth kind and functions of
the second kind.

Lemma 2.1. If z e C, { € C\[~1,1] and z # {, then

LISy ween+ 552,

2.1
C n=0 C ( )

where
1
Az, ) = (— Z)(Wv(Z)Qm(C) - W1 (2)G,(0)).

Proof. As we have already seen, the system of functions (1.10) is also a solution of
(1.6) and therefore for { € C\[-1,1] and n» > 1 we can write

(—%) Qi (W: D)+ 1O (W1 0) + (— %) QWi =0. (22
If we define
M, ) = (— ;—n)(Wz(Z)QnH(W; 0~ W QW) n=0.12,...,
then relation (2.2) leads furthes to
Az, )+ %(C — )W), W) — Ay (2,0) =0, n=1,2,3....
Then if v > 0 is an integer, it follows that
M D+ 1 2) ; W)W ) = A2, ),

where A(x, {) = Ao(z, ) + 1/7({ — 2)Wo(2)Qo(W; 2). In fact A(z,{) = 1.
Indeed, inserting Wy(z) = 1 and Wj(z) =2z + 1 into the definition (1.10) we
obtain

AGzD = (— i)[Ql(W; 0 = WiQOUW: O+~ ~QW; 0

/ l—x(z—x _Z)dx=%/~ll

1—-x 2
i +x(WO(x)) dx = 1.
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Asymptotic properties

In general there are two essentially different types of asymptotic formulas for the
orthogonal polynomials depending on whether the independent variable lies in
the interval of the orthogonality or it is outside of it. In view of the main goal
in this section, we need information about the asymptotic behaviour as n — oo
of the Chebyshev polynomials of the fourth kind only outside of the interval
{—1,1], i.e., in the region €\ [~1, 1]. Since the Chebyshev polynomials are special
cases of the Jacobi polynomials P&*#(x) with « = +4, f = +1, the corresponding
asymptotic formula we need occurs as particular cases of the general asymptotic
formulas for the Jacobi polynomials and their functions of second kind Qﬁf"ﬁ)(x)
(Szegd 1975 [(8.21.9) and (8.71.19)]).

Let u = u(z) be that inverse of Joukowski transformation z =3 (u+ u"!), for
which ju(z)| > 1.

Theorem 2.2. Let o and f§ be arbitrary real numbers. There exists a sequence of ana-

Iytic functions ¢ (u) = @, (a, §; u) which are real for real z and regular for |ul > 1
and lu|l =1, u+# *1, such that

p—1
WPEPE) = ) ™+ O Hn — o)
v=0

uniformly for |ul > R, R > 1.
Corollary 2.3. If z € C[~1, 1] and 1 > 1, the following asympiotic formula holds
W,(z) = AQn  u@)]"{1 + ()}, 2.3)

where A(z) # 0, {pn(2)},=0 are holomorphic functions in C\ [—1, 1] and p,(z) tends
uniformly to zero on every compact subset of this region as n — 0.

When n — oo and z is bounded, the asymptotic behaviour of the Jacobi functions
of the second kind is in some sense ‘‘reciprocal” to that of the polynomials.

Theorem 2.4. Let o and B be arbitrary real numbers such that o, ,a+ f+1#
—1,-2,....Thenifz € C\[-1,1]andn > 1, the following asymptotic formula holds

0P (@) = Q=P @n Hu@] " {1 + 47 @),

where Q*P(z) £ 0, {q*P(2),q are holomorphic in the region G\ [—1, 1}and 4*P(z)
tends uniformly to zero on every compact subset of this region as n — oo.

Corollary 2.5. If z € C\[-1, 1] and n > 1, the following asymptotic formula holds
0(W; 2) = BEm[u@] ™' {1 + g:(2)}, 2.4)

where B(z) # 0, {g.(2)},»0 are holomorphic in z e C\[—-1,1] and q,(z) tends
uniformly to zero on every compact subset of this region as n — oo.
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Series convergence

The asymptotic formulas (2.3) and (2.4) provide complete information about the
regions and mode of convergence of series in the Chebyshev polynomials of the
fourth kind, as well as of the series in the corresponding functions of the second
kind. If 1 < p < oo let us denote by T', the image of the circle |u] =p by the
Joukowski transformation z=3@u+u"") ie, I, ={z€ C:|u(z)] =p} where
u=u(z) is the inverse of the Joukowski function for which |u(z)}> 1,
ze C\[-1,1]. It is clear that ', is an ellipse with focuses at the +1 and with
the sum of its semiaxis equal to p. We use the abbreviations

E(p):=intT', (1 <p <o00) and E*(p)=C\ E(p).
The asymptotic formulas (2.3) and (2.4) lead to the following analogues of the
well-known Abel’s lemma and Cauchy-Hadamard’s formula in the power series

theory.

Theorem 2.6. (a) Abel’s lemma. If the series
> a,W —n(2) (2.5)
n=0

is convergent at a point zy € C\ [—1, 1] then it is absolutely uniformly convergent on
every compact subset of E(p), where p = ju(zo)|.
(b) Cauchy—Hadamard'’s formula: If

R = max{l, [limsup W]il},

H—> 00

then the series (2.5) is absolutely uniformly convergent on every compact subset of
E(R) and diverges in E*(R) \ {oo}.

Theorem 2.7. (a) Abel’s lemma: If the series
D bu0u(2) (2.6)
n=0

is convergent at a point zo € C\ [—1, 1], then it is absolutely uniformly convergent on
every closed subset of E*(p), where p = |u(zg)|.
(b) Cauchy-Hadamard'’s formula: If

R = max{1, [limsup ¥/1b,]1}

then the series (2.6) is absolutely uniformly convergent on every closed subset of E*(R)
and diverges in E(R)\ [~1, 1].
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Series expansions of analytic functions

By means of the asymptotic properties and the Christoffel-Darboux formula for the
Chebyshev polynomials of the fourth kind and the associated functions of the second
kind, we are able to solve the representation problem of analytic functions in series of
the form (2.5) and (2.6). We start with two auxiliary statements related to complex
functions having Cauchy-type integral representation.

Lemma 2.8. Let | < p < 0o and @ be a complex function absolutely integrable in the
ellipse I',. Then the function

CI)(z):L &dc, ze C\T,, 2.7

2nifr, {—z
can be represented in E(p) by a series (2.5) with coefficients

o — 1
" 22

fr POOOL, 1> 0. 2.8)

Proof. Let us multiply the Christoffel-Darboux formula (2.1) by (2ni) ™ ¢(¢) and
integrate along I',. Then the Christoffel-Darboux formula (2.1) provides that
for every z e C\ T,

@(z2) = 8i(2) + R(2), (2.9)

where
Si(z) =) ayWi(2)
n=0

with coefficients g, given by (2.8) and

1 P(DA(z, )
R\'(Z) +%\/].*0 ﬁd{

If z € E(p)\ [—1, 1], the asymptotic formulas (2.3) and (2.4) as well as Stirling’s for-
mula yield that

IRz} = 0(p‘vlu(2)lv [r |<p<¢>|ds)<v Y

Butif z € E(p) \ [-1, 1], then |[i(z)| < p and hence, lim,_, o, R,(z) = 0. From (2.9) we
get the desired representation of the function (2.7) in the region E(p)\[—I, 1] in
a series of the kind (2.5) with coefficients defined by formula (2.8).

Lemma 2.9. Let 1 < p < oo and ¥ be a complex function absolutely integrable onT'p.
Then the function

W) = —— fi@dc,ze(:\rp
T

2ri fr {—-z
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can be represented in E*(p) in a series of the kind (2.6) with coefficients
1 .
by = sy [ HOWAOAL 020,
el r,

Proof, If 1 < r < p is arbitrary, this series is absolutely uniformly convergent on I,
and therefore in E(r), i.e., this series represents ®(z) in the whole region E(p).
The interchanging { with z implies the desired assertion.

The standard employment of the Cauchy integral formula and the above lemmas
lead to the following statements.

Theorem 2.10. Let 1 < p < oo andfbe acomplex function holomorphic in E(p). Then
f can be represented in E(p) by a series of the kind (2.5) with coefficients

1 .
@ = g | OO 720

where | <r < p.
Theorem 2.11. Let 1 < p < oo and [ be a complex function holomorphic in E*(p) such

that f(o0) = 0. Then f can be represented in E*(p) by a series of the kind (2.6) with
coefficients

bm=£;ff@ﬂ%@ﬂ4an
-1 rﬂ

where 1 <r < p.

In general, the orthogonal expansions have the property of uniqueness. For the
particular case of Chebyshev polynomials of the fourth kind, by means of the
orthogonal property (1.4) and Theorem 2.6 (b) one can easily prove the following
statement.

Theorem 2.12. Let 1 < p < 00. If a complex function f has for z € E(p) a represen-
tation

[ =Y a,W,(2),
n=0
then f is a holomorphic in E(p) and

L —x
ay —;/;l ﬁ)—cf(x)W,,(x)dx, n ZO

In particular, if f(x) =0, then a, = 0 for every n > 0 holds.
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THE REMAINDER TERM OF GAUSSIAN QUADRATURE

For analytic functions the remainder term of Gaussian quadrature rules can be
represented as a contour integral on an ellipse with a complex kernel function, which
is given as the quotient of the functions of the second kind Q,(P;z) and the
orthogonal polynomials P,(z) itself. The error estimates are practical and useful,
if it is known where the maximum value of the kernel is attained on the ellipse
considered.

Gaussian quadrature

Consider the n-point Gauss quadrature formula

n

L
[ w3 wfx) + Ref G3.1)

v=I

with respect to some nonnegative weight function w(x) and with algebraic degree of
precisionk = 2n — 1,i.e., R,f =0, whenever fis a polynomial of degree less or equal
to 2n — 1. The nodes x, are the zeros of the n-th degree polynomial P,(x), orthogonal
with respect to w(x) on the interval [—1, 1].

Remainder terms for quadrature formulas are traditionally expressed in terms of
some high-order derivative of the function f(x) involved. This provides a serious
disadvantage in cases where such derivatives are unknown, do not exist or are
too complicated to be computed. Likewise 1t is also difficult to compare formulas
of different algebraic degrees of precision. That is why derivative-free estimates were
developed by the theory of analytic functions and by application of functional
analysis (Davis & Rabinowitz 1984 [p. 300-336]). For integrands f(x) having an
analytic extension in a region D containing [—1, 1], the remainder term R,f can
be expressed as a contour integral

1 .
Rf =5 fr Ku2)f ()i,

where I is a closed contour in D with length L(T") surrounding [—1, 1], and K, (z) is
the complex kernel function. Then an error estimate is given by

1
IR | < 5 L) max |K,(2)| max |f (2))-
While the second maximum depends only on £, the main question is how to determine

the maximum of |K,(z)] on I', which depends on the quadrature formula.
The kernel function satisfies

On(2) ‘
n = s 3.
K@) =505 (3.2)
where 0,(z) is a function of the second kind related to the polynomial P,(x) defined
as

1
Q,,(z):/ M’;L)de, ze C\[-1,11

z —
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In all the literature on the subject, max_.r |K,(z)| is either bounded from above, or
estimated asymptotically for large n (or large z, or both). In cases when I is a circle
[z] = p, p > 1, the problem for evaluating the max_cr |K,(z)| is solved for a large
class of weight functions (including the Jacobi weight function (w(x) =
(1 ~xP(1 +x)*, 2 > =1, > —1) and the maximum of the kernel function can be
expressed exactly as either K,(p) or |K,(—p)|, of which values can be evaluated
accurately and efficiently by recursion (Gautschi & Varga 1983). For elliptic
contours

I,={z:z=4@+u"), u=pe’, p>1, 0€[0,2n]

the problem is considerably more difficult. To deduce realistic error estimates, the
kernel function K,(z) has to be estimated or computed carefully on the ellipse
I',. In the case of Jacobi weight functions as a=f==%1/2 and a«=—1/2,
f = 1/2, explicit representations of K,(z) on I', are obtained and the maximum
points on the ellipse are located (Gautschi & Varga 1983, Gautschi et al. 1990).
The maximum value of |K,(z)| is taken on the points of intersection between the
ellipse and the real or imaginary axis, i.e., on :t%(p +pHor :t%(p —p ). The
remainder term of Gauss-Lobatto quadrature rules for the Chebyshev weight
functions of the second, third and fourth kind are also studied (Schira 1996).

In this section we deal with the kernel function behaviour on elliptic contours I',
for Gauss quadrature related to the Chebyshev weight function of the fourth kind
with o = 1/2 and f = 1/2. We offer straightforward proof of the fact that the kernel
function of the remainder in the Gauss quadrature under consideration attains its
maximal value at the crossing point of I', with the negative real semiaxis. This result
completely matches those already established (Schira 1996 [Theorem 3.2]) for the
case of the Lobatto—Chebyshev quadrature rule.

The maximum of the kernel function on an ellipse

Consider the Gauss quadrature (3.1) for Chebyshev polynomials of the fourth kind.
We use essentially the relations (1.2) and (1.8) that if

z:%(u-ku‘l), uzpm, p>1, 0¢€l0,2n],

it leads to the representation

a+l _ ,—n

U

u
I’V,;(Z) =

- 3.3)
By (1.10) and a special equation (Gradshteyn & Ryzhik 1965 [Eq. 3.613.1]) we obtain

0.(2) = 7’3_—1 [(z V. 1)"—(z V= 1)"“] - u(TziT) (.4)

Therefore, from (3.2), (3.3) and (3.4) it follows that

2n(u — 1)

8O = e
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In particular,

1K, (2)] = V2r\/a;(p) — cos b .

p+12/Tai(p) + c0s B][ax1(p) — cos(2n + D]’

where z € T, and ai(p) = 1 (0" +p7), k= L.
The following inequality (Gautschi & Varga 1983 [Lemma 5.2})

a(p)azilp) — 1 <2n +1

2
() — 1 3 ),nzl,p>1 (3.6)

plays a key role in the proof of our main result.

Theorem 3.1. If w(x) = (1 — x)!*(1 + x)7"? on (=1, 1), then
1 -1
max |K, ()| = K, (—i(p +p ))-

Proof. To show that the expression on the right hand side in (3.5), considered as a
function of 0 € [0, #], attains its maximum only at 0 ==, it is equivalent to
establishing the validity of the inequality

a; —cos@ a +1

R 0
(ar + 005 a1 —cos@nF DO ~ (@ = Damm 1)’ ==

where a; = ax(p), k = 1. The standard simplifications and the introduction of half
angles yield the equivalent inequality

cos? 2n+1 0
. 1
M_ (a) — 1)___‘2“_(;052229 - 0. (3.7)
@+ 200525

By (1.3) and the induction method it is easy to see that

2 1
cos n ¢

Vol = |2 <2n+1, n=1,2,3....
COs =~

2

Then it is clear that the left-hand side in (3.7) is larger than or equal to

a,(ag,,ﬂ +1 1 5 ajay1 — 1 2n+1 2
e —~1 - 1=2(aq; - N —— =
LD @ = h@n+ D (@~ D :

which is strictly positive by (3.6).

Finally, the relation (1.11) and Theorem 3.1 lead to a well-known result that the
maximum of |K,(z)| on T, in the case of Gaussian quadrature for the Chebyshev
polynomials of the third kind is attained on the positive real semiaxis (Gautschi
& Varga 1983 [Theorem 5.3]).
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Remark. Integrals with the four different kinds of Chebyshev weight functions can
always be reduced to an integral with Chebyshev weight function of the first kind.
Thus each of these integrals can be computed by the Gauss—Chebyshev quadrature
of the first kind. Some numerical experiments show that for special integrals the
different kinds of Gauss—Chebyshev quadratures provide better numerical results.

ACKNOWLEDGEMENTS

The authors would like to thank the editors and the referees for helpful comments.

REFERENCES

Bateman, H. & Erdelyi, E. 1953, Higher Transcendental Functions. McGraw-Hill. New York, NY, USA.

Davis, P.J. & Rabinowitz, P. 1984. Methods of Numerical Integration. 2nd edition. Academic Press,
London, UK.

Gautschi, W. 1992. On mean convergence of extended Lagrange interpolation. Journal of Computational
and Applied Mathematics 43: 19-35.

Gautschi, W., Tychopouloes, E. & Varga, R.S. 1990. A note on the contour integral representation of the
remainder term for a Gauss—Chebyshev quadrature rule. STAM Journal of Numerical Analysis 27:
219-224.

Gautschi, W. & Varga, R.S. 1983. Error bounds for Gaussian quadrature of analytic functions. STAM
Journal of Numerical Analysis 20: 1170-1186.

Gradshteyn, 1.S. & Ryzhik, I.M. 1965. Tables of integrals, series and products. Academic Press, New
York, NY, USA.

Mason, J.C. 1993. Chebyshev polynomials of the second, third and fourth kinds in approximation,
indefinite integration, and integral transforms. Journal of Computational and Applied Mathematics
49: 169-178.

Rivlin, T.J. 1990. Chebyshev Polynomials. 2nd edition. John Wiley & Sons, Inc., New York, NY, USA.

Rusev, P. 1984. Analytic Functions and Classical Orthogonal Polynomials. Publishing house of the
Bulgarian Academy of Sciences, Sofia, Bulgaria.

Schira, T. 1996. The remainder term for analytic functions of Gauss—Lobatto quadratures. Journal of
Computational and Applied Mathematics 76: 171-193.

Suetin, P. 1976. Classical Orthogonal Polynomials. Science Publishing House, Moscow, Russia.

Szego, G. 1975. Orthogonal Polynomials. 4th edition. American Mathematical Society College
Publication, Providence, RI, USA.

(Submitted 13 August 2000)
( Revised 21 January 2001)
(Accepted 27 March 2001)



240 L. Boyadjiev and R. Scherer

Calidl 3 gan K (Jga

Dok Gglag ) 5 G e sl
QJLA.“ —a‘,_).u\.‘JK ZM‘; "CILJ..ALA)“ VY PN

4

s oY @il g sl e cadpdi 3gaa @S ) Lald Lildial daes i) 1 b
el ) gall Abie At inl auly s a1 191 (e Al 0y 4y Ji ¢ il
23a o b S g gl (e il sl algdl gl g a3a 3 ganll il HAK (he Aluduila
GLS sl ol 8 JaiSa e W aall e ey lidasl Q1 gl Jad e ALY
ons—s JaiSa ) 4 gl 3150 Ao Liapad a3 ol b 3 A8 ja A g LSS
abiall Ll cnaa g il 5l g gl (e Gl 3 gaa il ES Jal (e (g0 QIS e



