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INVERSE RELATIONS FOR CERTAIN SHEFFER SEQUENCES*

JAMES WARD BROWN+ anp STEVEN M. ROMANi

Abstract. Let s,(x) (n=0,1,2,---) be a so-called Sheffer sequence of polynomials, and let a,
(n=0,1,2, ) beasequence of the type a,, = yn + z where y and z are constants. An expansion formula for
each polynomial s,(x) in terms of the sequence s,(x+a,)} (n=0,1,2,- ) is derived, and the formula is
illustrated by applications to Laguerre, Hermite, and Gegenbauer polynomials.

1. Statement of main result. In 1939 Sheffer [13] initiated serious study of a class
of polynomial sequences which have come to be known as Sheffer sequences. See, for
example, [2], [11] and [12], where many additional references are given. These
sequences have been characterized in a variety of ways, and we choose here to take as
our starting point a generating function characterization that Sheffer himself originally
gave. To be precise, a polynomial sequence s,(x) (n =0, 1, 2, - - -) is said to be a Sheffer
sequence if it is generated by a relation of the form

n

(1.1) G(t)exp (xH(1) = };,os,,(x);tl—',

where

(1.2) G(t)= E gt" (1h#0) and H()= E hot"  (hy#0).
n=0 n=1

All of the series here and in what follows are formal power series over the real or
complex field.

Associated with any given Sheffer sequence s,(x) is a polynomial sequence p,(x)
(n=0,1, 2, ) of binomial type generated by

(1.3) exp (xH (1)) = § pal) =,

where the H(¢t) is the same as in (1.1). In view of the additivity property of the
exponential function, it is evident from (1.3) that the polynomials p,(x) satisfy the
binomial-type identity

n

(14) Palx+y)= z()pk(xpn ), n=0,1,2,

Note too that it follows from (1.1) and (1.3) that a similar relation,

n

(1.5) sax+y)= ¥ (Z)sk(x>pn_k(y), n=0,1,2-",

relates any Sheffer sequence to the sequence of binomial type associated with it.
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Suppose now that a, (n =0, 1, 2, - - -} is a sequence of the form
a,=yn+z,

where y and z are constants, independent of x and »n, and where a, # 0 for any n. Very
recently in [4] the first author showed that the sequence s, (x +a,) (n =0,1,2, - ) is
itself a Sheffer sequence, and we note here that the expansion

n

16 stta)= 3 (7)peslanto,  n=01,2,-
of each polynomial s, (x +a,) in terms of the sequence s,(x) is immediate from (1.5).

In the important special case of Appell sequences [1], occurring when H{t) =t in
(1.1) and (1.3) and therefore when p,(x)=x" in (1.3), a pair of inverse relations
obtained by Gould in [5] can be rewritten in such a fashion as to invert (1.6) and thus
expand each polynomial s, (x) in terms of the sequence s,(x + a,). To be precise, if we
set a =z, b =y and put

F(n)z(;}_)'_s,._(x_)’ f(n) =S+ a)
nla, an
in Gould’s
e k[ (a+b_l_c__)"
(1.7) Fimy= T (7)== fu,
(@+bn)" & la+bn)"*  a+bk
(1.8) n! iy )_kgo( D (n—k)! F(k)a+bn’

we find that (1.8) becomes (1.6) and (1.7) becomes

(1.9) sa(x)= ¥ (,’(’)ﬁpﬂkk(—ak)skumu, n=0,1,2, -
k=0 ax .

Expansion (1.9) is valid, moreover, when H(t) =log (1 +1), in which case

Pn(x)=(;)n!.

It is readily obtained by setting a = —z, b =1~y and writing

n(x) (—1)"sn(X+an)
F(n)="222,  f(n)=-rn 200
nta, (n—u,,)n!an
n
in the inverse relations
_ e q\k[M\[a+bk
(1.10) Fm= 3 0S(7)(* 7)o,
a+bn - ca+bk—kia+bn-k
(1.11) ( n )f(n)—kgo( 1)a+bn—k( n—k )F(k)’

also derived by Gould in [5]. Here (1.11) and (1.10) become (1.6) and (1.9), respec-
tively.
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The above suggests that expansion (1.9) may actually be valid for any Sheffer
sequence, and our main object is to show that this is in fact the case. Once (1.9) has been
established, we also have the following expansion, obtained by letting the z in
a, =yn+z and a, = yk + z there tend to zero:

(1.12) sn(x)= Y aslx+yk), n=1,2,---,
k=0
where
—n!nyh,, k=0,
(1.13) Ck=4/n\n
Zp (- =1
(k)kpn k( )’k), k 92’ , 1y

the h,.’s being the coefficients in (1.2). To see this, we need to pay special attention to the
first (k = 0) coefficient,

(yn +Z)£"l£:i),

in (1.9) since it is undefined when z = 0. According to (1.3), however, p,(0)=0 and
pn(0)=h,n! (n=1,2,--); and ’Hbpital’s rule reveals that

. Pal=2z)
lim ————=

z-0

~pi(0)=—hun!.

This gives ¢, the remaining coefficients in (1.9) being well defined when z = 0.

We shall derive (1.9), our main result, in two different ways. The first (§ 2) is more
classical in nature and makes direct use of Lagrange’s expansion formula. The second
(§ 3) relies on the theory of Sheffer sequences from the more modern point of view of
linear operators and linear functionals. That point of view has been intensively
developed during the past decade and goes by the name umbral calculus.

Finally, in § 4 we illustrate the use of (1.9) in obtaining a variety of expansions,
many of them evidently new, involving well-known special functions. We confine our
illustrations to Laguerre, Hermite, and Gegenbauer polynomials. An extensive listing
of other Sheffer sequences to which our main result can be applied is found, for
example, in [2].

2. Derivation I. We begin our first derivation of (1.9) by writing the series

2.1) s=73 snlx)
n=0 Qn n!
in the form
(22) S = E [exp (anH(t))] Sn (x) expa(_anH(t)) :l_n’
n=0 n :

We then appeal to Lagrange’s expansion formula [7, p. 145],

k

o ¢ gkl , X 1/t
2.3) F(t)=F(0)+ k2=:1 {-‘-i—t-E—_—l-[F (t)(f(t)) ]}1=0k'(f(t)) ’

where F(¢) and f(¢) have formal Maclaurin series expansions and f(0)# 0. In that
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formula we put
F(r)=exp(a,H (1)) and f(t)=exp (yH(t)),

and also observe from (1.3), when viewed as a formal Maclaurin series with n replaced
by k, that po(x)=1 and
k

Pielx)= {Z?tf exp (xH(t))}

=0
k—1

d
~[E=bHOap cHOY k=12,
t =0
Equation (2.3) then becomes
, © a, t —yH()]*
exp (@H()= T 2 py(an.y) LR IHOT
k=0Qn+k k'

using this to substitute for the factor in square brackets in (2.2), we have

n+k

Q8 (n+k exp(—a.+.tH (@) t
S—ngo{kgo( k )pk(an+k)sn(X)} A4k (n ‘+’k)!,
or
[ exp (—a.H (1) 1"
@4 s= 3 { £ () e, Rt

Now, in view of (1.5), the factor in braces in (2.4) can be written s, (x +a,.); and so
(2.4) becomes

sn(x +a,) t"

2.5) § exp (~a,H(1).

Replacing the variable of summation n here by k and then observing from (1.3) that

exp (—aH (1) = Z pn(— ak)

we find that
2 X ntk\p.(—ay) ek
S‘,EOEO( k ) se(+ad TG
or
) n n t"
2.6) R L R L
n=0k=0 ax ni

Finally, if we equate coefficients of ¢"/n! on the right-hand sides of (2.1) and (2.6), we
arrive at (1.9).

3. Derivation Il. We preface our second derivation of (1.9) with a summary of
relevant results from the umbral calculus. In fact, most of this section is devoted to
providing background to these recently developed methods, and our second derivation
of (1.9) is actually shorter than the first. No proofs are given here; rather we refer the
reader to [11]. For even more recent developments and generalizations of the umbral
calculus, see [8], [9] and [10].
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Let us start by defining three algebras. The first algebra P is the familiar algebra of
polynomials in a single variable x over the real or complex field.

The second algebra P* is the dual vector space of linear functionals on P endowed
with the following product. Let L and M be linear functionals. We denote the action of a
linear functional N on a polynomial p(x) by (N|p(x)), and define the product LM by

ny - n n~k
(LM >—k§0( k)<L|x"><Mlx )

It is easy to verify that P* is an associative and commutative algebra with identity ¢
defined by

(e|p(x)y=p(0).

We call P* the umbral algebra. A particularly important role is played by the delta
functionals, namely those functionals L for which (L|1) =0 and (L|x) # 0. Among these
is the generator A defined by (A|p(x)) = p'(0), where p'(x) is the derivative of p(x). If a
is a constant, the evaluation functional ¢, is defined by (¢,|p(x)) = p(a). Note that gg = ¢
where ¢ is the identity defined above. Finally, we mention that a suitable topology can
be put on P*, allowing us to consider formal power series in a linear functional. It then
holds that for any sequence of constants a,(k=0,1,2,--) the series Y., al*
converges if L is a delta functional. The umbral algebra becomes, moreover, the algebra
of all formal power series in the generator A, or in any delta functional (see Theorem D
below).

The third algebra § is the algebra of all linear operators on P, under composition,
which commute with the derivative operator; that is, the elements of S are all linear
operators T such that

TDp(x)=DTp(x)

for all p(x) e P. We call S the algebra of shift-invariant operators. Again with a suitable
topology, one may characterize S as the algebra of all formal power series in D.

Thus both P* and S are isomorphic to the algebra of formal power series in a single
variable, and so to each other. In fact, the map u: P* - S sending the generator A to the
derivative D can be extended to a continuous algebra isomorphism of P* onto S. In
other words, if L = ZZO,O a.A* then w(l)= Z;:;O a.D*. A delta operator is the image of
a delta functional under u. In terms of formal power series, the adjective “delta’” means
zero constant term and nonzero linear term. The evaluation functional ¢, in P*
corresponds to the shift operator

E®=p(e.):p(x)»p(x +a)

in §.

A basic tool of the umbral calculus is the interplay between P* and S that is
described in the following theorem.

THEOREM A. Let L and M be linear functionals. Then

(LM |p(x)) =(L|un(M)p(x))

forallp(x)eP.
By a sequence of polynomials p.(x) (n =0, 1,2, - - +), we imply that deg p,.(x) = n.
A sequence p,(x) is of binomial type if

3.1) pax+y)=§ (Z)pk<x)pn_k(y), n=0,1,2,-",
k=0 ‘

1)
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for all x and y. A polynomial sequence s,(x) (n =0,1,2,---) is a Sheffer sequence if
there is a sequence p,(x) of binomial type such that

n

(3.2) Salx+y)= 3 (,’(’)sm)pmw, n=0,1,2,--,

for all x and y. The reader will recall that this terminology was used in § 1. Charac-
terizations (3.1) and (3.2) are, in fact, equivalent to the generating function charac-
terizations (1.3) and (1.1), respectively, in that earlier section.

Now the key to the present theory is that sequences of Sheffer type (which includes
binomial type) may be characterized by means of the algebras P* and S.

THEOREM B. A sequence p,(x) in P is of binomial type if and only if

(i) there exists a delta functional L such that

(L*|pa(x)) = n! 8,4

or, in operator terms,
(“) (a) pn (0) = 8n,0’
(b) there exists a delta operator T(= u(L)) such that

Tp.(x)=np,_1(x), n=1,2,---.

The sequence p,(x) is called the associated sequence for L (or T).

THEOREM C. A sequence s,(x) in P is a Sheffer sequence if and only if

(i) there is an invertible linear functional N (i.e., (N|1) # 0) and a delta functional L
such that

(NL¥[s,(x)) = n! 8,

or
(ii) there exists an invertible shift-invariant operator T and a sequence P-(x) of

binomial type such that
Sa(x) = Tpa(x),

or
(iii) there exists a delta operator T such that

Ts, (x) = ns,_1{x), n=1,2,---.

The most useful result for our purposes is, however, the Expansion Theorem:
THEOREM D. LetL be a delta functional with associated sequence p,(x). Then if M
is any linear functional, we have

M= § Mipx)

k=0 k!
In terms of shift-invariant operators, if T = u(L) and S = u(M), we obtain
2 (Mip(x))

§=3 ——=T%
kz k!

=0

We require one more result to complete our discussion. If T is a delta operator with
associated sequence p,.(x), then, for any constant a, E°T is also a delta operator. Its
associated sequence is given by

X

(3.3) 4 (x)=xE"*x p,(x) = Pn(x—an).

X—an
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We turn now to the derivation of expansion (1.9) using the umbral calculus.
Actually, it is nothing more than a corollary of the Expansion Theorem. Let s,.(x) be a
Sheffer sequence and let T be the delta operator in part (iii) of Theorem C. Suppose that
p.(x) is the associated sequence for 7. Then, according to (3.3), the deltaoperator E'T
has the associated sequence

q.(x)= pnlx +yn).

x+yn
If we write a, = yn + z, the Expansion Theorem gives

= <E—an|qk x))

= Z (E™’T),

which may be written as

dk (_an)

a, _.Tk
o T

I=¥

k=0

Applying this to the polynomial s,(x), and noticing that

an
Pi{—an—i),

_a, B
qr(—a.) —:‘;:;y—kpn( an, +yk) =

An—k
and
a k n a h
EoT s,,(x)=<k)k!E ""‘sn_k(x)=(k) ks, o (x +ans),
we obtain

n n an
sn(x)= Z (k) pk("an—k)sn-k(X+an—k)1 n=0, 1’ 2y' T
k=0 An—k

Replacing k by n — k here finally gives (1.9).

4. Applications to special functions. The sequence of Laguerre polynomials

4.1) 1= £ 20 ot n=02,
generated by '

1-a (&)
4.2) (1-1)" exp(1 ) ’EOL x )

is a familiar Sheffer sequence. We follow Rota et al. [11], [12] here and in what follows
immediately below, where we let L,(x) denote the basic Laguerre polynomials (a =
—1). It should be emphasized that other authors often do not include the n! on the
right-hand sides of (4.1) and (4.2) and use L, (x) for the case a =0.

It follows from (1.9) that

o w= ()i

and (1.12)—(1.13), with h, = —1, tells us that the limiting case of (4.3) as z >0 is

,,_,,(——yk—z)Lff‘)(x+yk+z), n=1,2,---,

(4.4) LOx)= 3 al@a+yk), n=12---,
k=0
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where
n'ny, k=0,
4.5 = ~
( ) - (Z)%Ln—k(~yk)’ k=l32’. T, N

As pointed out in [4], L% (x) is also a Sheffer sequence in the parameter a. For
(4.2) can be put into the form

n

(1-1)"exp (1_—_’“1) exp (—a log (1 - 1)) = goLf,")(x)%.

Here s, (a) = L{®(x), and
<o) t" a s} nf—a n
L pala)=(1-07"= % (1"
n=0 n! n=0 n
Evidently, then,
s 4
n =(-1 " !( )9
pa(a@)=(~1)"n "
and (1.9), with a,, = Bn + v, yields

@\ _ v _qyn-kn! Bn+'Y(Bk+‘Y) (a-+Bk+v) -
4.6) L, (x)—k{:o( 1Y) K Bk+y\n—k Li (x), n=1,2,

Note that h, = 1/n, and, according to (1.12)—(1.13), the special case of (4.6) as v->0is

@.7) L= 5 oL %),  n=1,2,---
k=0
where
-n!pB, k=0,
(4.8) C = _xn!ny Bk
-1kl 2 =1,2,- -, n.
=1) k!k(n—k)’ k "

Expansion (4.6) was obtained earlier in [3], where the limiting case as y -» 0 was not
noted and where the full generality of Sheffer sequences does not appear. That earlier
paper treated only the special case when H(t) = —log (1 —t). As pointed out in[3], (4.6)
includes the interesting special case

kn! a+Bn+n<a+Bk+n

(ax+Bk)
kK'a+Bk+n\ n—k )L" ),

4.9) x"=Y (-1
k=0
obtained by putting « = —n, then replacing y by a + n, and finally observing from (4.1)
that L™ (x) = (—x)".
The Hermite polynomials H,(x) form a Sheffer sequence generated by

@10 exp (2xt~1)= T H,,(x)fl—,

and (1.9) is therefore applicable. For brevity, we note here only the following special
case, obtained from (1.12)-(1.13) when A, =0 (n=2,3,-+-)and p,(x)=(2x)":
1

@1)  H@= 3 (})FC20 Gk, n=2,3,
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Finally, except for a factor of n !, the sequence of Gegenbauer polynomials Cih(x)is
of binomial type in the parameter A since it is generated by

(1-2xt+57" =3 Chio)t",
n=0
or

exp[—Alog(1-2xt+:3)]= ¥ Chix)t".

n=0
Here
$n(A)=pa(A)=n!C}(x),
and if we write a, = un +v, (1.9) becomes
i 1 1

4.12) Ak (O () = . -
( ) k§0#k+VCk (x)cn k (x) ”’n+ycn(x)a h 0, 1’2’

Noticing, moreover, that [6, p. 259]
2T,(x)

n

H()=-log(1-2xt+t})= ¥ t",
n=1

where T, (x) are the Chebyshev polynomials of the first kind, we find from (1.12)—(1.13)
that

(4.13) y %ci*“*(x)c;ft(x):C:,(x)+2uTn(x), n=1,2, .
k=1

Of particular interest because of their symmetry are the identities

n 1 . _ .

(4.14) 5 CE (CEE" (x)=0, n=1,2,-
K=o uk +v i

and

(4.15) 5 {—cz*(x)c;f’;(x)=2un(x), n=1,2,---,
k=1

obtained by putting A =0 in (4.12) and (4.13), respectively.

Acknowledgment. The authors wish to thank Professor Richard A. Askey for
bringing them together. Without his initiative, two one-dimensional papers would have
been written rather than one two-dimensional paper.

Note added in proof. It has been brought to the authors’ attention that the
expansion (1.9) is obtained independently and in a somewhat different form by H.
Niederhausen in an M.L.T. Technical Report of February 1979 entitled Sheffer poly-
nomials for computing exact Kolmogorov-Smirnov and Renyi type distributions, which is
to appear in Ann. Statist.
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