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Explicit Formulas and Combinatorial
Identities for Generalized
Stirling Numbers
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Abstract. In this paper, a modified approach to the multiparameter non-central
Stirling numbers via differential operators, introduced by El-Desouky, and new
explicit formulae of both kinds of these numbers are given. Also, some relations
between these numbers and the generalized Hermite and Truesdel polynomi-
als are obtained. Moreover, we investigate some new results for the generalized
Stirling-type pair of Hsu and Shiue. Furthermore some interesting special cases,
new combinatorial identities and a matrix representation are deduced.
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1. Introduction and preliminaries

Through this article we use the following notations. The falling and rising factorials
are defined, respectively by

(n=x(x=1)---(x=n+1), (xJo=1,
and
Xp=x(x+1)--(x+n—-1), {(x)o=1.

The generalized falling and rising factorials (x; @), and (x;&),, associated
with parameter & = (0, o1, ..., 0%,—1) Where ¢j, j =0,1,...,n— 1, is a sequence
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of real or complex numbers, are defined by

n—1 n—1
(x;&)n:H(x—aj) and <x;&)n:H(x+aj),
J=0 j=0

respectively. Note that if o; = iet, i =0, 1,...,n— 1, then (x; &), reduces to
(Ko)y =t(t—a) - (x— (n—1)a).
Hsu and Shiue [14] defined generalized Stirling-type pair
{8'(n,k),8?(n,k)} = {S(n,k; o, B, 7),S(n, k; B, o, —r)}

by the inverse relations

n

(x|a)y =Y 8" (n,k) (x — 7| B)x (1.1)
k=0
and
x1B)n = Y S*(n k) (x + r|o)s, (1.2)
k=0

where 7 is a nonnegative integer and the parameters o/, 8 and r are real or complex
numbers, with (¢, 3,r) # (0,0,0).
For the numbers S(n,k; c, B, r), we have the following recurrence relation

where n > k > 1.
These numbers have the vertical generating functions (with o8 # 0)

n B/a _ k
k!ZS(n,k;a,ﬁ,r)%:(1+(Xx)r/a (%) (1.4)

n>0
and

(1+Bx)°‘/ﬁ—l>k

o

k! ZS(n,k;B,a,_r)g _ (1+ﬁx)*r/ﬁ (

n>0

The multiparameter non-central Stirling numbers of the first and second kind,
respectively, were introduced by El-Desouky [11] with

(x)n = kZOs(n,k;a)(x;a)k (1.5)
and
(;0)n = ZS(n,k;&)(x)k. (1.6)
These numbers s(n,k; &) and S(n, k; &) satisfy the recurrence relations
sn+1,k0) =s(nk—1;0) + (og —n)s(n, k; &) (1.7)
and
S(n+1,k; ) = S(n,k—1; &) + (k— o) S(n, k; @), (1.8)

respectively.
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The multiparameter non-central Stirling numbers of the first kind have the
vertical exponential generating function

Zs(n ko

X" k 1+x o;
n>0 j=

(1.9)
0

where (04), = ﬁ (g —aj), k<l
J=0,j7#k
Also, more generalizations and extensions of Stirling numbers are given in [4]
and [20]-[22].
Let 8 = xD, D = d/dx. Then we have some well-known and useful relations
of this differentiation operator (see [2, 10, 16] and [19]):

i 6"(x%) = o"x?,

(i) &"(u-v)= i()a”k

k=0
(iii) F(8)(x*f(x)) =x"F (8 + a)f (x),
(iv) F(8)(&Wf(x)) = &WF(8 +xg'(x))f ().

The paper is organized as follows. In Section 2 a modified approach via differ-
ential operator to multiparameter non-central Stirling numbers is given. Also, some
relations between these numbers and the generalized Hermite and Truesdel polyno-
mials are obtained. Moreover, we show that some of Hsu and Shiue [14] results are
investigated using the results obtained by El-Desouky [11] and consequently of this
paper. In Section 3, new explicit formulae for those numbers, some special cases and
new combinatorial identities are derived. Finally, in Section 4, a computer program
is written using Maple and executed for calculating the multiparameter non-central
Stirling matrix and some special cases and matrix representation of these numbers
is given.

2. A modified approach to multiparameter non-central Stirling
numbers

Let the differential operator & be defined by Z = x*8x~%, where 0 = xD. Using
(iil) we get Zf (x) =x*dx *f(x) = (6 — &) f(x), hence Z = § — o and by induction
we get 7" = (8 — )" = x*8"x~*. Generally, we can take the following.

Definition 2.1. Let the differential operator &, be defined by
n—1
Dy = (x%-18x %-1) .. (x%0Gx M) = on"ﬁx*a", n>1

i=0
and % = I, the identity operator.

Then we have Z,f(x) = (6 — 04—1)--- (6 — ) f (%), 1.e.,

=(6—ap_1) - :I:[5 o) =(6;0),,
i=0
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n—1 n—1
and so we have the operational formula [ [x%8x™% =[] (6 — o4).
i=0 i=0
This leads us to define the multiparameter non-central Stirling numbers via the
differential operator &,. Therefore, equations (1.5) and (1.6) can be represented, in
terms of operational formulae, by

(8)=x"D" =Y s(n,k;@)(8;0)x = Y s(n,k; &) % (2.1)
k=0 k=0
and
Dn=(8:0), =Y. S(n.k;@)(8)x = Y. S(n,k; &)x*DF, (22)
k=0 k=0
respectively.

Similarly, Comtet numbers (see [4] and [20]) can be defined by

n

(0;0), = Z sq(n, k)8

k=0
and
n
0" = Z Sa(n,k)(5; @)y
k=0
Setting o = ., then (2.1) and (2.2), respectively, yield

(8)n=x"D" = i s(nk; o) (8 —a)k = i s(n,k; o) x* 8* x 2. (2.3)
k=0

k=0

and

X8t =(8-a)' =Y S(nka)d)=Y Snka)xtD, (24
k=0 k=0

where s(n,k; o) and S(n, k; @) are the non-central Stirling numbers of the first and
second kind [11], respectively.
Acting with Eq. (2.3) on e 7', then multiplying by e”*" we obtain

n
P XD e P =Y s(n,k;or)eP¥ x* 8k %e PV (2.5)
k=0
hence we have,
n
X'Hy(x,0,p) = (=1)" Y s(n,k; o) T %(x, 1, p), (2.6)
k=0

where H),(x,ct,p) and T, *(x,r, p) are the generalized Hermite and Truesdel poly-
nomials, respectively (see [12] and [16]-[18]).
Setting r = p = 1 in (2.5) , or (2.6), we get

n

(1) =Y s(nk; )T, %(x).

k=0

where T, %(x) are Truesdel polynomials, see [17].
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Similarly, acting with Eq. (2.4) on e 7', we obtain the inverse relations

n

Tnia(xﬂ'?p) = (_l)n ZS(n,k, a)xk(_l)kHI:(x?O7P)
k=0

and
T, %x) = i s(n,ky o) (—1)kak,

k=0

Next, we derive some new results for Hsu and Shiue numbers [14].
Theorem 2.2. For the special case 0; = —(r—ia)/B, i=0,1,...,n—1, we have
s(n,k; @) = B "8%(n, k) (2.7)

Proof. From equation (1.2) we get

n

B(t/B)((t/B)—1)--((t/B) = (n—1)) = Y 8*(n,k) (¢ + rlat);.

k=0
Setting ¢/ = x, we have

n

B'x(x—1)---(x—(n—1))= Z Sz(n,k)(Bx+r)(ﬁx+r—a) o (Bx+r—(k—1a),

k=0

hence

n

() =Y BTS2 (k) (x+7/B) (x+ (r— ) /B) -+~ (x+ (r— (k= 1)ex) / B).
k=0
Comparing this equation with (1.5) yields (2.7). |
Also, it can be shown that S(n,k; &) = B* S (n, k) if o; = (iot —r)/B.
Furthermore, we show that the generating function (1.4), see [14], of Hsu-

Shiue numbers can be investigated from the generating function (1.9), see [11],
where o; = (r+if)/a, i=0,1,...,n—1.

Theorem 2.3. For the special case o, = (r+if})/a, i=0,1,...,n—1, the generat-
ing function (1.9) is reduced to the generating function (1.4) and

S'(n,k) = o *s(n, k; @).

Proof. If we start from (1.9)

7"
s(nk; o) — =
L0 = ),
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and setting o; =r/o+ jB /o, j=0,1,... k, we get

k L+'E k L+E
(14z)a" /e (1+z)a™/e
= (0 ((z+i8)(5+i2 L
=0t o o o

S (=D (k= )Lt
a
i=0,i#]
w k [
_ 10+ ) k ( 1)"*1(1+z)f§:—(1+z) ((1+z)a—1)k
k! gk = J k' (p\k J
(&) (%)
where we used the identity,

Thus, putting z = o in (1.9) we get

_omt ]
Y s(nk @) oy = —ok(
hence by virtue of (1.4) we have

k
).
Y 5 (nk)

M
E = Z (XnikS(

nk; o) —
n>0

e (L+anPle—1 ¢
. E(l+w)/ <—B ),
= (i +r)/a.

In fact, this equation shows that

n>0

where o

where o

S'(n,k) = " *s(n, k; @),

(iB+r)/a,i=0,1,...,n—1. This completes the proof. O
Now, setting ; = (iac —r)/B,i=0,1,...,n—1in (2.2) we get the following
new operational formula for Hsu-Shiue numbers:

n—1 ) n
[ x0e /B xtien/B — Y Brnst (n, k) (5. (2.8)
i=0 k=0
Remark 2.4. Note that equations (2.2) and (2.8) for a; =0,i=0,1,...,n—1 and
a =0, =1 and r = 0, respectively, are reduced to the well known operational
representation of the ordinary Stirling numbers of the second kind
n
8"=Y S(n, k)x*DF.
k=0
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3. New explicit formulae and combinatorial identities

We derive new explicit formulae for both kinds of the multiparametar non-central
Stirling numbers.

Theorem 3.1. The numbers S(n,k; &), have the following new explicit formula

_ -0 1—oa1—1ip n—1—0,_1—ig—- - —1ip_2
Stnkio) = ), <,- )( i )( " n )
Lok \ o 1 n1

wherei; € {0,1}, j€{0,1,....n—1}, and I,_y == i+ i1+ - +ip_1.
Proof. The statement for k = 0 gives that
S(n,0;a) = (-1)"ao0r - 1,

which agrees with the definition of S(n,k; @) (see [11]).
Also, if i,_1 € {0,1}, we have that

S(n,k’(_x): Z <_la()> <1—(?1—10>,..
Loa=(n—1)—(k=1) \ 10 !
<H—2—06n2—i0—~~—in3>
X .
Ip—2

+ ¥ [n—l—(xn1—(n—k—l)]<_a0> (1—0'@—1'0)“.

1n72:(”71)7k 0 n
n—2—04 2—ip— - —ip3
X . )
2

S(n,k;a)=S(n—1,k—1,0) + (k—at,—1)S(n—1,k; ).

1.e.,

Therefore, by (1.8) and induction we get the desired result. |

Remark 3.2. We used op =0 < ip = 0.

Theorem 3.3. The multiparameter non-central Stirling numbers of the first kind
have the following new explicit expression

i1+ o o+ O iy — 1 . —n+1
s(nk; @) = Z <lll+ilzl><12+ i +ip >“.<1n+ i iy — >

i+ +ig=k 1—i 1 —ip
3.D
Proof. For k =0 we have

5(1,05@) = ao(@p — 1)+ (@ —n+1) = (ap),
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and if i, € {0,1}, we have

_ 11+a l',1+a' N —n+2
S(n,k;a): Z <1_ill>...<” lll_il 1 >
it =k—1 1 n—1

i1+ I 1+0G 4.0y  —n+2
+ Z (ail+“'+in71 —I/l+1) <1 'll> <n 1 i+ >

it =k I =iy
=s(n—Lk—10a)+ (ox —n+1)s(n— 1,k a),
where i; + - - +i,—1 = k. By virtue of (1.7), this completes the proof. O
It is worth noting that setting o; = (r+ if8)/ot, i € {0,1,...,n— 1} in the

recurrence relation (1.7) for multiparameter non-central Stirling numbers of the first
kind, we can get the recurrence relation (1.3), and hence

s(n,k; @) = &S (n,k).

Furthermore, Corcino, Hsu and Tan [9] mentioned that the multiparameter
non-central Stirling numbers are related with the generalized Stirling-type pair of
Hsu-Shiue (see also [23]) by S(n,k; 1, ¢,0) = s(n, k; &) and S(n,k; &, 1,0) = S(n, k; @)
for special case o = ict, i =0,1,...,n—1.

Corollary 3.4. A new explicit expression for generalized Stirling numbers (Hsu-
Shiue numbers type (1.3)) is given by

Sk )= Y (”//3><1+(”—f")//3—"0>...

In,lznfk lO ll

(=1 == D@)/B—ig = —in
In—1
or in the modified form

Smka.p.r)= Y <'r><r+ﬁ—'(x—ﬁio><r+2(B—a')—B(io+i1)>m

I 1=n—k \I0 I 153
ijG{O,l}

. <r+(n— (B —a) —I3(io+i1+~~~+inz)>
In—1 ’

where we use ip =0<r=0.

Proof. The proof of this result follows directly from Theorem 3.1. Namely, by set-
ting o; = (ic —r)/B,i=0,1,...,n— 1, we get the statement. O

The previous corollary implies new explicit expressions for the usual Stirling
numbers of the second and first kind

1 2—1 —1—i— =i,
S(n,k:0,1,0) = S(nk) = Y ()( _’1>...<” it = =iy 2)
i tin g =n—k \I 2 In—1
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and
-1\ /-2 —(n—1
S(n,k;1,0,0) = s(n,k) = Z ( . >< . >< (n )>
i 4tip g =n—k \ 1 2 In—1
ijG{O,l}
:(_l)nfk Z <i1> <1+i2>”.<n—2+in1>

i 4 iy =n—k i i In—1

respectively.

Remark 3.5. From the above corollary we obtain the explicit formula for the num-
bers Fy y(n,k) (see [7]), defined by the triangular recurrence relation

Fom,(n+ 17k) = FOC,’J/(n7k_ 1) + (y_ na)FOC,’J/(n7k)7

where Fy y(0,0) = 1 and Fy y(n,k) =0 when n < 0, k < 0 and n < k. Namely, for
B =0 and r = ¥, the modified form of S(n,k, o, B,r) in Corollary 3.4 reduces to

Fay(nk) = S(n,k; 0,0, 7) = . ; ) (g) (Vl—l a) N (7— (lni—1 1)a> |

ijG{O,l}

Note that some properties and identities on S(n,k; o, 3, r) cannot be obtained
for B = 0, which is a reason why the explicit formula, i.e., the modified form (from
Corollary 3.4), is very convenient to use.

Corcino et al. [8] defined the (r, 3)-Stirling numbers, denoted by < Z >ﬁ us-

N
ing the following recurrence relation

VD, (),

Z>[3 = S(n,k,0,B,r). Thus, we can obtain an
Jr

explicit formula for (r, B)-Stirling numbers from Corollary 3.4

(i), =smko.p.r

- L (”{f) (1“{1/3—"0) (n—1+r/ﬁi:i?—~~~—inz>.

ijG{O,l}

It is easy to conclude that <

Moreover, El-Desouky [11, Theorem 2.1] derived the following explicit for-
mula for s(n, k; &)
L ! 1 & of
S(n)k’(_x): Z(_l)nfl‘n_ . - _j,
r=k rH =iy 5 (o),

3.2)

where, in the second sum, the summation extends over all ordered n-tuples of in-
tegers (i1,is,...1,) satisfying the condition ij +ir +---+i, =n and i; >0, j =
1,2,...,r.
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From (3.1) and (3.2), we obtain the following new combinatorial identity

y <i1 +(Xil> <i2+ail+i2 - 1> (in+ail+'“+in —n-+ 1>
i1 +-+in=n—k 1= 1—ip I —iy,

n | k T
=Y Yy B
=k rH &=y = (o),

Remark 3.6. Now, it is worth noting that all special cases, (i)—(xi), derived in [14],
are special cases of the multiparameter non-central Stirling numbers.

Corcino, Hsu and Tan [9] proved that

Sk " io o (B) (B ) a3

k! B¥ J n

From (3.3) and Corollary 3.4, we have the combinatorial identity

nlar ko 1) (k) ((B/a)H(r/a)) S </0/3> x

k! 4 J n

j
y <1+(r—'a)/ﬁ—io>m(n—1+(r—(n—l)a)/ﬁ_io_..._in2>'

I In—1

Hongquan Yu [23, Theorem 4 and Corollary 5] proved that

S(p+1L,kB,a,00=0 (mod p), (3.4)
where p is a prime number, k and [ are integers such that [ + 1 < k < p and
S(p;k;a,B,r)=0  (mod p), (3.5)

where a, B and r are integers and p is a prime, 1 <k < p.
By virtue of (3.4), (3.5) and Corollary 3.4, we obtain the combinatorial iden-
tities

arth Y (1_/3/0‘) (2(1_/3'/0‘)_"1)

it etip g =pH—k h 2
[=1)(1=BJa) =it = —ipas
X((p+ J(1=B/a) i tptl 2) =0 (modp), [+1<k<p,
Ip+1-1

and

gty (r/ﬁ) <1+(V—Q)/B—io>m

i i
1]771:777]( 0 1
ijG{O,l}

X(p—1+(r—([7—lglf‘)l/ﬁ_io_"'_i”2) =0 (mod p), 1 <k<p.

The degenerate weighted Stirling numbers, denoted by S(n,k,A|0), are the
pair (6, 1,4) (see [13]).
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Howard [13] derived the following explicit formula

k
S(n,k,l|9):%2(—l)k” (’;) (A+1]6),. (3.6)

=0
Next, we find new explicit formulae for the following special cases of Stirling
numbers.

Corollary 3.7. The degenerate weighted Stirling numbers S(n,k,A|0) have the fol-
lowing explicit formula

SokAl)= T (l) <7L—9'+1—i0> <7L+2(1—'9)—i0—i1>m

I =n—k, lo h 5]
i;e{0,1}
y <7L+ (n—1)(1-9) —'(io+i1 +igt- +in2)>' 37)
In—1
Proof. The proof follows by setting & = 0, B = 1 and r = A in the modified form
of Corollary 3.4. O

From (3.6) and (3.7) we have the new combinatorial identity

Z <l><1—9+1—i0><l+2(1—9)—i()—i1>”.
I i=n—k \I0 i i

y <7L+(n— 1)(1—-86)— (io+i1+~~~+in2)>
infl

1 & k
=G L0 () artion,

Also, setting A = 0 in (3.7) (see [13, Lemma 2.1]), we have a new explicit
formula for degenerate Stirling numbers

S(n,k|6) = y <(1 __9)> (2(1 —-9) _i1>

i1+ +ip_1=n—k gl )

" ((n— 1)(1-0) —'(il +i2+~~~+in2)>'
In—1

In the special case 6 = A = 0 we obtain the identity

l-l+...+l-,,z,l:n7k (111> (2;i1> <(n— D= (i Zizl+~~+in2)>

ijG{O,l}

From (1.1) we get

o'(t/a)((t/e) =1) - ((t/a) = (n=1)) = Y 8" (n, k) (t = r[B)y-

k=0
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Setting t /ot = x,

n

o' x(x—1) - (x—(n—1))=Y 8" (n,k)(ax—r)(ax—r—B) - (ax—r—(k—1)B),

k=0

hence
n

() =Y. @S (n, k) (x = (r/ @) |(B/ ) i (3.8)
k=0
From (1.1) and (3.8), we obtain a*~"S!(n,k) = S(n,k; 1,r/ o, B /&), whence
S(n,k;ot,B,r) = o *S(n,k;1,B/a,r/a). (3.9)
Similarly, we can prove that
S(n. ke, B.r) = B"*S(n, ks 0t/ B, 1,r/P). (3.10)

Indeed (3.9) and (3.10) (see [1]) can be investigated from (1.4).

Using (3.10), as well as the fact that the degenerate weighted Stirling numbers
S(n,k,2|0) are the pair (6,1, 1), then the numbers S(n,k; o, B, r) can be represented
in terms of S(n,k, A1|0) where

S(n.k; 0, B,r) = B"*S(n.k. (r/B)|(ct/B))- (3.11)
Remark 3.8. In fact, (3.11) agrees with Corollary 3.4.

Furthermore, Munagi [15] defined S, (n, k), the B-Stirling numbers of the sec-
ond kind, by

Sp(n,k) =Sp(n—1,k—1)+(k+b—1)Sp(n—1,k), n >k,
Sp(1,0) = 8,0, Sp(n, 1) = b !, where 0; ; is the Kronecker delta.

Corollary 3.9. The B-Stirling numbers of the second kind, Sy(n,k), have the fol-
lowing new explicit formula

Sp(n+1,k+1) = S(n,k;0,1,b)

_ Z (b) <b+1—i0> <b+2—(io+i1)>m
5=k \0 i 1)

In—1

X<b+n—l—(lo'+11+~~+ln2))7 3.12)

where b > 0 and we use iy =0< b =0.

Proof. The proof follows by setting o; = —b, i =0,1,...,n—1, in Theorem 3.1 (or
setting o« =0, B = 1 and r = b in Corollary 3.4). O

This show that the B-Stirling numbers of the second kind is a special case
of the multiparameter non-central Stirling numbers and consequently of Hsu-Shiue
numbers.
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From (3.12) and [15, Corollary 6.2] we obtain the new combinatorial identity

y <b><b+1—io>m<b+n—1—(io+i1+~~+in2))
5=k \i0 i In—1

ijG{O,l}

% (D))"
72) k= ))!

J

4. The matrix representation

Lets,S; s(@),S(@) and S',5? be (n+ 1) x (n+ 1) lower triangular matrices, where
s and S are the matrices whose entries are the Stirling numbers of the first and
second kinds (i.e., s = [sij]i j>0 and S = [Sij]; j>0); s(@) and S() are the matrices
whose entries are the multiparameter non-central Stirling numbers of the first and
second kinds (i.e., s(@) = [s(@);;];.j>0 and S(&) = [S(@);;]; j>0) and S',S? are the
matrices whose entries are the generalized Stirling-type pair of Hsu and Shiue (i.e.,
S = [S,-lj]i,jzo and §? = [Sizj]i,jzo)’ respectively.

The multiparameter non-central Stirling numbers of the first and second kinds,
Egs. (2.1) and (2.2), can be represented in a matrix form as

§=s5(@)7 and 2 =S5(@)8,
respectively, where & = ((8)o, (8)1,...,(8),)7 and 9 = (Do, Dr,...,2)7.

A computer program is written using Maple and executed for calculating the
multiparameter non-central Stirling matrix of the first kind s(&) (and S(@) = s~ ! (@)
of the second kind) and the generalized Stirling-type pair of Hsu and Shiue as a
special case when o = (r+if3) /.

For example if 0 < n < 3, then

1 0 0 0
o o 1 0 0
s(@) = ooy —1) o+ oy —1 1 0
aplag—1)(ap—2) oy —3ap+0ad —3a+a?+2 op+o+op—3 1
and
1 0 0 0
Sl _ r 1 0 0
r(r—a) 2r+B—a 1 0
rir—a)(r—20) 37 —6ro+3Br+p%—3Ba+20> 3r+38—30 1

Remark 4.1. Note that there are some missing terms in [23, Table 1].

Similarly, the degenerate weighted Stirling matrix S(A|0), the degenerate Stir-
ling matrix S(6) and the Stirling matrix of the second kind S are given by

1 0 0 0
A 1 0 0

S(A16) = A(A—6) A+1-06 I 0
AA—6)(r—20) 3A%2—610+3L+1-360+26> 31+3-36 1
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1 0 0 0
0 1 0 0

SO)=1 1-6 1 ol
0 (1-6)(1-26) 3(1—6) 1

and

S =

S OO =
—_—_o
W= o O
— o O O

respectively, as special cases.

Acknowledgements. The authors would like to thank the anonymous referee
for helpful comments and suggestions.
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