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Abstract

In this paper we present the sequence of the k-Jacobsthal-Lucas
numbers that generalizes the Jacobsthal-Lucas sequence introduced by
Horadam in 1988. For this new sequence we establish an explicit formula
for the term of order n, the well-known Binet’s formula, Catalan’s and
d’Ocagne’s Identities and a generating function.
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1 Introduction

Several recurrence sequences of positive integers have been object of study for
many researchers. Examples of these are the Fibonacci, Lucas, Pell, Pell-Lucas,
Modified Pell, Jacobhstal, Jacobsthal-Lucas sequences among others(see [8],
[10], [12], [13]). About them there is a vast literature studying several prop-
erties, ones involving the well-known Binet’s formula, Catalan’s, Cassini’s and
d’Ocagne’s identities and there is also a vast literature dedicated to the study
of other properties involving each sequence (see [7] and [14]).

More recently, some of these sequences were generalized for any positive
real number k: the study of the k-Fibonacci sequence, the k-Lucas sequence,
the k-Pell sequence, the k-Pell-Lucas sequence,the Modified k-Pell sequence
and the k-Jacobhstal sequence appeared (see [1], [11], [2], [4], [5], [6] and [3]).
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In this paper we generalize the sequence of Jacobsthal-Lucas numbers and
study by introducing the sequence of the k-Jacobsthal-Lucas numbers. We
give an explicit formula for the term of order n of this sequence, the well-know
Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function
for this recurrence sequence.

2 Identities

Let us define the sequence of the k-Jacobsthal-Lucas numbers {jk,n}n∈� as
follows:

jk,n+1 = kjk,n + 2jk,n−1 (1)

where the initial conditions are:

{
jk,0 = 2
jk,1 = k

(2)

for any positive real number k. If k = 1 we get the sequence of Jacobsthal-
Lucas numbers defined by Horadam in [9]. The characteristic equation asso-
ciated to the recurrence relation (1) is

x2 = kx + 2 (3)

with roots r1 and r2 given by r1 = k+
√

k2+8
2

and r2 = k−√
k2+8
2

.

Note that r1r2 = −2; r1 + r2 = k and r1 − r2 =
√

k2 + 8. Associated to (1)
the term of order n of the k-Jacobsthal-Lucas sequence, can be written by the
following identity jk,n = c1r1

n + c2r2
n for some constants c1, c2.

Solving the system of two linear equations corresponding to the initial
conditions (2),

{
2 = c1 + c2

k = c1r1 + c2r2,
(4)

we obtain c1 = c2 = 1. So, we get the next Proposition:

Proposition 2.1 (Binet’s Formula): The nth k-Jacobsthal-Lucas number
jk,n is given by

jk,n = rn
1 + rn

2 , (5)

where r1 and r2 are the roots of the characteristic equation (3) and r1 > r2.
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Proof. We use induction on n. Taking into account the initial conditions
(2), we note that the equation (5) is valid for n = 0 and n = 1. Now assume
that (5) is true for 0 ≤ s ≤ n, that is, jk,s = rs

1 + rs
2, for every s ∈ {0, . . . , n}.

Using (1) and taking in account that r1r2 = −2 we have

jk,n+1 = kjk,n + 2jk,n−1

= k (rn
1 + rn

2 ) + 2
(
rn−1
1 + rn−1

2

)
= rn−1

1 (kr1 + 2) + rn−1
2 (kr2 + 2)

= rn−1
1 ((r1 + r2) r1 + 2) + rn−1

2 ((r1 + r2) r2 + 2)
= rn−1

1 (r2
1 + r1r2 + 2) + rn−1

2 (r1r2 + r2
2 + 2)

= rn+1
1 + rn+1

2 .

Consequently, the Binet’s Formula is true for any positive integer n. �
The use of the Binet’s Formula (5) and the fact that r1r2 = −2 allows us

to obtain Catalan’s Identity.

Proposition 2.2 (Catalan’s Identity):

jk,n−rjk,n+r − j2
k,n = (−2)n−r(j2

k,r − (−2)r+2). (6)

Proof. We have

jk,n−rjk,n+r − j2
k,n =

(
rn−r
1 + rn−r

2

) (
rn+r
1 + rn+r

2

) − (rn
1 + rn

2 )2

= (−2)n
(

r2

r1

)r

+ (−2)n
(

r1

r2

)r

− 2(−2)n

= (−2)n
(

rr
2

rr
1

+
rr
1

rr
2
− 2

)
= (−2)n

[
r2r
2 +r2r

1 −2(r1r2)r

(r1r2)r

]
= (−2)n

[
r2r
2 +r2r

1 −2(r1r2)r

(−2)r

]
= (−2)n−r (r2r

2 + r2r
1 − 2(r1r2)

r)

= (−2)n−r
(
(rr

1 + rr
2)

2 − 4(r1r2)
r
)

= (−2)n−r
(
j2
k,r − 4(−2)r

)
,

as required. �
Substituting r = 1 in Catalan’s Identity (6), yields

jk,n−1jk,n+1 − j2
k,n = (−2)n−1 (

j2
k,1 − 4(−2)

)
and using the initial condition jk,1 = k, we obtain the Cassini’s identity for
k-Jacobsthal-Lucas sequence.
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Proposition 2.3 (Cassini’s Identity):

jk,n−1jk,n+1 − j2
k,n = (−2)n−1 (

k2 + 8
)
. (7)

The d’Ocagne’s identity can also be obtained from the Binet’s Formula (5)
and the fact that r1r2 = −2 and m > n.

Proposition 2.4 (d’Ocagne’s Identity): For m > n,

jk,mjk,n+1−jk,m+1jk,n = (−2)n
√

k2 + 8

(
jk,m−n − 2n−m+1

(
k +

√
k2 + 8

)m−n
)

.

Proof. For m > n, we have

jk,mjk,n+1 − jk,m+1jk,n = (rm
1 + rm

2 )
(
rn+1
1 + rn+1

2

) − (
rm+1
1 + rm+1

2

)
(rn

1 + rn
2 )

= (−2)n
(
rm−n
1 r2 + r1r

m−n
2 − rm−n

1 r1 − rm−n
2 r2

)
= (−2)n

(
rm−n
1 (r2 − r1) + rm−n

2 (r1 − r2)
)

= (−2)n (r1 − r2)
(
rm−n
2 − rm−n

1

)
= (−2)n

√
k2 + 8

(
rm−n
1 + rm−n

2 − 2rm−n
1

)
= (−2)n

√
k2 + 8

(
jk,m−n − 2rm−n

1

)
= (−2)n

√
k2 + 8

(
jk,m−n − 2

(k+
√

k2+8)
m−n

2m−n

)

= (−2)n
√

k2 + 8
(
jk,m−n − 2n−m+1

(
k +

√
k2 + 8

)m−n
)

.

as required. �
The limit property stated in the following Proposition is also deduced using

Binet’s Formula (5).

Proposition 2.5 For m > n,

limn→∞
jk,n

jk,n−1
= r1. (8)

Proof. We have

limn→∞
jk,n

jk,n−1
= limn→∞

rn
1 + rn

2

rn−1
1 + rn−1

2

.

Since
∣∣∣ r2

r1

∣∣∣ < 1, then limn→∞
(

r2

r1

)n

= 0 and therefore

limn→∞
jk,n

jk,n−1
= limn→∞

1+
�

r2
r1

�n

1
r1

+
�

r2
r1

�n
1

r2

= 1
1
r1

,

and the result follows. �
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3 Generating Function

In the next Proposition we present a generating function for the sequence of
the k-Jacobsthal-Lucas numbers.

Proposition 3.1 (Generating function of the k-Jacobsthal-Lucas numbers)

jk(x) =
2 − kx

1 − kx − 2x2

Proof. Let us suppose that the k-Jacobsthal-Lucas numbers are the coef-

ficients of a power series centered at the origin, that is convergent in
]
− 1

r1
, 1

r1

[
,

taking in account the Proposition (2.5) . To the sum of this power series, jk(x),
we call generating function of the k-Jacobsthal-Lucas numbers. So we have

jk(x) = jk,0 + jk,1x + jk,2x
2 + · · · + jk,nx

n + · · ·
and then,

kxjk(x) = kjk,0x + kjk,1x
2 + kjk,2x

3 + · · ·+ kjk,nxn+1 + · · ·
2x2jk(x) = 2jk,0x

2 + 2jk,1x
3 + 2jk,2x

4 + · · · + 2jk,nx
n+2 + · · · .

Since (1) e (2) we obtain

jk(x) − kxjk(x) − 2x2jk(x) = 2 − kx

and then we conclude that

jk(x) =
2 − kx

1 − kx − 2x2

�
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