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SOME ARITHMETIC PROPERTIES OF GENERALIZED
BERNOULLI NUMBERS

BY L. CARLITZ
Communicated by Gerald B. Huff, November 8, 1958

In a recent paper [2] Leopoldt has defined generalized Bernoulli
numbers and polynomials in the following manner. Let f be a fixed
integer =1 and x(r) a primitive character (mod f). Put
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For f=1, x is the principal character and B}, reduces to the ordinary
Bernoulli number B,. The main result of Leopoldt’s paper is an analog
of the Staudt-Clausen theorem.

In the present paper we obtain the following theorems, the first of
which is a refinement of Leopoldt's analog of the Staudt-Clausen
theorem. We assume f>1.

TuEOREM 1. If f is divisible by at least two different primes, then
B%/n is an algebraic integer. If f=p, p>2, B} /n is an algebraic integer
unless

p=(p1—x(g) =),

wn which case

pBy=p—1 (modp);
if f=p* p>2, u>1, BY/n is integral unless
B=(1—-x(@) = 1),
in which case

n

BX
(1 —=x(1+9) - (mod B);

g 1s a primitive root (mod p7) for allr=1. If f=4, then
1 & 1/2 (mod 1) (n odd),
P { 0 (mod 1) (n even);
if f=2%, u>2, then B} /n is integral.

THEOREM 2. If f=p*, then

n
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where g is a prime #=p and ¢=(g—1)|w. If f#p*, then (4.8) holds for
arbitrary primes q.

THEOREM 3. If p is a prime such that plf, p=(p—1)|m, then

g S ())ﬁ‘, (s) (mod p)
mElL o T x\p .-1”” mod p°).

Im particular, if x(p)=1o0r x(—1)=1, then

mtl = ),
m-l-lB 0 (mod p*)

In particular, for f=4, Theorem 3 reduces to the following known
result for the Euler numbers:

- {ﬂ (mod $9), p=1 (mod 4),
12 (mod 7%, p =3 (mod 4),

where p=~1(p—1) |m.
The proof of these theorems makes use of various known properties

of the ordinary Bernoulli numbers as well as the Eulerian numbers
defined by [1]

X P ams.
n.

et — A n=0
In particular we cite the representation

1 g _ (%) i x(r)ar

H,.(a),
n+1 " f = 1—a" (o)
where
I
7(x) = Z x(r)a’, a = el
r=1
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