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EULERIAN NUMBERS AND POL.YNOMIALS

L. Carlitz

1. Introduction. Following Euler [6, pp. 487-491], we may put

1=\ _ A
(1.1 o z H"ﬁ (A£1),
n=0

where H, = H [\l is a rational function of A; indeed

(1.2) B, =R\ = O-1)"H, [\

is a polynomial in A of degree n-1 with integral coefficients. If we put
n

(1.3 By= ) AN (az),
s=1

then the first few values of A, are given by the following table, where
n denotes the row and s the column;

1
1 1
i 4 1
(1.4)
1 11 11 1
1 26 66 26 1
1 57 302 302 57 1
Alternatively, Worpitzky [15] showed that the A _ may be defined by
means of
n
-1
(1.5) S D A, (T
s=1 '

The rational functions H, were studied in great detail by Frobenius

[7], who was particularly interested in their relationship to the Bernoulli

numbers. More recently Vandiver [14] has also made use of this relation-

ship to obtain new properties of the Bernoulli numbers. Other recent oc-

currences are [1], [2], [12]; generalizations occur in [4], [5], [13]. In view
247
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of the long history of H, and 4, it is rather curious that, on the whole,
these quantities are not very well known. Indeed an examination of Math-
ematical Reviews for the past ten years will indicate that they have been
frequently rediscovered. Actually there is no detailed discussion of H,
in any book. On the other hand, Riordan, in his recent book [11], does

develop a few basic properties and indicates the connection of 4, . with
certain combinational problems.

The present paper is mainly expository. We include numerous proper-
ties of H, and the related polynomial

n
(1.6) H (u]A) = z (™) Hum,
r=0

indicate the connection with Bernoulli numbers and polynomials and final-
ly obtain some arithmetic properties of H, . For the combinatorial appli-

cations the reader is referred to Riordan’s book [11]. The Hn also occur

in certain criteria for Fermat’s last theorem; this is discussed at length
in Bachmann’s book [3] and will not be considered in the present paper.

2. The defining relation (1.1) is evidently equivalent to

(2.1) (H+D"=AH, (>0), H =1,

: we shall

where after expansion of the left member, H" is replaced by H,;

use this convention frequently. If f(z) is an arbitrary polynomial in z,
(2.1) implies

(2.2) f(H+1) = M(H) + (1-A) f(0).
In particular, for flz) = (2), we get
(2.3) (D =y (mzD,
which implies
(2.4) 0Dy S CE Y mD.
Repeated application of (2.3) gives

()\-1)’(5) = (mﬁr) (m>1);

in particular we have

(2.5) W-D™Fy - 1.
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It also follows from (2.2) and (2.3) that

H H .
(2.6) () =AY ()

in particular by (2.5)

(2.7) (fmy o A"

249

Again, if f(2) is an arbitrary polynomial of degree n, we recall that

n
f2) = Y (IO,

where

Af(z) = f2+41) - 2), ATf(2) = A" 'f(z+1) -A™(2).

Using (2.5) we get

n
(2.8) - f(H) = z (A-D)"TATH0).
=0 )

Since
. .
ATHO) = 2 ~1D)™S(7)f(s),
we may write

(2.9) , f(H)—z(A— )-fZ( 15" f(s).
r=0

It is perhaps of interest to mention that (2.9) can also be obtained as

follows from (1.1). For |z| sufficiently small we have

el_’*h (1_@ z(A 1)~"(e?-1)"

0 n r

z :7:2(/\—1)"’2 (=D™5(T)s™,

n=0 r=0 _ 8=
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so that

n r
(2.10) Hy= D 0D Y (D58
: r=0 §=0

and (2.9) follows at once.
Returning again to (1.1) it is easily verified that

-1 —:17,
(2.11) R, IN = AR 1
also differentiation yields

(2.12) R, - (n+DAR,, +(1—A)%(ARn),

where R, is defined by (1.2). From (2.11) and (2.12) we immediately ob-
tain

(2.13) Ao =4y nois
and
(2.14) Apiy s= 84, o +in-s+2)4 .

By means of (2.14) one can easily extend the table (1.4). A convenient
check is furnished by the formula

n
R [1] = Z 4,.=n!  (x1).
s=1

We also note that &, [-1] = 0 for n> 1.

Frobenius remarks that it follows from (2.12) that the n—1 roots of
E_[A] = 0 are real, negative and distinct; also for each root A the recip-
rocal A, is also a root. Moreover the roots of RnH[A] = 0 are separated
by the roots of B, [A] = 0. In the next place, by (2.10)

n . 7.
By= Y 0D (D
r=0 : 7=0 _

n r

P G PR O GV
-0 =0

=

r=0

V]
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n— n-s
AS (-1 n—s—jjn z ( n;r N ;)

r=j

13
@

li

v
1l
=]
~
=]

S
|
3

=

AS (_Dn-s-j( 82}-+11 )jn.

[
I
(=]
~
)

Hence, by (1.3) and (2.13), we get

S
(2.15) Ay = D Ao
j=0

a formula due to Euler.
Since

n n

n _ ZYAT _ Nt T VAT

2 _zo(r)Af(O)_Z)A (2)ATf0),
=l r=!

it follows from (2.10) and (2.15)

nw n
o = B,(ANE) = D 4, (LN HE) = Y 4, (557,
s=1 s=1

which establishes (1.5). This proof is taken from Frobenius.
3. We now consider the polynomial

(3.1 H, () = H,(u|)) = (u+H)"

defined by (1.6). We evidently have the generating function

1-\ n
(3.2 Lodoeu S 2 .
n=0
It follows from {3.2) that
(3.3) H,(u+1) =AH, (u) = (1-M)u"

Moreover (3.3) uniquely determines the polynomial H (u). If f(z) is an
arbitrary polynomial in z then by (3.3)

flur1+H) = AM(u+H) = (1-A)f(u),
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from which it follows that for given f(2) the difference equation
(3.4) g(u+1) = Ag(w) = (1-A)f(u)
has the unique solution
gw) = glu|A) = flu+rH).
It follows at once from (3.2) that

(3.5) H() = nH,_,

()
and generally

HPOW) = —2LH () (ax0),

(n-r)! 77
which implies
n
(3.6) | Holun) = D (P™H, (o).
r=0 :

If we differentiate (3.2) with respect to A we get

d 1
(3.7) Hpg (0| N 4 AT H (| ) = (u-m) H (u| ),
which reduces to (2.12) for » = 0. We also note that (3.2) implies
(3.8) H,(=u| 271 = (<1D)"H (u, A).

We remark that by (2.10) and (3.1) we have

n r
(3.9) How) = > D)™ ()0 ) wrs) "
r=0 =0
Again, if we put
, m—1
(3.10) f(u, m) = 2 (uaf) A= 10
=0

then it follows from (3.3) that -
Hn(u+m)—/\mHn(u) .
1-A

The polynomial fn(O, m) is usually called a Mirimonoff polynomial; a more

(3.11) f (s m) =
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general polynomial is discussed by Vandiver [14], see also Bachmann
[1, p. 117].
To get a multiplication theorem for H, (u) we consider

© m=l m-1
"_XZ_: z Am— l—an (u_'_L l )\m) - ]{_v;);:nmewu z Am—:lmrerw/m
n: m e -
n=0 r= =0
_ 1A o
e®/ M)\

_ 1-\" 2" m" H

Y - e | X)),
n=0
which yields
-1 _ .
( n' e L ramy _ 1=A"y
(3.12) m % A H, (u+m | A > Y A (mu | A).
P=

An interesting special case of (3.12) is obtained by taking A = ¢, where
™' =1, {#1. Then (3.12) reduces to

m—~1
(3.13) W (1451¢) = Hytu 0.

r=0

Nielsen [9, p. 54] has proved that the multiplication theorems for the
Bernoulli and Euler polynomials characterize those polynomials. Suppose
now that flu|A) is a polynomial in u of degree n that satisfies the equa-
tion

m—1
1 1A
(3.14) m" Z) A1 "f(u+;% | )\m> = —f—;f(mul N
=

for some value of m>1. Put

fulN) = > A DNH (u] V.

n
8=0

Then by (3.12) and (3.14)
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n n
> 4o | ) - > 4N | ).
=0 8=0

This requires that
(8.15) m”"sAs[Am] =A N (0gsgn).

Now assume that (3.14) holds for two values of m>1, say m, and m,.
Then it is clear that (3.15) becomes

A =4[, AN=0 (0gs<n).

Therefore
flu|N) = 4, [NH, (u| D).
For (3.13) the situation is somewhat simpler. If ¢(x| {) is a polyno-
mial in » satisfying the equation

m-1

(3.16) m”}z ¢ "'g(w,%l é) = glmu| 9,
. r=0

where £™ ! =1, £ # 1, then if we put

n
o] = z A(OH (4|
=0

and assume that (3.16) holds for one value of m>1, then it follows readily
that

gl = A (QH (u] ),

where 4 ({) is arbitrary.
It may be of interest to mention also an addition theorem satisfied by
H_(u|}). Since

1-\ jou 1+d 2o _ 1-A2 zuto)

eA e%ih e?%\% ’
it follows at once that
n
(3.17) D IH | VH, (0] -0 = Hyfuso |39,

r=0 .
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We note also that from the identity

(A-MNA+0)  A-AD)1+2) 20113

e®-\ AN e?T_)\?
follows
(3.18) (L+MH (| M) = =MH (u | =\) = 2™ \H (12‘ )\2) ,
while from
-1 _ 1 1
(e®=M(e®~1+1) %=\ e®-1+A
follows

n
(3.19) (2a-1) z CDOH S| VH,_ (v ] 1-)) = )\Hn(u%v | A) = (1M (urw | 1-2).
r=0

4. It is familiar that the Bernoulli polynomial B, (u) may be defined
by [10, Chapter 2]

ze®% 2"
(4.1) e > CROC
n=0
then
%) m—1 m-1
2" —r s\ _ xe®¥ - /
;7'__! ¢ an <u+77_1> _ L gmrsgsa/m
n=0 s=0 s=0
ze®U _ Tre®
T s-r z m_l_ea: m_gr’

where { is a primitive m-th root of unity and m4{+. This evidently implies

m-1
(4.2) m™1 z "B, (u+7—n‘3) = %Hn_:l(mu [ZN).
s=0
For m |7, on the other hand, we have the multiplication theorem for B, (2):
m—1
(4.3) m™1 z B, (u+ﬁ8) = B, (mu)

s=0
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Multiplying both sides of (4.2) by ¢™, summing over r and using (4.3), we
get :

-1

. N et almu] €0

(4.4) m Bn(w%) - B (mw) +n Z ¢ -—’-’-2—_7——
r=1

where 0 <¢<m.
We recall that the Bernoulli function B, () is defined by

B, (W) =B, (0<u<l), B, (usl) = B, ().
Similarly we define
4.5  Hu|d=H W) O<u<l), Hwl|) = H (w]),

where { is some root of unity # 1. With these definitions of ﬁn(u | £) and
§n(x) it is easily verified that the formulas (3.8), (3.12), (3.13), (4.2),
(4.3), (4.4) hold for the barred functions; in particular in (4.4) the restric-
tion 0 <¢<m is no longer necessary.

We remark that for m even and {" = -1, (4.2) reduces to the known

formula
m-1

m" Z(-1)SB (1/+—-)= 1-21 _,(mu),

where E ,() is the Euler polynomial of degree n-1.

For( = o, wherem +w+l=0,m=3, u=0, (4.2 becomes

nw H, [m] = 3"{Bn+m_13n(%)+w3n(—§) .

l-w
For n even, it is known that [10, p. 22]
1 2 1(q1-
Bn(—g) = Bn('_g) = -2(3 "-1B,,
from which it follows that
(4.6) %ﬂQHn_l[co] = (3"-1B, (neven).
-0
On the other hand for n odd > 1 we get
(4.7) nH, _ 1[m] =~3ncan(—%)

Again for {7 =4, m = 4, we get



1959) EULERIAN NUMBERS AND POLYNOMIALS 257
2iH, (il - w=ilp g dy-p (1)-iB,3)].
It follows that

(4.8) n(-DH,_ [l = 2"2"-1)B,  (n even),

(4.9) a(i+VH,,_ [§] = -22"3”(-}4-) (n odd > 1).
For A = -1 we have [10, p. 28]

B
(4.10) H, [-1=2'""C _ =20-2" 2.

5. We now obtain some congruences satisfied by H,. If in (2.8) we
take f(2) = 2™(1-2%)", we get

n
HY-HDE = > DTy (1)) (15",
s=0

Assume that p is a prime such that

(5.1) (p-D)p | w;

then by Fermat’s theorem
sM1-s®)% = 0 <mod (»", pkw)>.

We thus obtain (Frobenius)

k
(5.2) z DF=s(ym, =0 <mod (p",p"w))
s=0

valid for £>0, n30, provided w satisfies (5.1). This result is referred to
as Kummer’s congruence for #,. In (5.2) A may be an indeterminate or an
algebraic number such that (p, 1-A) = (1). In particular A may be an I-th
root of unity, where I # pf

By means of (5.2) it is proved in [5] that the coefficient 4, of (1.3)
satisfies the congruence

(5.3) A ¢ (mod 2°),

n+b,s = 4

where p~1<s<pl, n3e, b = pf*31(p-1).
Another interesting result, also due to Frobenius, is



258 MATHEMATICS MAGAZINE (May-June

(5.4) H = AP 11 (mod »9),.

w AP-1

where again w satisfies (5.1). Indeed we can prove a slightly more gen-
eral result by using (3.11) withn = w, v = 7, m = 0 (mod p®). We get

oy
m-1 m—-1 D
My () = z AT=1=d z Am=1=i Z A= 1=rg=ip
- =0 =0 /=0
= = =
p}-](r+i) !

A1 —1—rg A7=1 e
=M ZL_ )P 02 =2 (mod p°),
a1 "1 P

where the integer r, is defined by
(5.5) r=-r, (mod p)  (0gr,<p).
We have finally

_1oap—iero A=l .

(5.6) H,(r)=1-x o] (mod %),
which reduces to (5.4) for r = 0.
The interesting congruence

G R, ,[1-N = B,_,(\] (mod p)

'1s due to Mirimanoff [8]. It can be proved rapidly as follows. From (3. 11)
we get

-2
(1-NE,,_,[A] = S (1),
| 4

‘so that

] d 21 R A=N?
(5.8) dxml A) [A]i o

Replacing A by 1-A, we get also

d _ AAP
5()«(1 x\)R _,l1-AD = -

Consequently

MI-NR,_[1-)] = M1-DR,_ N+,
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where C is independent of A. Clearly C = 0 and (5.7) follows at once.
Again by (3.11)

p=2
(1-M2R,_,[\] = z (+1)72M,
j=0
so that
d ' -
(5.9) 5{)\(1—)\) B, A1 = A-ME,_,[A].

Then by (5.7)
WP-NEB,_ [\ =AP(-ME,_ I\ -A1-NPR,_ [1-A];
now using (5.8) and (5.9), we get
1 2
— 5 21-N2RE_IN = M-, APA-0PR (1M,
so that

(5.10 ~1R2_ N = 27BN+ (A-NPIR,_[1-N] (mod p),

where of course p>2. This result also is due to Mirimanoff.
‘We note that from (2.1) and

(?21) = (-1)" (mod p)

it follows that

p-1
(5.11) . z (-1)H, = M,_, (mod p),
r=0
p-1 . :
. 1)
(5.12) p z CU, = O-DH, -1 (mod p?).
r=1

Finally from (3.11) follows

p-1
(5.13) z (HA1 = 1-NFR,, (mod p),
r=1

where p = 2k +1 and (r/p) is the Legendre symbol.
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