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NOTE ON NORLUND’S POLYNOMIAL B®
L. CARLITZ!

1. Norlund [2, p. 146] has defined the polynomial BY by means of

M (e’—l) ,,;B(z) .

Thus B? is a polynomial in z of degree #» with rational coefficients;
it should not be confused with the Bernoulli polynomial B,(z) de-
fined by

xezz

e —1

— Z B.(2) f_ .
n=0 n!

The Stirling numbers Si(#, k) and Ss(n, k) of the first and second
kind, respectively, are related to Nérlund’s polynomial by means of

k _ n—l (n)
@ <—1>sl<n—1,k>—( i )Bk,

) somi = ("7 k) B,

where, to begin with, # is a positive integer in (2) and (3). The
formulas, however, may be used to define Si(%, k), Sa(n, k) for arbi-
trary #; k is restricted to integral values =0. In particular (2) and
(3) imply the reciprocity relations

4 Si(—n — 1, k) = Sa(n, k), So(—n — 1, k) = Si(n, k).
Gould [1] has proved the elegant formula
(z) E+1 (—72)
© (7 )E”
Eo G+
which, in view of (2) and (3), yields
(—1)ES1(n — 1, k)

O LTI

k =0 ]+1 k
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(=1)%Ss(n, &)

K S IR G

He has also proved that

o (500

which yields

©  Sitn— 1,8 = ﬁ:(“”.)(“j)sz(], B,

=Nk + ]
Efk—n\/k+n

W so-no =3, ") ()56 +i-10,
i~0\k+J

Of these (9) is due to Schlifli, while (10) is presumably new.

2. It may be of interest to point out that (5) can be proved
rapidly as follows. Since, as observed above, BY is a polynomial in
z of degree #, it follows from a familiar formula in finite differences

that
k+1 + 1 —8z
z (- 1)*( )BIE "= 0

s
for all x, z. If we take x =3z, this becomes
B - % (1) ( )Bé"” -0,
7=0

which is the same as (5).
As for (8), if we put

) = (-0* () B,

then g(2) is a polynomial in 2z of degree 2k. Consequently it will
suffice to show that (8) holds for 2k+1 distinct values of z. For

z=0,1, - -, k—1, it is evident that g(z) =0; since also
E—z\/k+j5—1
( >< I >=0 O0O=z<k0=j=<h),
kE+j k

it follows that (8) holds for these values of z. For 2=k, we get
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0 k ( k (k+j—1> G+
1) B, = B
=D B g(k+]’> k—j) k f

which is correct in view of

(11) B =1, B =0 %= 1).

Finally for z= —s, where s=1, 2, - - -, k we remark that the right
member of (8) reduces to a single term, namely

(k+s>(k—s)(k+s—1> B _ (- 1)( ) BO
k+s k—s k ’
so that (8) holds in this case also. We have therefore verified that

(8) is satisfied for the 2k+1 values 0, +1, .-, *k.

3. Examination of the above proofs reveals the somewhat surpris-
ing fact that the only property of BY that we have made use of is
that B{ is a polynomial in 2 of degree k which satisfies (11). We have
therefore the following generalization. Let fi(2) denote an arbitrary
polynomial in 2 of degree k. Then it follows that

(12) Ao =3 (= 1)( | Jao.

J=0
If moreover
(13) fi(0) =0 (k= 1),

then we have also

(0} )itk =

-GG s

In addition if we define

(14)

n—1
(15) (= DHFa(n — 1, B) = ( ) )fk(n),

(16) rin, ) = ("7 F ) sc=m),

then (12) and (14) yield
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(=1DF*Fy(n — 1, k)

N T e Gar T
(—1)*Fy(n, k)

(TR (I Y o

I XETES > (O (A LI

(20) Fg(n—k,k)=§(z;’;>(zt’;> Filk +j — 1, ).

Note also that (15) and (16) imply
(21) Fi(—n — 1,k) = Fu(n, k), Fo(—n — 1, k) = Fi(n, k).
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