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THE PRODUCT OF TWO EULERIAN POLYNOMIALS
L. CARLITZ, Duke University
The Bernoulli and Euler polynomials can be defined by means of
text Ze:ct

*ZBm(x)— ~ZE(9¢)-

- m=0

The formula

is proved in Nielsen’s book [3, p. 75]; a different proof occurs in [2]. Nielsen
also obtains similar formulas for

E.(x)E,(x) and E.(x)B.(x).
The Eulerian polynomial Hm(x])\) can be defined by means of

1—Net @
@ EVZ S meln
6‘ - )\ m=0

for properties of Hm(xl)\) see for example [1]. Since
Hm(xl — 1) = E.(%),

it may be of interest to get a formula for the product of two Eulerian poly-

nomials.
We assume that a1, B#£1, af#1. It follows from (2) that

Z Hm(xl a)H, (xl 8) il — (1 — a)e* (1 — B)ew
m,n=0 min! et — o & — ﬁ
(1 =a)(1=p) (1 — ap)e g — o
= 1 —ap evtr — of (eu _ a) (e — ,3)

_(1=a)(1=8) (1 = ap)es a 8
B 1—ap e"""’-—aﬂ {1+e“—a+e”—ﬁ}
1
1w ng—O Hpn(|
{(1—a)<1— )+a(1—ﬁ)§H[a] +6(1—a)ZOH[]S:

where we have put
3) o] = H,0] )
the so-called Eulerian number. Comparison of coefficients evidently yields
Hu(x| ) Ho(x| B) = Hpin(x| aB)
" Supported in part by National Science Foundation grant G16485.
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a(l —p) &
+ 2 () Bl o)
(4) 1 —0ao8 .2
Bl —a) &
+— Z( >H [B]Hm+n—s(xl af),
1- aﬁ s=1
provided a%1, 81, aff#1.
In the next place we have
n LU 1 —_— TV
> Bulw)Hy(e| o) o = 2 (L0
pe—r mn!l e —1 ¢ —a«
(1 — aleztwtn et —

=
et —a  (e*— 1)(e — a)

1 — @)ert u au
= ————————{u + + }
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m,n=0 1— a0

It follows that

B (| @) = mlinsns(a] @) + 35 ( ) Bullasac (3] @)
(5) r=0
T ( "> H o] Hninoes(| @),

1—a3_0 N

provided a1,
If a£1 but af=1 we take

) 1_ TU 1_ —1\ pzv
(+10) X Hax|a)Ha(x] -1>—=<u+ >( a — )f
m,n=0 v - a € -
(u + v)e ) { a at }
=(1—a)(1—a - :
A=)l —a™) — I ot )

This implies
mHm_l(xl a)H, (xl o) + nHm(xl a)Hn_l(xl )

= (1 = &)1 = &) Bn(s) — (1 — @) E( )H (o] B ()

r=0

— =) S ") Bl Brines

8=0

m

-~ -3 ") . la Busarts)

r=1

B> ( ’:) B[] By (5).
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Since
d
P H.(z|a) = nH,,_l(xl a),
X

it is clear from (6) that

B n—r
Hy(x| ) Ho(e| ™) = — (1 — @) zﬁ( + 1> Hrsila] mm-:n 8C)r

(7
nol Bm n—s§

8=0 n—=s
where C,,, is independent of x. To determine C,,, we notice first that (6) and
(7) imply
mCm-—l.n + nCm,n—l = 0,
so that

n

m+ 1

Cm,n = - C'm+1,n--1-

Repeated application of this recursion leads to

mln!
8 Cnp = (—1)" —————— Chya,o0-
(8 = (=1) (b a1 Ceno

Now if we put #=0, x=0in (7) we get

- —a)Z)(rJrl) H,11[a] Bres ~+ g

r=0 m —

Il

H,, [a]

1—a o fm+1
== 2 Z (m )Hr[a]Bm—r+1 -+ Cm,O-
m+ 1.5 r

Similarly (5) implies

i (1 1
B = o+ e + 2 (" T Y ALl B+ B2 )
r=0 —
so that

(m + 1)Cm,0 = - (1 - Ol)Hm.,_l[a].

Therefore by (8)
!

© Com = (=11 — "4 Hpilal.
(m+n+ 1)!

(Since

H,[a!] = (—1)"H,[q],
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the right member of (9) remains unchanged when we interchange m and # and
replace a by a™1).
Combining (7) and (9) we get

Ho(o| (o] o) = = (1= @) ( ")l

Bgn—r1()

mt+n—r+1
(10) < (” Bun—st1(®)
— 1 — A1 Hs -~y
( a)é s) [a ]m+n—s+1
min! [ ]
Dt ——————— (1 — @) Hmys ,
+( ) ( T —I—l)!( a) +n+1| &
where of course a#1.
In particular if we take a= —1, (5) and (10) reduce to

Bm(x) En(x) = m+n(x) + é < ?) BrEm+n—r(x)

(11)
m o [ n
- Z ( > 2—scsEm+n—s-—l(x):
2 s=1 \ S
2 m Bin—ry1()
En(x)E, = — 2 2-C, ———— ———
() gl(r) m+n—r+1
[ " Bnin—st1(%)
12 -2 2=C; —— 0 ————
(12) E( s) mt+n—s+4+1
min!
— )= m-n Cm nily
+ (-1 g 1o
where [4, p. 28]
n+1
C, = 2"E,(0 2 —2n
0) = ( ) il
The formulas (11) and (12) may be compared with [3, p. 77, formulas (12),

(16)].

We note also that since

lem(x)dx _ Bpy1(1) — Bnya(0) —0 m= 1),
0 m+ 1

(10) yields

In!

mln!
(13) f Hm(x oc)Hn(xI aVdx = (— 1)n+1<_+__+_1)l( — a)Hpynyi[a]

mz=1,n=1).

Finally we remark that (4), (5) and (10) imply the following special for-
mulas:
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(19 Hule| @) = Haa] ) + 522 Z(”’) HaHar(x]8) (a%1,851),
—B=1\7

m

(15) Bu(%) = mHu1(x| @) + 2 (:”) BHu (x| @) (as1),

r=0

1 — qmtl 1
(16) Hu(x| a) = — " Z%(mj )H,[a]Bm-,H(x) (e 5% 1).

It is not difficult to prove these formulas directly. For example (14) follows
easily from the identity

1 — a)e 1 { 1-— a}(l — B)e
= 1— — .
e — a 1-8 at( B)e“ e —f

-
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NUMBER THEORY

A pump’s a composite of handle and spout
That has to be primed, or nothing comes out.

A gun’s a composite of barrel and butt

That has to be primed, or nothing will sput.

In the arts, composition is carefully timed

And one doesn’t begin till the surface is primed.
You will find composition is easy to do

When you start with a primer and carry it thru.

MARLOW SHOLANDER
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