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Riassunto

SBia G un gruppe commauiative competio e A, A’ algebre di Banach commutolive con
identite e, ¢'. Hausner [2] ha discusso gli omomorfismi T di BYG, 4) ¢ BU&, 4°) tale
che T(ef) = e'f per fe LXG), dove BYG, A) & costituiia da tutle le funzioni di Bochner
integrabili definile in @ avente valori 4n A. Lo scopo del presente lavore & di generalizzare
¢ risullaté in [2] ellalgebra 1,(8, A) discussa in [1);; dove S & un semigruppo commufa-
tive disereto.
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L. CARLITZ (*)

Generalized Stirling and related numbers (**)

1. - Intreduction.

The Stirling numbers of the first and second kind can be defined by

{1.1) zz+1l)...(gt+tn—1)= i 8y(n, k)o*
and
(1.2) " == z Sim Ba(z—1) .. (6—k+ 1),

k=0

respectively. Since 8,(n, » — k} and S(%, # — k) are polynomials in = of de-
gree k, it follows readily that '

k=1 . . i
(1.3) S’l(ﬂ,n—:?s) == 2081(k, 7} ,(215—;;) (k> 0)
and
8 B="Sswnl "
(1) =1 =55 5" ) (6> 0).

{(*) Indirizzo: Dept. of Math., Duke University, Durham, Noxth Carolina, (J.8. A,
(**) The work was supported in part by NSF grant G7-37924X. — Ricevuto:
15-X-1975. . - ; '
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The coefficients ;S‘;(k,'j),' 8'(k, i} were intrbdu’ced by Jordan ([3], Ch. 4)
and Ward [9]; the notation used here is that of [1],. They are closely related
to the associated Stirling numbers of Riordan ([7], Ch. 4). Indeed

(1.5) 8,k + 4, §) = d(2k + 4, k) , 8"k + 4, §) = b2k + 4, %) ,
where b(n, k) is the number of partitions of Z,— {1,2,...,n} into %k blocks

each of cardinality > 1, while d(n, k) is the number of permutations of Z,
with % cycles each of length > 1. Moreover

1+ 3 %—, S b(n, k)mr«=exp{w§; %},

n=1 v kel n=g

14 i :—’: E:d(n, k)o* = exp {w %f-ﬂ—'} .

=l T k=] ne=2 e

The Stirling numbers and the associated Stirling numbers are related in
various ways[l],. In the first place ‘

: E (k—n\ (%
Sl(n,n—k)=z(k+7;f)(k+’;) 8G+ i)

=0
(1.6) '
_E(k—n\(k+n . .

S, n =)= 3 (Hj)(k_?.)&(w %)
while

Sy =3 (— 1)/ (”’k’ .l)s;(n, i,

) =0 1

(1.7)

In addition

(1.8)
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The first of (1.6) is due to Schlafli {8]; the second was proved by Gould [2].
Another triangular array of numbers is closely related to 8 (n, k) and
S(n, k). Parallel to (1.3) and (1.4) we have [1],

(1.9) 8i(n, n—F) =§131(k, ) (n +2§G—1) (k> 0)
and

R L 7] 1) (6> 0),
where

(1.11) By(k, j} =3Bk —1,§) + (2k — §) By(k — 1,7 —1)

and

(1.12) Bk, )=GF—j+1)BE—-1,))+ (k4 j—-1)B(k—1,j—1).

Moreover

(1.13) Bk, k—j+1) =Bk, j)=a,,,

the a;, were defined in [1];, (1], in connection with an asymptotic expansion.
The writer [1], proved (1.6)—in a slightly different notation—by making

use of the formulas

ko — 7
(1.14) By, n—E) = ( % n)B,‘}’",S(n, n—=k) = (k) B

where B is the Nérlund polynomial ([5], Ch. 6) defined by

! T F4 . Ll ) wﬂ

(1.15) (62_1) _,go BP

where z is an arbitrary complex number. (The polynomial B is not to be
confused with the Bernoulli polynomial B,(2) defined by

wer & zn
er—1 2 Bale) nl®

n=0




82 S L. CARLITZ S ' (4]

The writer also stated that if {f,(2)} denote an arbitrary sequence of -poly-
nomials of degree %, such that f.(0) = 0 for k>0, and we define

a6 Fmn—b =" ;”) () , i, —B) = (";] o+ 1),

then (1.6) admits the generalization (2.3) below.

In the present paper we prove (2.3) as well as the corresponding generaliza-
tions of (1.7), (1.8} and (1.13). See Theorems 1, 4 below. In proving these
results we make use of two functlons Gk, ), G(k,g ) that generalize B,{%, §),

B(k, §). They are defined by

By (n, n—5%) %Gl (n—gk ),
(1.17) (k>1)

(i1

F(-n,’n——-k) ZG %) ( +2:;a )’
F=1

and satisfy the relation

(1.18) - Gl(#, =G, k=i -1) - (l<j<k).

In order to get a similar generalization of the orthogonality relations

k=g k=g

(i.19) 3 (— 18, B, _3 (—1)f~-fsm, B i) = B,

addltlona.l restrictions seem necess&ry The generalized result is contaaned
in Theorem 6 below.

In the final section of the paper several generating functions are obtained
by applying the Tagtange expansion ([6], p. 125).
2. — Let {f.(2)} denote a sequence of polynomials in 2 sueh that
(2.1) degfie) =k, . fO=0 (k> 0).
We define two functions Fy(n, k), F(n, k) by méans of
k ' k—n
B =0 = (" ") b,
(2.2) (k=0,1,2,..).
Fonn—0) = (3} =t
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Theorem 1. ZThe functions Fiin, k), Fn, k) satisfy

' b—a\ (%
Fin,n— k) = fz;o(k—l—?;)( +n) Fi+%7,

(2.3)
Fyn—h) =3 (H )(“’;’) P+ T f) -

=0

Proof. It suffices to prove the identity

24 "(;)fk(k— z(ﬁ;j)("“)[ N+

For 2 =k — n, (2.4) reduces to the first of (2.3); for 2 = n, (2.4) reduces
to the second of (2.3). /

Each side of (2.4) is a polynomlal in # of degree <2Ic Hence it is only
necesgary to show that (2.4) holds for 2k 1 1 distinet values of 2. For
2=0;1,..,k—1, it is evident that the LHS of (2.4) vanisheés; since :

() - e ren

it follows that (2.4) holds for these values of 2. For 2=k we have

o =3, 1) () () m,

which iz clearly eorreét. Finally, for # = — s, where s =1, 2, ..., k, we note
that the RHS of (2.4) reduces to the single term (j = s)

RLRT) ) erm= (3],

so that (2.4) holds in this case algo. This completes the proof of (2.3).
For brevity we may call (5 =0,1,2,..))

gl,k(z) == FI(""": z—k) = (k ;3) fk(z) s
(2.5) L \
gu(z) = Flz, 2 — k) =(:)fk(_z+k)

a Stirling pair—relative to the pdlynomial f_,;'(g). Clearly g,:(2) and g.(#) are
polynemials in z of degree 2k, such that, for k=1, -

(2.6} ' gil,k(s)—.——g;c(s) =:O - (Oésék)
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and

(2.7) - e —2) = (@) -

Conversely, if two polynomials g, .(2), g.(2) of degree 2k, k>1, satisiy (2.5)
and {2.7), then there exists a polynomial f.(2) of degree k satisfying (2.8) and
such that f.(0) =0 (k>1).

This proves

Theorem 2. A pair of polynomials g, :(2), gx(2), eack of degree 2k, is
a Stirling pair if and only if they satisfy (2.6) and (2.7). :

For example, if f, {2} = (z) , then

(2.8) . giale) = gule) = (Z) (__ z,j k) :

This, exeept for a constant factor, is the only case in which the Stirling pair
congists of identical polynomials.

It g1x(2) is an -arbitrary polynomial of degree 2% such that Gix(8)=10
(0<s<Fk), then clearly the Stirling pair g, :(?), gx(¢) is uniquely determined.
A similar result holds for an arbitrary g(z) satisfying the same conditions.

3. — It follows from (2.5) that (k>1)

k=1 , . n
Fin,n— k) = 2F1(k: ) (2;0__3) ’

=0
F( .k)—kf (% )( " )
CFa,n—kEy= > F'k DI .
) ot ,7 2k ?

Thus Fl, I have the same relamonshlp to ¥, F, respectively, that Sl, 8
have to §,, S.
It follows from the first of (3. 1) thait

S Fyfn, n— kmn—zzﬂ(k J)ae fz('"'jk%"’)

Rk n=g ?
k=1
o ZF’, ’? mak— (1___./1;)—2.’54'#—
F=0
Put
* F4 1
ST YTITw 1“$=1+z and we geb
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S Fok, jyav-i= EFI ny n— k)2 (1 + 2y~

i=0 ne=k

The right hand side is equal to

iFl(n,%—k)zﬂi(_ (n—l—s) %zmﬁik (T) Fl(m—-s,m;-—k--s).
Bl 3=0 mag =0
Hence
k=7

mi ) =3 =1 (77 Bk — i k=i,

=0

or equivalently

: L L[kt
5.2) B k=i = 3 0 (7 ) R o0
In exactly the same way, we get
i ; (AN .
(3.3) F'(ky b —4) = ,Z.o("l)j_s (kii) Pk 4-3,8).

Parallel to (3.1) we define Gk, 7}, G(k,§) by means of

B i1
Fy{n, n— k) =4=21 Gi(k, 1) (ﬂ +2?k ) H

(3.4)
Fr, -y = S e (* 11T

b 3

It follows from (3.4) that

ot k=i 1) = 5 (a0 () R s -0

=0

G(k,k—y+1)=i(—1>s[2 ;“) Flotj—s,i—s).

The proof is similar to the proof of (3.2). ’



86 : - L. CARLITZ : Lo (8]

We shall now show that

(8.6) iy ) = Gk, b —§ - 1) (L<i<k).

By (2.2) and (3.4) we have

I

(Jan=go0n (557

i=l

Since

(”'H"'l): 1 (a-t-f —1) oo (B1) 1 s (B — B+1) (5 — ) ... (n-F—2K),

2k (k)|

we get ' ‘ ' |

fulk—n) = 3 Gk, §)

J=1

(n+j—~1)( n—k Y(G—1)F—F+ 1)k
=1 J\k—j+1 (k)1 '

s0 that

) — Y @ k—i nA+E—i\(n—k)j1(k—j) k!
@1 k=2 6k ’.“’( k—j )( )

Fe=i

Similarly, since

B—n), o & L (nti—1
( A )fk(n) —52G1(k:?)( ok )

=1

and

f

j—1 1 . : |
(“ +27k ) 1 O e (1) e (k) (0 — b= 1) . e — 28,

we get

(n+5—"1)(n—kw1)g‘z(kuf)zm
i )

(38)  (—1)fuln) = 3 Gk, §) h—i ) B!

=1
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Since (3.7) is a polynomial identity in » we may replace n by k—=n
and get

2k —n—7j

(3.9) fk(n)—j%G(k,Tc ?+1)( k—j )(,J (2%) 1!
kL nti—1Y(n—k—1\G1(k— !kl
= ( 1)2126(70,75 H-gl)( j )( k—j ) @e!

Hence, comparing (3.9) with (3.8), it is clear that (3.6) is implied by the fol-
lowing lemma which has some independent interest.

Lemms. very polynomial p(z) of degree <k has ¢ unique ewpansion of
the type : '

‘ k g4+i—1Y2—k—1
(3.10) (p(z)=5_0,( ! )( ] ),
i=o ¥ —1
where the C; are ind,epe%denf of z.

Proof. It is convenient to treat the slightly more general expansion:

(3.11) o) = 3 0, (z+l?:_1)(z;m71) (k).
i=0 7 7

If the C; in (3.11) are not unique there exist a set of coefficients C; not
all equal to 0 such that

i

S z“:_l)(z_mfl):o.
2 ’( i k—j

(3.12)

=0

For z=0 this irplies :C‘; = 0. Hence

£l (e j—1){2—m—~1)
S50 (7))~

i=1}

or

: _ . el s (eddYfg—-me—1)
61 5 el )(k—i—l)“o.'

=0
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We may assume that % in (3.12) is minimal. Then {3.13) furnishes a contra-
diction,

‘ 2—1
To find the coefficients in (3.11), multiply both sides by ( m J and
we get .

| _ P b+ m) !
(3.14) (zml) @) =§—Df (zz__f_ ml) y Dy= ?rtki;;%’)m‘ G-

It follows from (3.14) that

S (") stmer= E parmin —ayrnm,

namt) =20

i_Dijm—J-f-l =(1— @Hm—n f (n _1) Pln) o,

. j=0 n=ml m
This gives
Etmej+l s -1
I I e (A [y P78
Bl k 1
= Z_o(—l)"“(ktﬁfi )(”j;,m) o(n+m+1).

We may state

Theorem 3. The coefficients Gy(k,7), G(k,]) occurring in

Fun,n—k) = 3 Gu(k ) (””"1) ,

J=1 275
(3.16) (k = 1)
T L1
Fln, n—5k) = gl Ak, ) ( o )

satisfy the relation
(3.17) Gilk, ) = Ak, E— i+ 1) .

4. — By making use of (3.16) we are able to prove various relations. In the
first place we can obtain another proof of Theorem 1. We shall not take the
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space to give this proof, but rather prove some new results. To begin with,
by (3.2} and the first of (3.16),

E k=i = 3 1 () Bt i —a -

g=0

(k—l—j—-s—i—t——l)

Lo (B &
=S (1) S e o

=0 =1

: k Xk j — t—1
=ZG1(k,t)i(—-1)a( "SH)( +1 22"-’ )

te=1 =0

. b1
By Vandermonde’s theorem the inner sum reduces to (k—j)’ so that
c Eoft—1 T
(4.1) Fi(ky f) = 2 .| Gulky 7) 0<j<k).
=gl 3
Similarly
, Eoft—1 ek
(4.2) Pk, )= 2 LG 1) (0<j<<k).
=541 7
The inverse formulas are
%= j o
(@.3) Gy = 5 e (1) Ee) (1<t<h
i1 t—1
and
k=1 _ j , . k
(4.0 o= 3 a7 ) e 1<t<h).
feat—1 -

In the next place, by (3.6) and (4.4)

Finy n—) = S 609" )

i p— | L2 E—t
.=ZG(k,k—t+1)(n+2tk )sz(k,t)(n'l'% )

fel =1



90 © L. CARLITZ ' ) [12]
_‘V‘k w+k—Fy k2 - f 3' o A‘
— 2;( o7 ) jgl( l)f ¢+ ( _1) F(k, §)

= S SUNE RYRETRRY | j nt+k—1¢ -
srwmn g ()Y

i=0 =1

The inner sum is equal to -

o

oy (Y (P FE—t—1) _ & , ntb—jbi—1
e ()T ) = R (Y

= (—1) (”‘*“ k_j.“l) .

2k —§
Hence
k=1 ‘ o -
(4.5) Byt =3 1y ("1 1) (k)
=0 2k — 7
and similaxly
’ = b — § m
(4.6) Plny n—1) = 3, (1)’ ('"’ +2k _’j 1) ik, §) .

: Again, by (4.1) and (4.4),

F=k+1 de=1,

Py k)= 3 (’;1] Gn—itl)=3 (”;j) G, j)

=5 (" 77) 3 e (;.£,) 70

J=1 Pej—1

h_:“ilF,(n’ t)tﬁ(_l)t—ﬂi ( ¢ )(%;?) )

i=0 =1 7—1

The inner sum is equal to

& (Y r—i—1) (=1
g ()OI =on (777,

F13] GENERALIZED STIRLING AND RELATED NUMBERS 9l

so that

(4.7) Fn, k) _=§0 (—1) (” gi:l) Pin, 1) .
Similarly

(4.8) F'in, k) = 2 (—1)¢ ( 1) Fim, 1) .

To invert (4.5) and (4.6) we use (3.2) and (3.3). It follows from (4.7) and
(3.3) that : '

=3y [”;fjl)"f(—l)"—t-f () rotin

i=0

n . L LS n—t—1 n—t
=Z(_1)n—3F(n+?,?)z( k—t )(n—l-i)'

§=0 ) =0

Thus

(4.9) Fin, %) = 3 (— 1‘)%-51«1(% + 1, 1) ally )
and

R 3 1 4, DO )
where
N s ]

It does not seem possible to simplify O, (£, §).
To sum up we state



92

Theorem 4. The functions Fi(n, %),

L. CARLITZ

P(n, k), Fi(n,

following relations

where

Fnyn—k) = 3 (— 1)+ (”+

i=0

_|_
Py 0 —Fk) = Ekj (— 1)+~ (:’: jLI— ;‘

=0

Fin, B = 3 (— 1)’ (” ;i;l) i),

=0

Je=0

Pln, k) = § (—1y (” P Y

P, n—F) = 3 (—1)f (” thoie

?)Fl(ﬂ’_!_?! iy

k), F'(n,

B+, 9)

)Fwn,

ka E—j—1\_.,. .
P n—h) =3 2y (" T AT ma g,

=0

By, k) = E(— Ok, N F 44, 7),

=0

L3

F'in, k) = 3 (—1)»0nlk, ) Foln + 4, §) ,

i=0

: minfen~a) fgy — § 1\ (2% —¢
Culk, §) = i
(% 9) 25, [ k—t )(n-l-?

).

[14]

k) satisfy the

5. — For the results obtained above it sufficed to assume that the {fula)}
were a sequence of polynomials in 2 satistying

(5.1)

deg fu(e) =k ; fu(0) =0

In order to obtain orthogbna.lity relations we require more.

Let

(5.2)

plz) =1+ f: e,z n

nesl

(k>1).
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denote a function that is analytic in the neighborhood of z =0 and such
that @(0) =1. Put

(5.3) ey =3he 5.

k=0

It is easily verified that the {f(2)} are polynomials in z that satisfy (5.1). The
Bernoulli polynomials B are evidently given by e(x) = 2/(ev — 1).
It follows at once from (5.3) that

(5.4) i (];) 14¥) fims(2) = fuly + 2) (k=0,1,2,..).

i=0

We shall show that (5.4) characterizes polynomial sequences defined by (5. 2)
and (5.3).

Theorem 5. A sequence of polynomials {fi(2)}e, is defined by (5.2) and
(5.3) for some @(x) if and only if they satisfy (5.4).

Proof. The necessity is clear. To prove the sufficiency let {fk(z)} denote
2 sequence of polynomials that satisfy (5.4) and put

(5.5) kgfk k,, *—E_Zofk .
Then
ELEY - -
(5.6) : (?) 1) Femile) = By + 2) (h=0,1,2,..).
‘We show that
(5.7) fr(m) = fu(n) (n=1,2,3,..).

This clearly holds for » = 1. Assume that it holds up to and inecluding the
value #. Then, by (5.6),

2 Film) i1 = fln+1).

i=0

Foln + 1) -—féh(n)f&—s(l)

This proves (5.6). Since fe(®) fk(z } are polynomials, it follows from (5.7) that

they are equal.
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It follows from (5.3) that

npHa) g (@) = i fua(m) a¥fB 1,

(m + g o)g (@) = 3 furalm 4 )R

Since
(m -+ mpmr-i(2)g' @) = " ooy mpi(a)g/ )
we geb
(58) ‘l | lfk-!-l(m + n) = n 1— = 42 (?;)fk—i(m) frnaln) .
We now consider the sum
(5.9)  Hnj) = §(~1)”—’=Fl(n, W) F(k, 1),

where, by (1.16),

k

610) Fom =, "), Ty m=(, ") .

Then
s —k N
Hin, §) = kz_J(_ 1) (n___. k) Fa—u(n) (76 . ?) fies(—3) .
Since
—k Lfr—1) wx K7
()= (i) = v 2R
ﬁve get |

1) = 3 3 () () i = 3 ()2 (3 23) totmtit—s

1
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n—j(n} & (n—j—1Y, L
+ n (]) kgj (75—1—1) fnmk(n) fk—j(—?)

—1 . —1) =2 (n—j—1 o
= [;”_ 1) fnes(tt =) |- (”’ ; ) k;q (n kii ) Famima () frmsaa (— 7)

(123 tmtn—in = (") et

Therefore, H(n, j) =0 (n>§). For n =4, it is obvious that H(n, n) = 1.
We may state ) o
Theorem 6. Let {fi(n)}e, denote a sequence of polynomials defined by

(5.3), for some @(n) and define Fi(n, k), Fin, k) by (5.10). Then we have

(B11) 3 (—1)rFum, Bk §) = 3 (= 1) (n, B) Py 5) = .

k=i k=]

6. — Generating functiong for the special F,(n, k) defined by (5.3) and (5.10)
are implied by the Lagrange expansion ([6], p. 125). '
Let g(x) and f(#) be analytic about =0, ¢(0) =1. Put

(6.1) u = jp@) .
Then
(62) o) = 10+ 3 2 [ o]
and
o it dn
(6.3) _J@) 2> * [@ (f(z)f.v”(Z))] »

1—ugp'(@)  Sn!
To begin with, we take fiz) =« in (6.2). Since

on

o) = 3 him)

wl?
#=0 7!

it follows that

&=l

[ﬁdé:—_ll ((p"(z))] L= fn—l(:ﬂ) r
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so that (6.2) reduces to

‘Taking ¥ =1 in the first of (5.10) we get

Fy(n, 1) = (%:1) fn"l('n) = (1) fpain) .

Hence (6.4} becomes

(6.5) w= 3 (1)1 Fyn,1) ;‘:—T .

More generally, if we take f(@) = o=, m>1, in (6.2), we geb

=

(6.6) an=m! § (—1)=Fy(n, m) %’:

Next, for f(») = ¢nm(x), we find that

(6.7) o) =3 T Jam )
This gives

& m!
(6.8) ™) “—“tg.;(—l) ety

This result is equivalent to (6.6).

The method also applies to the case of negative m. For convenience we
replace m by — m. In place of (6.7) we now get

) =3 — fn—m) "

n=p M — B
n¥Em

(6.9) @) =3 —
=

(6.4 2= 3 fuaim) 2.

e e

Fi(m -+ n, m)ur

[19] GENERALIZED STIRLING AND RELATED NUMBERS 97

where
. dm1 [o'(2) _ dm
Fon = [W-l {m}] o [@ {1"@"?“’}]
Thus
(6.10) S R = log pte)

m==l
~

Those terms in the right member of (6.9) with » < m are expressible in -
terms of F(n, k); however those with » > m are apparently not expressible
in terms of either ¥(m, k) or Fi{n, k). Thus

m—1 — 1
(6.11) o) = 3 (— 1 T B, m—myun—

As a partial check of (6.6) we take u=e¢*— 1 and F\(n, k) = 8,(n, k).
Then, denoting the right hand side of (6.6) by U.,, so that

o0 1
U, = Zo(—l)"ﬁT)! Si(m + n, m)ur,
we have
oo P oo e n
mzo(—l)m E’bu! v, =n§) (—1)# ?? EOFI(%, m)zm
e —1
=3 (—1) (”*2 )w= (L+ w) = o=,
L]

which is correct.
As an application of (6.3), we take f(z) = #m, m > 0. The result, using

(5.10), is

g _ R _(m—D)!

W@i_zﬂ( )nmﬁ'x(m-l—n,m)uﬂ (m>0).

(6.12)
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et ® = A{u) denote the inverse of u = w{w), A(w) analytic about » = 0,
A(0) = 0. Since u = @/p(@), We get

ey M)
w =) = oy !
so that
(6.13) gy =22,

Substituting from (6.13) in (6.8), we get

{6.14) pons? Am(w) :ME (=1 Ty (n, m) % {(m=0).
Since
r ) ) M)
PR N === ==
_ ' _ 1 Aw) Alw)
i =1y — =
' ug'(iw)) =1— {u u"’l’(u)} ud'(u}’
substitution from (6.13) in (6.12) gives
=1 ’ — g __1)m M mn—1
grrw A = X (1" T Fym + n, m)w
i —1)!
This is evidently implied by differentiation of (6.14).
For o= e*—1, Au)=1log (1 +u), (6.14) reduces to
1 1 m o0 un
= (log (1 w)m = 3, (= 1)l m) (m>0).

Hfe=m

Finally we note that the generalized version of the familiar formula

Ll

>, 8(n, m) ;? =2 (er— 1) (m=0)

nem ! m!
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is given by
i g 1 b
15 Fln,m) — =— | == m>0).
(6.15) DECRDES L5 m0)

The results of this section may be compared with the gimijlar ones in
[4} (Ch. 6} and [8] (Ch. 6).
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Summary

Let {fu(z)} denote an arbitrary sequence of polynomials, deg fil2) = k. [(0} = 0 (&> 0).
Generalized Stirling numbers of the first and second kind are defined by

b—mn n
(%) Fyln, n—F) = ( " ) fuln) Fin, n—k} = (k) fll—n + k),

respectively. For the ordinary Skirling numbers, fu(z) is the Norlund polynomial B de-
fined by (zf(e*—1))* =3 B aF[k!.

k=0
By means of (k) many of the properties of the ordinary Stirling numbers are shown fo

hold jor the generalized numbers. However, it order to obtain orthogonality relations, ad-
ditional restrictions are introduced.
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