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Dumont and Foata have deined a polynomial F.{(x,y, z) recursively. They proved that
F,.x.y, 2) is symmetric in x,y,z and that F, (1,1, 1)= Gzn+2v «he Genocchi number. Moreover,
lhey gave an elegant combinaiorial interpretation for the coefficients of F,(x,y, z). In the
present paper explicit formulas and generating functions for F, (x, y, z) are obtained.

1. Introduction

Dumoni and Foata [4] have defined a polynomial F,(x. v, z) in three variablcs
recursively by means of

1.1) Fx,y,2)=(x+z2)y+2)F,_(x, y, z+ )= 2°F,_(x, y,z) (n=2),

where Fy(x,y,z)=1. They proved that F,(x, y, z) is symmetric in the three
variables x, y, z and that

(1.2) KL 1L, D=GChin (n=1),

where Gs,,,., is the Gennochi number defined by

(1.3) Z( "Gy

e+ 1 ] (Zn)!
or equivalently
(1.4) G, =2(2"—1)|B,, (n=1),

where B,, is the Bernoulli number in the even suffix notation [7, Ch. 2]

(1.5) —u i
n=0

n'

Moreover, they obtain an elegant combinatorizl interpretation for the coefficients
Q.. defined by

(1.6)  Foux,y,2)= Y auux lyizé 0
k=

(%A 1
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It is evident trom: (1.2) and (1.6) that

(L.7) Ganye= Z An ik
k=

i, 1
Gandhi [5] had conjectured that if {P.(z)}.., IS 2 sequence of polynomials
defined by Fo(z)=1 and

(1.8) P (z)=2zP,_.(z+1)=(z—-1)?P, (z) (n=1),
then
(1.9)  Ganaa=P,(1).

This conjecture was proved independently by the present writer [1] and by
Riordan and Stein [8].
If we put

Q. (2)=P,_(z+1D (n=1),
it is clear that Q,(z)=1 and
(L10)  Quzi=(z +1)?Q,.(z+ D= 2?Q.(z) (n=2);
thus (1.9) becomes
(L1 Guya=Q, (V) (n=1).
Moreover comparison of (1.1) with (1,10) gives
112y Ozy=F.(1,1,2) (n=1}
Explicit formualas for the polynomial have not previously been obtaine 1, In the

preseat paper we show first that

(113)  Folxy 2)= }:(~1)" “x+z)ly+ 2 AL (2)

k-0

and secondly that
(LY Fix oy, z)y=8,+S,.,+5

"t

where

(he=xx=D-{x+k-1, (x)=1,

(1L15) S,= Y '5:"(—1)""‘(y+z)2k(z+x)n(x+y)zk

resiton j o k"
AL LOA LA ZIERC, (= 1003,

the C, are certain explicit symmetric polynomials in x, y, z, E is the operator
defined by

Eflx,y,2)=flx+1,y-rl,z+1)
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(5.9), where C is defired by (5.7) and

2 X A k (x+j)’2n+l
_~ 1Yk i
An,k(x) k!,';)( 1) (j)(2x+f)k+-l-
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