EXPLICIT FORMULAS FOR THE DUMONT-FOATA POLYNOMIAL

L. CARLITZ

Department of Mathematics, Duke University, Durham, NC 27706, USA

Received 3 April 1979

Dumont and Foata have defined a polynomial $F_n(x, y, z)$ recursively. They proved that $F_n(x, y, z)$ is symmetric in x, y, z and that $F_n(1, 1, 1) = G_{2n+2}$, the Genocchi number. Moreover, they gave an elegant combinatorial interpretation for the coefficients of $F_n(x, y, z)$. In the present paper explicit formulas and generating functions for $F_n(x, y, z)$ are obtained.

1. Introduction

Dumont and Foata [4] have defined a polynomial $F_n(x, y, z)$ in three variables recursively by means of

$$(1.1) F_n(x, y, z) = (x+z)(y+z)F_{n-1}(x, y, z+1) - z^2F_{n-1}(x, y, z) (n \ge 2),$$

where $F_1(x, y, z) = 1$. They proved that $F_n(x, y, z)$ is symmetric in the three variables x, y, z and that

(1.2)
$$F_n(1, 1, 1) = G_{2n+2} \quad (n \ge 1),$$

where G_{2n+2} is the Gennochi number defined by

(1.3)
$$\frac{2u}{e^u + 1} = u + \sum_{n=1}^{\infty} (-1)^n G_{2n} \frac{u^{2n}}{(2n)!}$$

or equivalently

(1.4)
$$G_{2n} = 2(2^{2n} - 1)|B_{2n}| \quad (n \ge 1),$$

where B_{2n} is the Bernoulli number in the even suffix notation [7, Ch. 2]

(1.5)
$$\frac{u}{e^{u}-1} = \sum_{n=0}^{\infty} B_{n} \frac{u^{n}}{n!}.$$

Moreover, they obtain an elegant combinatorial interpretation for the coefficients $a_{n,i,j,k}$ defined by

(1.6)
$$F_n(x, y, z) = \sum_{i,j,k=1}^{\infty} a_{n,i,j,k} x^{i-1} y^{j-1} z^{k-1}.$$

212 L. Carlitz

It is evident from (1.2) and (1.6) that

(1.7)
$$G_{2n+2} = \sum_{i,j,k=1}^{n} a_{n,i,j,k}$$

Gandhi [5] had conjectured that if $\{P_n(z)\}_{n\geqslant 0}$ is a sequence of polynomials defined by $P_0(z)=1$ and

$$(1.8) P_n(z) = z^2 P_{n-1}(z+1) - (z-1)^2 P_{n-1}(z) (n \ge 1),$$

then

$$(1.9) G_{2n+2} = P_n(1).$$

This conjecture was proved independently by the present writer [1] and by Riordan and Stein [8].

If we put

$$Q_n(z) = P_{n-1}(z+1) \quad (n \ge 1),$$

it is clear that $Q_1(z) = 1$ and

$$(1.10) Q_n(z) = (z+1)^2 Q_{n-1}(z+1) - z^2 Q_n(z) (n \ge 2);$$

thus (1.9) becomes

$$(1.11) G_{2n+2} = Q_{n-1}(1) (n \ge 1).$$

Moreover comparison of (1.1) with (1.10) gives

$$(1.12) Q_n(z) = F_n(1, 1, z) (n \ge 1).$$

Explicit formulas for the polynomial have not previously been obtaine 3. In the present paper we show first that

$$(1.13) F_{n+1}(x, y, z) = \sum_{k=0}^{n} (-1)^{n+k} (x+z)_{k} (y+z)_{k} A_{n,k}(z)$$

and secondly that

(1.14)
$$F_n(x, y, z) = S_{n,1} + S_{n,2} + S_{n,3}$$

where

$$(x)_k = x(x-1) \cdot \cdot \cdot (x+k-1), \quad (x)_0 = 1,$$

(1.15)
$$S_{n \cdot j} = \sum_{r \in S(1, r-n)} \sum_{j=k+1}^{\min(r \cdot s, t)} (-1)^{n-k} (y+z)_{2k} (z+x)_{2k} (x+y)_{2k}$$

$$A_{r,k}(x)A_{s,k}(y)A_{r,k}(z)E^kC_i$$
 (j = 1, 2, 3),

the C_1 are certain explicit symmetric polynomials in x, y, z, E is the operator defined by

$$E f(x, y, z) = f(x + 1, y + 1, z + 1)$$

(5.9), where C_i is defined by (5.7) and

$$A_{n,k}(x) = \frac{2}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \frac{(x+j)^{2n+1}}{(2x+j)_{k+1}}.$$

References

- [1] L. Carlitz, A conjecture concerning Genocchi numbers, Koninkl. norske Vidensk. Selsk. Sk. 9
- [2] L. Carlitz and J. Riordan, The divided central difference of zero, Canad. J. Math. 15 (1963)
- [3] D. Dumont, Intreprétations combinatoires des nombres de Genocchi, Duke Math. J. 41 (1974)
- [4] D. Dumont and D. Foata, Une propriété de symétrie des nombres de Genorchi, Bull. Soc. Math. France 104 (1976) 433-451.
- [5] J.M. Gandhi, A conjectured representation of Genocchi numbers, Amer. Math. Monthly 77 (1970), 505-506.
- [6] E.R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, NJ, 1975).[7] N.E. Nörlund, Vorlesungen über Differenzenrechnung (Springer, Berlin, 1924).
- [8] J. Riordan and P. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973) 381-388.