Proyecciones Journal of Mathematics Vol. 31, N o 4, pp. 345-354, December 2012. Universidad Católica del Norte Antofagasta - Chile

Matrix representation of the q-Jacobsthal numbers

Gamaliel Cerda-Morales
P. Universidad Católica de Valparaso, Chile
Received: September 2012. Accepted: October 2012

Abstract

In this paper, we consider a q-Jacobsthal sequence $\{J_{q,n}\}$, with initial conditions $J_{q,0}=0$ and $J_{q,1}=1$. Then give a generating matrix for the terms of sequence $\{J_{q,kn}\}$ for a positive integer k. With the aid of this matrix, we derive some new identities for the sequence $\{J_{q,kn}\}$.

Subjclass: 11B39, 11B37, 15A36.

 $\textbf{Keywords:} \ q\text{-}Jacobsthal \ numbers, \ q\text{-}Jacobsthal\text{-}Lucas \ numbers, \ matrix \ methods.}$

1. Introduction

In [H1], Horadam introduce a sequence $\{W_n(a,b;p,q)\}$, or briefly $\{W_n\}$, defined by the recurrence relation

$$(1.1) W_n = pW_{n-1} - qW_{n-2}, n \ge 2,$$

with $W_0 = a$, $W_1 = b$, where a, b, p and q are integers with p > 0, $q \neq 0$. We are interested in the following two special cases of $\{W_n\}$, the q-Jacohsthal sequence $\{J_{q,n}\}$ defined by

$$(1.2) J_{q,n} = J_{q,n-1} - qJ_{q,n-2}, \ J_{q,0} = 0, \ J_{q,1} = 1, \ n \ge 2,$$

and the q-Jacobsthal-Lucas sequence $\{j_{q,n}\}$ defined by

$$(1.3) j_{q,n} = j_{q,n-1} - qj_{q,n-2}, \ j_{q,0} = 2, \ j_{q,1} = 1, \ n \ge 2.$$

The above recurrences involve the characteristic equation

$$(1.4) x^2 - x + q = 0$$

with roots $\alpha_q = \frac{1+\sqrt{1-4q}}{2}$ and $\beta_q = \frac{1+\sqrt{1-4q}}{2}$. Explicit closed form expressions for $J_{q,n}$ and $j_{q,n}$ are $(n \ge 1)$

(1.5)
$$J_{q,n} = \frac{\alpha_q^n - \beta_q^n}{\alpha_q - \beta_q},$$

and

$$(1.6) j_{q,n} = \alpha_q^n + \beta_q^n.$$

Particular cases of the previous definition are:

- If q = -1, the classic Fibonacci sequence appears by $F_0 = 0$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$: $\{F_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 2, 3, 5, 8, ...\}$.
- If q = -2, the Jacobsthal sequence introduced in [H2], and defined by $J_{n+1} = J_n + 2J_{n-1}$ for $n \ge 1$, $J_0 = 0$, $J_1 = 1$: $\{J_n\}_{n \in \mathbb{N}} = \{0, 1, 1, 3, 5, 11, ...\}$.

We define J_q be the 2×2 matrix

$$(1.7) J_q = \begin{bmatrix} 1 & -q \\ 1 & 0 \end{bmatrix},$$

then for an integer n with $n \geq 1$, J_q^n has the form

(1.8)
$$J_q^n = \begin{bmatrix} J_{q,n+1} & -qJ_{q,n} \\ J_{q,n} & -qJ_{q,n-1} \end{bmatrix}.$$

The particular case q = -2, was introduced by $K\ddot{o}ken$ and Bozkurt in [KB2, KB3]. Moreover, they have obtained the Cassini formula for the Jacobsthal numbers. In this paper, we study new relations on q-Jacobsthal sequence, using the matrix J_q defined in (1.7).

Initially, the q-Jacobsthal numbers are defined for $n \ge 0$ but their existence for n < 0 is readily extended, yielding

$$J_{q,-n} = -q^{-n}J_{q,n}$$
 and $j_{q,-n} = q^{-n}j_{q,n}$.

For $n \geq 2$ and a fixed positive integer k, in [KS] the authors study the sequence $\{W_{q,kn}(x)\}$ and prove the following relation:

$$J_{q,kn} = j_{q,k} J_{q,k(n-1)} - q^k J_{q,k(n-2)}.$$

$$(1.10) j_{q,kn} = j_{q,k}j_{q,k(n-1)} - q^kj_{q,k(n-2)},$$

where the initial conditions of the sequences $\{J_{q,n}\}$ and $\{j_{q,n}\}$ are 0 and $\{J_{q,k}\}$, and 2 and $\{j_{q,k}\}$, respectively.

If $\alpha_{q,k}$ and $\beta_{q,k}$ are the roots of equation $\lambda^2 - j_{q,k}\lambda + q^k = 0$, then the Binet formulas of the sequences $\{J_{q,kn}\}$ and $\{j_{q,kn}\}$ are given by

$$J_{q,kn} = J_{q,k} \left(\frac{\alpha_{q,k}^n - \beta_{q,k}^n}{\alpha_{q,k} - \beta_{q,k}} \right)$$
 and $j_{q,kn} = \alpha_{q,k}^n + \beta_{q,k}^n$,

respectively. It is clear that $\alpha_{q,1} = \alpha_q$ and $\beta_{q,1} = \beta_q$.

From the Binet formulas, one can see that $J_{q,2kn} = j_{q,kn}J_{q,kn}$.

2. Companion matrix for the sequence $\{J_{q,kn}\}$

In this section, we define a 2×2 matrix A_q and then we give some new results for the q-Jacobsthal numbers $J_{q,kn}$ by matrix methods.

Define the 2×2 matrix A_q as follows:

$$(2.1) A_q = \begin{bmatrix} j_{q,k} & -q^k \\ 1 & 0 \end{bmatrix}.$$

By an inductive argument and using (1.9), we get

Proposition 2.1. For any integer $n \ge 1$ holds.

(2.2)
$$A_q^n = \frac{1}{J_{q,k}} \begin{bmatrix} J_{q,k(n+1)} & -q^k J_{q,kn} \\ J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix}.$$

Proof. (By induction). For n = 1:

(2.3)
$$A_q^1 = \begin{bmatrix} j_{q,k} & -q^k \\ 1 & 0 \end{bmatrix} = \frac{1}{J_{q,k}} \begin{bmatrix} J_{q,2k} & -q^k J_{q,k} \\ J_{q,k} & -q^k J_{q,0} \end{bmatrix}$$

since $J_{q,0} = 0$ and $J_{q,2k} = j_{q,k}J_{q,k}$. Let us suppose that the formula is true for n-1:

$$(2.4) \qquad A_q^{n-1} = \frac{1}{J_{q,k}} \begin{bmatrix} J_{q,kn} & -q^k J_{q,k(n-1)} \\ J_{q,k(n-1)} & -q^k J_{q,k(n-2)} \end{bmatrix}.$$
Then, $A_q^n = A_q^{n-1} A_q^1 = \frac{1}{J_{q,k}} \begin{bmatrix} J_{q,kn} & -q^k J_{q,k(n-1)} \\ J_{q,k(n-1)} & -q^k J_{q,k(n-1)} \end{bmatrix} \begin{bmatrix} j_{q,k} & -q^k \\ 1 & 0 \end{bmatrix}$

$$= \frac{1}{J_{q,k}} \begin{bmatrix} j_{q,k} J_{q,kn} - q^k J_{q,k(n-1)} & -q^k J_{q,k(n-2)} \\ j_{q,k} J_{q,k(n-1)} - q^k J_{q,k(n-2)} & -q^k J_{q,k(n-1)} \end{bmatrix}$$

$$= \frac{1}{J_{q,k}} \begin{bmatrix} J_{q,k(n+1)} & -q^k J_{q,k(n-1)} \\ J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix} \square$$
Clearly the matrix A_q^n satisfies the recurrence relation, for $n \ge 1$

(2.5)
$$A_q^{n+1} = j_{q,k} A_q^n - q^k A_q^{n-1},$$

where $A_q^0 = I_2$, $A_q^1 = A_q$ and I_2 is the 2×2 unit matrix.

In this study, we define the q-Jacobsthal-Lucas j_q -matrix by

(2.6)
$$j_{q} = \begin{bmatrix} j_{q,k}^{2} - 2q^{k} & -j_{q,k}q^{k} \\ j_{q,k} & -2q^{k} \end{bmatrix}.$$

$$\left[\begin{array}{c} j_{q,k(n+1)} \\ j_{q,kn} \end{array}\right] = j_q \left[\begin{array}{c} J_{q,kn} \\ J_{q,k(n-1)} \end{array}\right] \text{ and } \Delta \left[\begin{array}{c} J_{q,k(n+1)} \\ J_{q,kn} \end{array}\right] = j_q \left[\begin{array}{c} j_{q,kn} \\ j_{q,k(n-1)} \end{array}\right]$$

where $J_{q,kn}$, $j_{q,kn}$ are as above, and $\Delta = 1 - 4q$.

We obtain Cassini's formula and properties of these numbers by a similar matrix method to the Lucas numbers [KB1].

Proposition 2.2. Let j_q be a matrix as in (2.6). Then, for all integers $n \geq 1$, the following matrix power is held below

(2.7)
$$j_q^n = \begin{cases} \Delta^{\frac{n}{2}} \begin{bmatrix} J_{q,k(n+1)} & -q^k J_{q,kn} \\ J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix} & if \ n \ even \\ \Delta^{\frac{n-1}{2}} \begin{bmatrix} j_{q,k(n+1)} & -q^k j_{q,kn} \\ j_{q,kn} & -q^k j_{q,k(n-1)} \end{bmatrix} & if \ n \ odd, \end{cases}$$

where $J_{q,kn}$ and $j_{q,kn}$ are the kn-th q-Jacobsthal and q-Jacobsthal-Lucas numbers, respectively.

Proof. We use mathematical induction on n. First, we consider odd n. For n = 1,

$$j_q^1 = \left[\begin{array}{cc} j_{q,2k} & -q^k j_{q,k} \\ j_{q,k} & -q^k j_{q,0} \end{array} \right],$$

since $j_{q,2k} = j_{q,k}^2 - 2q^k$ and $j_{q,0} = 2$. So, (2.7) is indeed true for n = 1. Now we suppose it is true for n = t, that is

$$j_q^t = \Delta^{\frac{t-1}{2}} \begin{bmatrix} j_{q,k(t+1)} & -q^k j_{q,kt} \\ j_{q,kt} & -q^k j_{q,k(t-1)} \end{bmatrix}.$$

Using the induction hypothesis and j_q^2 by a direct computation. we can write

$$j_q^{t+2} = j_q^t j_q^2 = \Delta^{\frac{t+1}{2}} \begin{bmatrix} j_{q,k(t+3)} & -q^k j_{q,k(t+2)} \\ j_{q,k(t+2)} & -q^k j_{q,k(t+1)} \end{bmatrix},$$

as desired. Secondly, let us consider even n. For n=2 we can write

$$j_q^2 = \Delta \left[\begin{array}{cc} J_{q,3k} & -q^k J_{q,2k} \\ J_{q,2k} & -q^k J_{q,k} \end{array} \right].$$

So, (2.7) is true for n=2. Now, we suppose it is true for n=t, using properties of the q-Jacobsthal numbers and the induction hypothesis, we can write

$$j_q^{t+2} = \Delta^{\frac{t+2}{2}} \left[\begin{array}{cc} J_{q,k(t+3)} & -q^k J_{q,k(t+2)} \\ J_{q,k(t+2)} & -q^k J_{q,k(t+1)} \end{array} \right],$$

as desired. Hence, (2.7) holds for all n. \square

If we use the equation (2.5), we can write $j_{q,k}A_q^{n+1} = j_{q,k}^2A_q^n - q^kj_{q,k}A_q^{n-1}$ = $j_{q,k}^2A_q^n - q^k(A_q^n + q^kA_q^{n-2})$ = $(j_{q,k}^2 - q^k)A_q^n - q^{2k}A_q^{n-2}$.

Comparing the entries in the first row and first column for the above matrix equation, we get

(2.8)
$$j_{q,k} = \frac{(j_{q,k}^2 - q^k)J_{q,k(n+1)} - q^{2k}J_{q,k(n-1)}}{J_{q,k(n+2)}}.$$

For $n \geq 0$, if we consider the fact that $\det(A_q^n) = (\det(A_q))^n$, then we obtain the generalized Cassini identity

(2.9)
$$J_{q,k(n+1)}J_{q,k(n-1)} - J_{q,kn}^2 = -q^{k(n-1)}J_{q,k}^2.$$

For example, for k = 1, we get $J_{q,n+1}J_{q,n-1} - J_{q,n}^2 = -q^{n-1}$, the generalized Cassini identity with q-Jacobsthal numbers. In this case, if q = -1, we get Cassini identity on classic Fibonacci sequence.

Now we shall derive some results for $\{J_{q,kn}\}$ by matrix methods.

Proposition 2.3. For all $n, m \in \mathbb{Z}$

$$(2.10) J_{q,k}J_{q,k(n+m)} = J_{q,km}J_{q,k(n+1)} - q^kJ_{q,k(m-1)}J_{q,kn}.$$

Proof. Since $A_q^{n+m} = A_q^n A_q^m$ and after some simplifications, we obtain $A_q^{n+m} = \frac{1}{J_{q,k}^2} \begin{bmatrix} J_{q,k(n+1)} & -q^k J_{q,kn} \\ J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix} \begin{bmatrix} J_{q,k(m+1)} & -q^k J_{q,km} \\ J_{q,km} & -q^k J_{q,k(m-1)} \end{bmatrix}$ $= \frac{J_{q,km}}{J_{q,k}} A_q^{n+1} - q^k \frac{J_{q,k(m-1)}}{J_{q,k}} A_q^n.$ Thus we obtain

(2.11)
$$J_{q,k}A_q^{n+m} = J_{q,km}A_q^{n+1} - q^k J_{q,k(m-1)}A_q^n,$$

which, Comparing the entries in the second row and first column for the matrix equation (2.11), gives the conclusion. \Box

When m = n in (2.10), we obtain

$$(2.12) J_{q,k}J_{q,2kn} = J_{q,kn}(J_{q,k(n+1)} - q^kJ_{q,k(n-1)}),$$

and the follow equality for $J_{q,kn}(x) \neq 0$

$$(2.13) J_{q,k}j_{q,kn} = J_{q,k(n+1)} - q^k J_{q,k(n-1)}.$$

Comparing the entries in the first row and first column of the equality (2.11) and by taking m = n, we obtain

$$(2.14) J_{q,k}J_{q,k(2n+1)} = J_{q,k(n+1)}^2 - q^k J_{q,kn}^2,$$

a particular case of the next equality

(2.15)
$$J_{q,k}A_q^{2n} = J_{q,kn}A_q^{n+1} - q^k J_{q,k(n-1)}A_q^n.$$

Corollary 2.4. For $k \geq 1$ and $n \in \mathbb{Z}$,

$$(2.16)_{k(2n+1)} + J_{q,k(2n-1)} = \frac{1}{J_{q,k}} \left(J_{q,k(n+1)}^2 + (1-q^k) J_{q,kn}^2 - J_{q,k(n+1)}^2 \right).$$

Considering the first row and first column of the matrix $A_q^{2n} =$ $(A_q^n)^2$, we get $J_{q,k}J_{q,k(2n+1)} = J_{q,k(n+1)}^2 - q^k J_{q,kn}^2$, and the second row and second column of the matrix A_q^{2n} , $J_{q,k}J_{q,k(2n-1)} = J_{q,kn}^2 - q^k J_{q,k(n-1)}^2$. By adding side by side in the above equations, we have the conclusion. \Box For any integer m, we have $A_q^{2n} = A_q^{n+m} A_q^{n-m}$. Here if we consider the entries in the second row and first column in the product $A_q^{n+m} A_q^{n-m}$ and

the matrix A_q^{2n} , we get

$$(2.17) \quad J_{q,k}J_{q,2kn} = J_{q,k(n+m)}J_{q,k(n-m+1)} - q^kJ_{q,k(n+m-1)}J_{q,k(n-m)}.$$

3. sums with q-Jacobsthal numbers

We define the q-Jacobsthal G_q -matrix by

(3.1)
$$G_q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & j_{q,k} & -q^k \\ 0 & 1 & 0 \end{bmatrix}.$$

By an inductive argument and using (1.9), we get

Proposition 3.1. For any integer $n \ge 1$ holds:

$$(3.2) G_q^n = \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,kn}^s & J_{q,k(n+1)} & -q^k J_{q,kn} \\ J_{q,k(n-1)}^s & J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix},$$

where $J_{q,kn}^s$ is defined such that $J_{q,kn}^s = \sum_{i=1}^n J_{q,ki}$.

Proof. (By induction). For n = 1:

$$(3.3) G_q^1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & j_{q,k} & -q^k \\ 0 & 1 & 0 \end{bmatrix} = \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,k}^s & J_{q,2k} & -q^k J_{q,k} \\ J_{q,0}^s & J_{q,k} & -q^k J_{q,0} \end{bmatrix}$$

since $J_{q,0} = 0$ and $J_{q,2k} = j_{q,k}J_{q,k}$. Let us suppose that the formula is true for n-1:

(3.4)
$$G_q^{n-1} = \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,k(n-1)}^s & J_{q,kn} & -q^k J_{q,k(n-1)} \\ J_{q,k(n-2)}^s & J_{q,k(n-1)} & -q^k J_{q,k(n-2)} \end{bmatrix}$$

Then,
$$G_q^n = G_q^{n-1} G_q^1 = \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,k(n-1)}^s & J_{q,k(n-1)} & -q^k J_{q,k(n-1)} \\ J_{q,k(n-2)}^s & J_{q,k(n-1)} & -q^k J_{q,k(n-2)} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & j_{q,k} & -q^k \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,k(n-1)}^s + J_{q,kn} & j_{q,k} J_{q,kn} - q^k J_{q,k(n-1)} & -q^k J_{q,kn} \\ J_{q,k(n-2)}^s + J_{q,k(n-1)} & j_{q,k} J_{q,k(n-1)} - q^k J_{q,k(n-2)} & -q^k J_{q,k(n-1)} \end{bmatrix}$$

$$= \frac{1}{J_{q,k}} \begin{bmatrix} 1 & 0 & 0 \\ J_{q,kn}^s & J_{q,k(n+1)} & -q^k J_{q,kn} \\ J_{q,kn}^s & J_{q,kn} & -q^k J_{q,k(n-1)} \end{bmatrix}. \quad \Box$$

Corollary 3.2. If $J_{q,kn}$ is the kn-th q-Jacobsthal number, then

$$J_{q,k}J_{q,k(n+m)}^s = J_{q,kn}^s + J_{q,k(m-1)}^s (J_{q,k(n+1)} - q^k J_{q,kn}) + J_{q,k(n+1)} J_{q,km}.$$
(3.5)

Proof. The second row and first column in the matrix G_q^{n+m} is equal to $J_{q,k(n+m)}^s$. Considering the (2,1)-entries of the matrix equation $G_q^n G_q^m$, $J_{q,k}J_{q,k(n+m)}^s = J_{q,kn}^s + J_{q,k(n+1)}J_{q,km}^s - q^kJ_{q,kn}J_{q,k(m-1)}^s$ $= J_{q,kn}^s + J_{q,k(n+1)}(J_{q,k(m-1)}^s + J_{q,km}) - q^kJ_{q,kn}J_{q,k(m-1)}^s$ $= J_{q,kn}^s + J_{q,k(m-1)}^s(J_{q,k(n+1)} - q^kJ_{q,kn}) + J_{q,k(n+1)}J_{q,km}$. Thus, the proof is completed. \square

If q = -2 and k = 1, the classic Jacobsthal sequence satisfy

$$J_{n+m}^s = J_n^s + J_{m-1}^s J_{n+2} + J_{n+1} J_{q,m}.$$

4. conclusion

In this paper, we consider the amazing relationships between the q-Jacobsthal numbers and matrices. Sum formula involving the terms of q-Jacobsthal numbers is one of the most important results obtained in this study.

Note that the q-Jacobsthal numbers represent a generalization of the classical Fibonacci sequence. In particular, we have obtained new results by matrix method in these numbers.

References

- [C1] G. Cerda-Morales, On generalized Fibonacci and Lucas numbers by matrix methods, Hacettepe J. Math. Stat. (to appear).
- [C2] G. Cerda-Morales, Matrix methods in Horadam Sequences, Boletín de matemáticas, Universidad Nacional de Colombia, Vol. 19, no. 1, pp. 55-64, (2012).
- [H1] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quarterly, Vol. 3, pp. 161-176, (1965).
- [H2] A. F. Horadam, Jacobsthal Representation Numbers, The Fibonacci Quarterly, Vol. 34, no. 1, pp. 40-53, (1996).
- [KB1] F. Köken, D. Bozkurt, On Lucas numbers by the matrix method, Hacettepe Journal of Mathematics and Statistics, Vol. 39, no. 4, pp. 471-475, (2010).
- [KB2] F. Köken, D. Bozkurt, On The Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sciences, Vol. 3, no. 13, pp. 605-614, (2008).
- [KB3] F. Köken, D. Bozkurt, On The Jacobsthal-Lucas Numbers by Matrix Methods, Int. J. Contemp. Math. Sciences, Vol. 3, no. 33, pp. 1629-1633, (2008).
- [KM] D. Kalman, R. Mena, The Fibonacci numbers- exposed, Math. Mag., no. 76, pp. 81-167, 2003.
- [KS] E. Kilic, P. Stanica, Factorizations and representations of second linear recurrences with indices in arithmetic progressions, Bol. Mex. Math. Soc., Vol. 15, no. 1, pp. 23-36, (2009).
- [Ko] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publications, New York, (2002).

Gamaliel Cerda-Morales

Instituto de Matemáticas P. Universidad Católica de Valparaíso Blanco Viel 596 Cerro Barón Valparaíso Chile

e-mail: gamaliel.cerda.m@mail.pucv.cl