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Abstract

In this paper, we consider a q-Jacobsthal sequence {Jy.}, with
initial conditions Jg0 = 0 and Jg1 = 1. Then give a generating
matriz for the terms of sequence {Jy kn} for a positive integer k. With
the aid of this matriz, we derive some new identities for the sequence

{Jgkn}t-
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1. Introduction

In [H1], Horadam introduce a sequence {W,(a,b;p,q)}, or briefly {W,},

defined by the recurrence relation

(1.1) Wp =pWhn_1 — gWph_o,n > 2,

with Wy = a, W1 = b, where a, b, p and q are integers with p > 0, ¢ # 0.
We are interested in the following two special cases of {W,}, the ¢-

Jacohsthal sequence {Jg} defined by

(1.2) Jq,n = Jq,nfl - qu,nfg, Jq’o = 0, Jq71 = 1, n > 2,

and the g-Jacobsthal-Lucas sequence {j,} defined by

(1'3) jq,n = jq,nfl - q‘jq,n72> jq,O =2, jq,l =1, n>2

The above recurrences involve the characteristic equation

(1.4) 2~z 4+q=0

with roots oy = vl-4g W and g, = 17— V2174q

sions for J,,, and j,, are (n > 1)

a — ,Bn
1.5 Jgn = T—21,
( ) q, Oéq _Bq
and
(1.6) Jen = ag + 52.

Particular cases of the previous definition are:

. Explicit closed form expres-

e If ¢ = —1, the classic Fibonacci sequence appears by Fy =0, F1 =1
and F11 = F,+ F,—1 forn>1: {F,},en =1{0,1,1,2,3,5,8,...}.

o If ¢ = —2, the Jacobsthal sequence introduced in
by Jpt1 = Jn + 21 form > 1, Jy =0, J1

{0,1,1,3,5,11,...}.

We define J; be the 2 x 2 matrix

(1.7) Jy= “ —g],

H

2], and defined
1: {Jn}nGN =
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then for an integer n with n > 1, Ji' has the form

Jgn+1 —qJ,
1.8 Jp =] o
( ) a Jq,n _qu,n—l
The particular case ¢ = —2, was introduced by Koéken and Bozkurt

in [KB2, KB3]. Moreover, they have obtained the Cassini formula for the
Jacobsthal numbers. In this paper, we study new relations on g-Jacobsthal
sequence, using the matrix J; defined in (1.7).

Initially, the g-Jacobsthal numbers are defined for n > 0 but their exis-
tence for n < 0 is readily extended, yielding

Jq,—n = _qian,n and jq,—n = qinqu-

For n > 2 and a fixed positive integer k, in [KS] the authors study the

sequence {W, i, ()} and prove the following relation:

(19) Jq,kn = jq,qu,k(nfl) - quq,k(n72)7

(110) jq,kn = jq,qu,k:(nfl) - qqu,k(an)a
where the initial conditions of the sequences {J,,} and {j;.} are 0 and
{Jgk}, and 2 and {jg 1}, respectively.

If oy and B, are the roots of equation A2 — Jg kA + ¢" = 0, then the
Binet formulas of the sequences {Jy i} and {jqin} are given by

a:;k_ﬁt;lk . n n
Jokn = Jok | g2—5> | and Jgrn = Qg kT ﬁqJW

Qq,k—Bq,k

respectively. It is clear that ay1 = a4 and 841 = B4.
From the Binet formulas, one can see that J, oxn = Jg.knJq kn-

2. Companion matrix for the sequence {J,,}

In this section, we define a 2 x 2 matrix A, and then we give some new
results for the g-Jacobsthal numbers J, ,, by matrix methods.
Define the 2 x 2 matrix A, as follows:

. k
_ | Jgek —4
(2.1) Ay = l 1 0 ] )

By an inductive argument and using (1.9), we get

Proposition 2.1. For any integer n > 1 holds:

1| J, —q*J,
2.2 AP = | Tak(ntl) ke
( ) [ Jq,kn _quq,k(nfl)
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Proof. (By induction). For n = 1:
2.3 Al = Jak q - = q,2k q Jg,k
(23 ! [ 1 0 Ja.k Jak _qu ,0

since Jy 0 = 0 and Jg 21 = JqkJq k- Let us suppose that the formula is true
forn — 1:

k
(2.4) At L l Jokn  —@ Tgpn-1) ] .

4 Jq,k: Jq,k(nfl) _qu Jk(n—2)
- J, —q" gk Jok —q°
Then, AP — An lAl — 1 q,kn ¢,k(n—1) q,
e 4 4 Jak Jq,k(nfl) _quq,k(n72) 1 0
_ 1 jq,kJ kn — quq,k(n—l) _qu kn
Tok | Jardgrn—1) — @ Jgrn-2) —a Jgrn-1)
_ 1 Jq,k(n—‘rl) _quq,kn 0O
Ja.k Jq,k:n _qu Jk(n—1)
Clearly the matrix Ay satisfies the recurrence relation, for n > 1
(2.5) At = AL — P AP

where Ag = I, Aé = A, and I3 is the 2 x 2 unit matrix.
In this study, we define the g-Jacobsthal-Lucas j,-matrix by

-2 k : k
. Jok — 2q —Jq,k4
2.6 = D .
( ) Jq []q,k _2qk ]

It is easy to see that

]:q,lc(n+1) :,jq Jq,kn and A ‘]q,k(nJrl) :jq ]:q,kn
Jq.kn Jq,k(n—l) Jq,lm Jq,k(n—1)
where Jg in, Jgkn are as above, and A =1 — 4q.

We obtain Cassini’s formula and properties of these numbers by a sim-
ilar matrix method to the Lucas numbers [KB1].

Proposition 2.2. Let j, be a matrix as in (2.6). Then, for all integers
n > 1, the following matrix power is held below

k
A3 | Jakmnr) k—q ok if neven
n Jq,kn —q"J Jk(n—1)
(2.7) Jg = . k-
AnTil j.q,k(ﬂrkl) _q Jq,kn Zf n Odd,
Jq,kn —4 Jq,k(n—1)

where J, in and jgr, are the kn-th g-Jacobsthal and q-Jacobsthal-Lucas
numbers, respectively.
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Proof.  We use mathematical induction on n. First, we consider odd n.
Forn =1,
| Je2k =Gk
]q - - _ k
Ja.k q"7q,0
since jg or = j;k —2¢* and j, 0 = 2. So, (2.7) is indeed true for n = 1. Now
we suppose it is true for n = ¢, that is

jt:A% jq,k:(t+1) _qqu,kt '
1 Jgq,kt _qk]q,k:(tfl)

Using the induction hypothesis and jg by a direct computation. we can
write
. k .
442 t:2 . AL | Jgk(t+3) T4 Jg.k(t42)
Jo e =7g.d0 = A2 : .
! o [ Jat+2) —€ Tk |

as desired. Secondly, let us consider even n. For n = 2 we can write

2 J 3 —qu 2
. k k
— A q, q, .

So, (2.7) is true for n = 2. Now, we suppose it is true for n = ¢, using
properties of the g-Jacobsthal numbers and the induction hypothesis, we
can write

12 _ A2 | ok 4 Tgrer2)
.]q A k ?
Jokt+2) —4 gk

as desired. Hence, (2.7) holds for all n. O

If we use the equation (2.5), we can write jq,kAf;H = jikAg—qquykAgfl
= Jo Ay — 0" (A7 +d"A5?)
— (jq2,k _ qk:)AgL _ q2kAgLf2.

Comparing the entries in the first row and first column for the above
matrix equation, we get

(ij - qk)Jq k(n+1) — qQqu k(n—1)
2.8 gk = —2 ’ ’ .

For n > 0, if we consider the fact that det(A}) = (det(4,))", then we
obtain the generalized Cassini identity

(2.9) g k(n+1)Jgk(n—1) = Jq2,kn = _qk(nil)‘]fik‘
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For example, for k =1, we get Jy nt1Jgn-1 — Jg’n = —¢" !, the gener-
alized Cassini identity with g-Jacobsthal numbers. In this case, if ¢ = —1,
we get Cassini identity on classic Fibonacci sequence.

Now we shall derive some results for {.J; 1} by matrix methods.

Proposition 2.3. For alln,m € Z
(210) Jq,kJ Jk(n+m) — Jq,kaq,k(nJrl) - quq,k(mfl)Jq,kn-

Proof.  Since A;‘*m = Ay Ay and after some simplifications, we obtain

= 72
4 Jok Jq,kn _quq,k(n—l) Jq,km _quq,k(m—l)
- —qu’“: Ag“ —q" L”}‘ﬂ’” A7. Thus we obtain
(2.11) Jq Ay = q,kmAZH - quq,k(mfl)A?

which, Comparing the entries in the second row and first column for the
matrix equation (2.11), gives the conclusion. O
When m = n in (2.10), we obtain

(212) Jq,k:Jq,2k:n = Jq,kn(Jq,k‘(nJrl) - qu 7k(nfl))a
and the follow equality for Jg p,(z) # 0
(2.13) JokJqkn = Jq,k(n—H) - quq,k(n—l)'

Comparing the entries in the first row and first column of the equality
(2.11) and by taking m = n, we obtain

k
(2.14) JakJok@nt1) = Jgnmir) = 4 Jokns
a particular case of the next equality
(2.15) Jak A2 = Jorn Al — ¢F Ty pn-1) Al

Corollary 2.4. For k> 1 andn € Z,

1
(2.18) k2n41) + g k2n—1) = E (J;k(nﬂ) +(1- qk)Jq%,m - Jik(nﬂ)) i

)
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Proof.  Considering the first row and first column of the matrix Ag" =
(Ag)Q, we get Jgkdyk@nt1) = J(ik(nﬂ) — qugykn, and the second row and
second column of the matrix Ag”, JokJgk@n—1) = J(i,m — quq%k_(nil). By
adding side by side in the above equations, we have the conclusion. O
For any integer m, we have Ag” = Ag‘””Ag_m. Here if we consider the
entries in the second row and first column in the product Ag*mAg*m and

the matrix AZ”, we get
(217) Jq,qu,an = q,k(n+m)Jq,k(n—m+1) - quq,k(n+m—l)Jq,k(n—m)'

3. sums with g-Jacobsthal numbers

We define the g-Jacobsthal Gj-matrix by

1 0 0
(3.1) Go= 1|1 jor —d"
0 1 0

By an inductive argument and using (1.9), we get

Proposition 3.1. For any integer n > 1 holds:

1 1 0 0
(3.2) GZ = J—k J;kn JQ,k(n-H) k_quq,kn )
@ qs7k(’l’b—1) Jq’kn _q J 7k(n71)

where Jo kn 18 defined such that I kn = it Joki-

Proof. (By induction). For n = 1:

1 0 0 e 0 0
33)  Gl=|1 jox —d" = | Jox oo —q* T,
0 1 0 o Ty ek —d¥ g0

since Jg0 = 0 and J, o = jg.xJgk- Let us suppose that the formula is true
forn — 1:

1 0 0
J(‘;,k(nfl) Jq,kn _ql;‘]q,k(n—l)
Jokn—2) Jakm-1) —¢ Jgrn-2)

(3.4) Grt =
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Then,
1 0 071 o o0
G =Gy Gy =75 | Jarw—y  Jakn —CTaron) || 1 Jor —db
Ty Jakn-y) —Jgkm-2 | [0 1 0
- : 0
= Tr | ooy T Jakn Jakdan =@ Typm-r)  —@"Jomn
| : )
=7 | Jawn Jak(n+1) k—qu kn |, O
| o k(n—1) Jokn 0" Jg k-1

Corollary 3.2. If Jy iy is the kn-th g-Jacobsthal number, then

Jq,qus,k(n+m) = (ikn + J;,k(m—l)(Jq,k(nJrl) - qu ,kn) + Jq,k(nﬂ)Jq,km

(3.5)

Proof.  The second row and first column in the matrix G(’;*m is equal

to J;,k(n+m)' Considering the (2,1)-entries of the matrix equation GGy

quk‘];,k(n+m) - J;Jm + Jflak("+1)‘]qs,km o quq’knJ;k(m*D
= Sy kn + ok g g1y + Jakm) = ETqkn Ty mo1)
= J ko + J;k(mq)(Jq,k(nH) —q"J, #n) + Jgk(n+1)Jg,km- Thus, the proof is
completed. O
If g = —2 and k = 1, the classic Jacobsthal sequence satisfy

(3.6) TS im = 5+ T2 1 Jnra + Jni1dgm.

4. conclusion

In this paper, we consider the amazing relationships between the g-Jacobsthal
numbers and matrices. Sum formula involving the terms of g-Jacobsthal
numbers is one of the most important results obtained in this study.

Note that the g-Jacobsthal numbers represent a generalization of the
classical Fibonacci sequence. In particular, we have obtained new results
by matrix method in these numbers.
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