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1. Introduction

The infinite family of Stirling numbers (cf. [4], p. 34), which goes back
to E. T. Bell (1939), did have some interest in number theory [1]. The Stirling
numbers of the second kind and the corresponding polynomials [4] are defined by
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respectively.

Recently, Singh [5], Sinha and Dhawan [6], and Shrivastava [7], studied
the Stirling numbers and polynomials defined, respectively, by
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It is easily verified from (1.1) and (1.3) that
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Thus the generalized Stirling numbers studied in the recent papers [5], [6] and
[7] are merely linear combinations of the Stirling numbers of the second kind,
defined by (1.1).

In connection with the study of the polynomials defined by (cf. [8], p.
75, Eq. (1.3); see also [2])
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the author [3] introduced the following generalizations of the Stirling numbers
and polynomials defined by (1.3) and (1.4), respectively
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o, k#1, p, r are arbitrary complex numbers, and m, n are positive integers.
Evidently, when k— 1, equations (1.7) and (1.8) would reduce to (1.3) and
(1.4), respectively, which, in turn, will yield (1.1) and (1.2), respectively, for
r—l=a=0,

The object of this paper is to apply certain operational techniques to
study various properties of the generalized Stirling numbers and polynomials,
defined by (1.7) and (1.8) above.

2. Generating Function

For the forward difference operator A, ,, it is well known that [8, p. 77,
Eq. (2.3)]
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In the limit when k—1, (2.2) reduces to
(2.3) Al (arrj)=il S (n)(rj)"‘sS“(s, i r),
s=0\ §

which provides the corrected form of formula (3.2) in Shrivastava’s paper [7]
For j=0, (2.2) yields
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By (2.1).
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Thus
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k#1.

The generating relation (2.5) can also be derived by using (1.7).

Now using (2.5), we obtain
@6 sermmn=3 @) se R e m ),

s=0 §
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which can be extended in the form
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3. Recurrence relations

Since
3.1 A=A ALy,
therefore, using (2.4), we get
(3.2) 8er S0,y )y =G+ 18P @, i+), 7).
On interchanging the roles of i and j in (3.2), it is obvious that
(3.3) SIAL  S“Bm, j, ry=it AL, S“P @, i, r).

Now applying (2.1) in (3.2), we obtain

G4 G+1;8Pm itin=3 (- 1)’*‘(1') SR (i p),

J
5s=0
which, for j=1, gives

(3.5) G+DS®Pm, i+1,r)+8%P @, i, r)=8""" @, i, r).

For different values of j, we shall get various recurrence relations, which
can also be obtained by using (2.5) instead of (3.4).

From (2.5), we also obtain

(3.6) SR G i =8 ®m, i r)-nk-1)S"P @-1,i,r).
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Now from (1.7) we derive
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and
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The relation (3.8) can also be obtained by differentiating (2.5) with
respect to it, and then equating the coefficients of ¢” on both the sides.

From (3.9), we derive the following congruences (mod 2)
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4, Miscellancous results

An appeal to (2.4) shows that
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provided that M=r/(k—1) is a positive integer, and A (M, n) stands for the

n+1
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Replacing ¢ by px‘, and using the author’s result [2, (4.1)], we derive

n
set of M parameters —,
M

(4.2) & Ay {1} = xR TE O (x, 7, —p),
from which we can further write 7
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Now from the relation (cf. [8], p. 77; see also [3])
n m m m
IO (x, 1, =5 XD S (- 1)1(”.’ ) @+rp) ",
m=o m! j=0 J )
we derive the following relation for generalized Stirling polynomials

r ® ]
4.9 TP (x, r, —p)=x*"P"e™?* S pf_f' (x+rp)* "
=0 J:

It is fairly well known that if

(4.5) g(r)=é(’.)f(j) r=0,1,2,..),
j=o0\J

then

4.6 =5 (-7 ({"\e(i).

(4.6) 0=3 -1y (J,)g(n

Now applying (4.5) and (4.6) in (1.7), we obtain
Sk—1,m) LT (@, k)

@7 (@+rj) _"Zo(m)m!s n, m, 1),

which can be used here in (4.4) to get (1.8)

Further, operating on both the sides by AL,, and making an appeal to
(3.2), the result (4.7) gives

;o
(4.8) AL @rrjtio S (’ )(m+ NS (n, mi, 1),
m=0 \MM

which is different from (2.2).

For j=0 and 1, the above result gives (2.4) and (3.5), respectively, but
for i=1 it gives

@9) (@+r(+ ) (o S (j ) m+ IS @, m+ 1, ),
m=0\M

which for r=0 yields

(4.10) 3 (’fn) m+ 1)1 8% (n, m+1, 0)=0.

m=0
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