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SUMS OF PRODUCTS OF GENERALIZED BERNOULLI
POLYNOMIALS

KwANG-WU CHEN

In this paper, we investigate the zeta function

Z(P7X7a7s) = Z Z Xl(nl)“'XT(nr)

ni=1 n,=1

P(nl +ai,...,n, +ar)_sa
where a; > 0, x; is a Dirichlet character with conductor IN;,
and P is a polynomial satisfying certain conditions. Its spe-
cial values at nonpositive integers are closely related to gen-
eralized Bernoulli polynomials. Using this fact we can easily
get sums of products of Euler polynomials and generalized
Bernoulli polynomials.

1. Introduction.

Let x be a Dirichlet character with conductor N. Generalized Bernoulli
numbers and polynomials are defined by Leopoldt [10] by

N =, Bt" 2
x
eNt -1 Z |t| < W’
k=1 n=0
N y(k)telko)t B (a)t™ 27
Z eNt_l _Z n |t|<ﬁ'
k=1 n=0
In particular, if yg is the trivial character, then
(1) By, = (=1)"Bp, for n >0,
(2) BY (2) = Bu(1 + ), for n > 0.

If x is the primitive character with conductor 4, then

-1
(3) By=0 and BY=—"F,, forn>1;

(4) Bg(w) =0 and By(x)= -2 *nEp_y <

2

), for n > 1.
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Let a = (a1,...,a,), a; > 0, P(X) = P(Xi,...,X,) be a polynomial of

r variables with nonnegative real coefficients such that P(n + a) > 0 for all
1. € N” and the series

S P =Y S Pl )

neNr n1=1 ner=1
is absolutely convergent for Res > ¢ > 0. x1,..., X, are nontrivial Dirich-
let characters with conductors Ny, ..., N,, respectively. Consider the zeta

function

Z(P,x,a,8) = Z lenl Xr (1)

n1=1 ne=1

-P(ni+ai,...,nr+a,)"° Res>o.

In [2] the author and Eie considered the zeta function Z (P, x, 0, s), and we
found the special value at nonpositive integers closely related to generalized
Bernoulli numbers. Using the same method as in the proof of the Main
Theorem in [2], we have the following similar result for Z(P,x, a,s) with
generalized Bernoulli polynomials:

Theorem 1. Z(P, x,a,s) defined above has a meromorphic analytic con-
tinuation to the whole complex s-plane. For any integer m > 0, if

mp
= > CuX{'.. X2, p=degP,

|oe|=0
then
mp r ai+1
Byl (ay
(5) 2Py —m) = (1) Y € [ P2
om0 j=1 %

Since Euler polynomials are special cases of generalized Bernoulli polyno-
mials with the primitive Dirichlet character y of conductor 4, we can easily
get the following theorem:

Theorem 2. Let P and a be defined as in Theorem 1. The zeta function

o0 o0
— Z . Z (=)t T P(ny +ag, ... ,ny +a,) "¢

n1=0 1,-=0

has a meromorphic analytic continuation to the whole complex s-plane. For
any integer m > 0,

(6) P,—m) Z Ca H a](a]).

|oe|=0 J=1
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We use the notation s(n, k) for the Stirling number of the first kind, the
number of ways to permute a list of n items into k cycles (cf. [6]). Using
some relations between different zeta functions and their special values at
nonpositive integers, we can get sums of products of Euler polynomials,
Bernoulli polynomials, and generalized Bernoulli polynomials.

Theorem 3. Let y=w1+ -+ xn. Then

(7) 3 (.71, .TJN>E]'1(LI;1) By ()

j1t+tiy=m

720
2]\[_1 N-1 k k
- (N —1)! ZéNk+ Z( ) ]Em+j('y)-
k=0 7=0

Theorem 4. Let y=x1+ -+ 2xn. Then

m
(8) Z <j17“.7jN>Bj1(5E1)---BjN(mN)

J1++in=m
3;>0

N-1 k
(—1) Nl (’f) k—j Bmtj-N+1(y)
- (N, k kg ZmA = NALY)
(N — 'HS +1 Jz% Py A2l =y o)

Theorem 5. Let r be a positive integer and x; be a montrivial Dirichlet
character with conductor N;, fori=1,2,...,r. Then for any positive inte-
ger 1,

(9) > ( ) Baw) By ()
drtegn=m Mo dr N'(Gr+1) NG +1)

§; >0
S 3 ) )
all ar=1
— [k Bt jr1(y)
Z%( 13 () ol

wherey:ﬁ]]‘\*[‘_lml+...+ﬁ%n‘

T

In the last section, we reproduce some classical identities among Euler
polynomials using our method, and also some new identities.

2. Sketch of proof of Theorem 1.

Since the proof is exactly the same as [2], we just sketch the outline.
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Finding the special value at s = —rmn of the zeta function
Z(P x,a,s) = Z Z)ﬁ n1) ny)P(n+a)”?,
n1=1 =1

is equivalent to finding the coefficient of {” in the asymptotic expansion at
t = 0 of the function

S 3 alm) e () expl—P(n + ).
n1=1 ne=1

It is also equivalent to finding the constant term in the asymptotic expansion
at £ = 0 of the function

Z Z x1(n1) .. xr(ny) P™ (0 + a) exp{—P(n + a)t}.

For the given polynomial

/4
= ZAaXav p=degF,
|ee|=0

we let
P
QX Y)= > Auxoyrlol
|| =0

be the corresponding homogeneous polynomial in r+ 1 variables. Obviously,
Q((n+a)t,t) = P(n+ a)t* and so

gy =Y xi(m) ... xr(ne)P™(n+ a) exp{—P(n + a) 1}

Xr (1) P (0 + a) exp{—Q((n + a)t, )}

I
(]
>s

=3 Ca Y xaln) . xe () (0 + @) exp{~Q((n + a)t. 1))

|| =0 neNT
where
mp
o (04 (0% o
= E CouX and n* =ny".. N
lor]=0

Similar to [2] we use induction on r and prove that the asymptotic expansion
at ¢ = 0 of the function

=Y (). xe () (n+ a)’ exp{=Q((n +a)t, 1)}

neN”



SUMS OF PRODUCTS OF GENERALIZED BERNOULLI POLYNOMIALS 43

has the form >, d,t"™ with the constant term dy given by

r Bﬁ]:—H )
dO _ (_1)r H )gj +(?]) )

Jj=1

Therefore, we get our assertion for generalized Bernoulli polynomials.

3. Proof of Theorem 2.

Let x be the primitive Dirichlet character with conductor 4. Then the zeta
function can be rewritten as

[e.e] [e.e]
Z(Ps) = Z e Z (=Mt Py +ay, ..y +ap) "0
TL1:0 n,=0
[e.e] [e.e]
= Z Z x(2n1+1)...x2n, + )P0y +aq,...,np +a,)"°
n1=0 ny=0
o0 o0 —8
ki —1 k. —1
:Z...Zx(kjl)...x(kh«)P<12 +ar,. .., T2 +a7«> .
ki=1 k=1

Now we assume that P™(X) = Z _o Ca X, where p = deg P. Thus

Pm<k;+a> Zo(’“l‘l 1)”...(’”2‘1 )

= Z 2| | k:1+2a1 ) .(kr+2ar—1)ar
|a]=0

Now we apply Theorem 1 and Equation (4) to this zeta function

r a]+1

QCL]' — 1)
Z(P,—m) Z ol H P
|a| 0" =1 J
B Z H —2% oy + 1) Fa, (ay)
o 9l e aj;+1
aj)
- St
|| =0 J=1

This completes our proof.
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4. Sums of products of Euler polynomials.

We use a result stated in [5]. For m; positive integers and deg P < mj +
--- + my, we consider the rational function

P(T >
F(T) = (1—Tm1).(..21—Tmr) - kz:%a(k)Tk’

where |T'] < 1, and
1 F(z)
k)y=— | —=
k) = 5 /C e

is determined by F' via Cauchy’s integral formula, with C' a sufficiently small
circle centered at the origin and going counterclockwise. The zeta function
(cf. Chapter XVII of [8])

Zp(s) =Y _a(k)k™*,
k=1

is related to F(T') via a Mellin transform

Zp(s)(s) = /0 Tl R - P(O)dr,

for Re s sufficiently large. The main tool that we use to prove the following
theorems and propositions is as follows:

Lemma (Lemma 3 of [5]). Given

P(T)
(1—Tm).. (1—1Tm)

P(T):ibjTj and F(T) =
7=0

with my + - -~ +m, > m, then, for |T| <1 we have

(o)

F(T) = ib] Z N io: Tn1m1+"'+nrmr+j

j=0 n1=0  n,=0

and hence the associated zeta function

Zp(s) = bo Z (mami1 + -+ npmy)~°

+ij Z (nmimi+ -+ nme +7)7%

7j=1 N1 yeee e 20
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Using the above statements we can prove Theorem 3. Consider the ratio-
nal function

T TN
F(T) =
(T) 1+7T 1+7T
[e.e] [ee]
= |[T" > (=T)™ | .| T Y (=)™
TL1—0 TLNZO
Z Z n1+~~~+n1vT(n1+ﬂc1)+~~~+(nw+mw).
n1=0 nN

Its associated zeta function is

— Z Z (=)™ N (g ) + -+ (v + an)] 70

TL1:0 TLNZO

Using the result of Theorem 2 we know that for m > 0,

_ m
(10) Zp(—m)=27N Y ( , >Ej1(w1) By ().
J1t o tiN=m Jis---3 N
Ji=0
On the other hand, let y = x1 + - -+ + xn; we can rewrite the rational
function F(T') as

(o)

TY _Z(_l)n(n+N—l)(n+N—2)...(n+1)

AT -1 m

() =
n=0
The associated zeta function can also be rewritten as

ZF(S):i((_—l)n(n+N—1)(n+N—2)...(n+1)(n+y)_s

N 1)
n=0
9] n N-1

—Z 72 SNk “onty)
n= 0 k=0

since (cf. Eq. (7.48) of [6])
N-1
(n+1)(n+2)...(n+N—-1) = ZaNk:+
k=0
Thus

s(NE+D(n+y—y)* n+y)~*

0o 1) k ke » g
:Zﬁ s(N,k:+1)Z<j>(—y)k T(n+y)y .

k=0 7=0
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Again using the result of Theorem 2 (this time for » =1 and P(x) = ) we
know that for m > 0

k

(11) Zp(—m) = M Z <k>(_y)k—j Em+j(y).

J=0 J 2
Now combine Equation (10) and Equation (11) to obtain our assertion.

5. Sums of products of generalized Bernoulli polynomials.

We first prove Theorem 4, then apply it to prove Theorem 5. The proof
of Theorem 4 is similar to the proof of Theorem 3. We just consider the
different rational function

(o)

Tm TN x
F(T) = T T Z Z pritar)+o+(nntay)

n1=0 TLNZO
Its associated zeta function is
Z Z IL1+L1 +(’ILN+LL'N)]_S.
n1=0 nN
Using the result of Proposition 2 in [5], we know that for m >0
m
(12)  Zp(—m) = (=1)V > ( , , )le(ml) ... Bjy(2N).
it tag=min Nl IN
J; >0

On the other hand, let y = x1 + - -+ + xxn; we can rewrite the rational
function F(T') as

TY gty NZl
FT) = ——= = (N, k
0 (=1 nz;] 'k—Oé i

The associated zeta function can also rewrite as
0o N-1 k

Zr(s) =3 ﬁ s(Nk+1)) <k> (=) (n+y)? 7=

n=0 k=0 =0 M
Again using the same result of Proposition 2 in [5], we have for m > 0
= s(N, k + s(N.k+1) k Brtiv1(y)
13 — (= k—j%.
(13 m= 3 ]2%(3)< i =Dl

Now combine Equation (12), Equation (13), and change m + N to m, to
conclude the proof of Theorem 4.
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To prove Theorem 5, we consider the zeta function

—S8

n1=1 ny=1 7=1 z#l
i#]

Substitute 1; = a; + Nym; where a; = 1,...,N;and m; > 0fori=1,...,7
Thus Z(s) becomes

330 5 3 ([uters mon ) 32 (s %)

a1=1 ar=1m1=0 m,=0 Jj=1

x1(rn1) r(rer) ( ( N\ fbj+fﬁj\
DY \Z H/ >/

—S8

Now we let

-3 3 (I1N) [ ()

m1= =0 m,=0

j
Then we can represent the zeta function Z(s) as

=353 () 2ot

a1=1 ar=1

From [4] we know that this zeta function Zg(s) has an analytic continuation
to the whole complex plane, and the special values at nonpositive integers
§ = —m are given by

r r
m! a; + 2,
- ||sz> 3 —”B<Q>
! ! P ,
<z’:1 pitdprmmar PL e P iy ’ N;

Using the result of Theorem 4 we can rewrite Zpg(—m) as

r m r—1r=1 k i1 (1
(Hz’:l Nz’ )(_'1) ! ZS(T,](J+ 1)2 (l{"))(_y)k—ij—&-]—’&-l(y)’
) — j

(r—1)! = m+j+1

where y = %fl +- 4 %ﬁ” Now applying Theorem 1, the special values
at nonpositive integers s = —m of the zeta function Z(s) are

m LONTP BRI ()
Z —m) = _1 r 1 Xi K )

P+ dpr=m i=1

On the other hand, using the equality

N1 Ny 7
_ Z Z HXz’(ai)ZB(_m)

a1=1 ar=11=1

and the above values of Z(—m) and Zg(—m), we get our assertion.
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Remark.

(1) Dilcher in [3] produced Equations (7) and (8) in a different way. These

formulae are the same, except for the definition of the Stirling numbers

of the first kind.

(2) The author and Eie in [2] produced a formula with sums of products
of generalized Bernoulli numbers; here we have used the same ideas to
prove a similar formula with generalized Bernoulli polynomials.

(3) Huang and Huang in [9] gave some generalized formulas for sums of

products of Bernoulli numbers and polynomials via a different method

called algebraic residues.

6. Some further identities.

Applying the method of proof of Theorems 3 and 4 to different rational

functions, we can get different identities between generalized Bernoulli poly-

nomials, Euler polynomials, and Bernoulli polynomials. Here we list some

classical identities among Euler polynomials (cf. [1]).

Proposition 1 (see 23.1.7 of [1]).

m m

En(e+h) =Y (Z‘) Byt =" (Z‘) E(h)a™ ",

k=0 k=0
for any nonnegative integer m.

Proof. Consider the zeta function

(o)

Z(Ps) = Z(—l)”(n+w+h)_s, where P"(z) = (z+2x+h)™

n=0
We can express P™(z) in a different way, as

m m

Pr(z) =) (Z‘) (z+a)"n™F, or Y (Z‘) (z + h)kam k.

k=0 k=0

Then we apply Theorem 2 to this zeta function Z(P, s) to obtain the asser-

tion.

Proposition 2 (see 23.1.10 of [1]).
m k-1 i iq ) )
Ep(kx) = {k 2i=0 (= 1) Em(x+7), if k is odd,

m+1 Z ( 1) By (v + %), if k is even,

for any nonnegative integer m.

Proof. We consider the zeta function

00 oo k—1

Z(Ps) = (=1)"(n+ ko)™ =Y Y (1) (nk + i+ kx) "

n=0 n=0 i=0

g
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Now we separate k into two cases, odd and even.

2(P,s) = | 2z (CDRT T (1) (k@£ )7 i ks odd,
7 Zi':ol(_l)zk_s Someon+a+ )% if k is even.
Again we apply Theorem 2 to Z(FP, s) and complete the proof. O

Proposition 3 (see Eq. (51.6.5) of [7]). For any nonnegative integer m,

m
m
> <k>2kEm—k($)Ek(il/)
k=0
2 2 1
= Ep(x+2y) + 2" E, (mz jl/) —2"E,. <%> )

Proof. Follow a similar argument as in the proof of the previous proposition,
but consider the different fraction

T2z T4y
PO =41 15
T2m+4y T2m+4y T2m+4y+2

2. 2. —2. )
1+T2+ 1474 1474

From the associated zeta functions, we get the identity

4 Z Z (—1)™+2[(2n) + 22) + (4no + 4y)]~*

[e.e]
=2 (=1)"(2n 42z +4y) T +2) (—1)"(4n + 22+ 4y)
n=0 n=0

[e.e]

-2 Z(—l)”(4n + 20+ 4y +2)7°%

n=0

Then we calculate the special value of s = —m with m > 0 and obtain
Proposition 3. O

The following results give new identities for Euler polynomials:

Proposition 4. Let a be any positive odd integer. Then for any nonnegative
integer m, we have:
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(1) If a =4k + 1, then

m

> (1) bt

=0

1 2 2 1
= aEm(Qx +ay) + 2" Em, ( x ; ay) _omp (M)

k
2,. y 4/
+Z {am_l(a—l)Em< X+ ay + n)
n=1

a

2 + ay + 4n — 1
—am_l(a—l)Em< vrayTen >

a

2 4n — 2
—am_l(a+1)Em< rrayTen >

a

2x+ay+4n—3>}
a

+a™ Ya+1)E, (

2/. 1
4 d™ Y a—1)Ep, ( "”*“y> ,
a

(2) If a =4k + 3, then

> (7) 2 By ()a™ ! B (y)

=0

1 22 + ay 20+ ay + 1
=~ Em(2x + ay) +2mEm< J;ay> + 2" Ep, (—"L T )

_{Z{am_l(a+1)Em <2$+ay+4n+2> 2

n=1 a
2 dn+1
+am_1(a—1)Em< ray+Ant )
a
20 + ay + 4
—a™ Y a—1)E, (w)
a
2 dn —1
—am_l(a+1)Em< :E+aycj n )}
2 2 2 1
+am—1(a+1)Em (%) +am—1(a_1)Em (%)

a

- a- B, () L
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Proof. The proof is similar to that of Proposition 3, but with
T2m Ty

1+T12 14T

9 T2m+ay T2m+ay T2m+ay+1

I 2 -2
a1+T7L 147172 14712
k

F(T) = 4

2 a—1 a—1
T2m+ay+4n . T2m+ay+4n—1
* 14T { 2231 a CL
CL + 1T2z+ay+4n 2 + a+ 1T2m+ay+4n 3:| + a— 1T:2m—&—&y}7
a a a
for a =4k 4+ 1 and
T2z Ty
F(T) =4 :
(7) 14+72%2 147Te

9 T2m+ay T2m+ay T2m+ay+1
" + 5 T2 2
al+T 14+7T 1+7T

k
2 Z a4+ 1T2m+ay+4n+2
1+ 7 a
n=1
a— 1T2m+ay+4n+1 o a— 1T2m+ay+4n o a+ 1T2m+ay+4n 1
a a a
L8 + 1T2z+ay+2 L4 T2m+ay+1 a4 — 1T2m+ay}
a
for ¢ = 4k + 3, respectively. L]

Remark. We can generalize the previous propositions to formulas involving
a* and ¥ * for arbitrary integers ¢ and b, depending on a suitable partial
fraction decomposition of the function F(7).
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