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1. Introduction

Catalan numbers can be defined through binomial coefficients (cf. [1,7], [3, §1.15] and [5, §5.4] for example)

Cn = 1

n + 1

(
2n

n

)
for n ∈ N0

which satisfy the recurrence relation

Cn+1 =
n∑

k=0

CkCn−k

as well as the formula due to Touchard [13] (see [4,9,11] also)

Cn+1 =
∑

0�k�n/2

2n−2k
(

n

2k

)
Ck. (1)

This sequence has many amazing combinatorial properties. In his book [12, Exercise 6.19], Stanley listed 66 enumerative
problems which are counted by Catalan numbers. More comprehensive and updated coverage about combinatorial interpre-
tations of Catalan numbers can be found in http://www-math.mit.edu/~rstan/ec/.

Associated with Catalan numbers, Shapiro [10] introduced Catalan triangles with the entries given by

Bn,k = k

n

(
2n

n − k

)
where k � n and k,n ∈ N.

There exist interesting relations for these numbers, for example, the recurrence relation

Bn,k = Bn−1,k−1 + 2Bn−1,k + Bn−1,k+1 for 1 < k � n
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and the expression in terms of Catalan numbers

Bn,k =
∑

�1+�2+···+�k=n

C�1 C�2 · · · C�k .

Recently, Gutiérrez et al. [6] established the following two summation identities

n∑
k=1

kB2
n,k =

(
n + 1

2

)
CnCn−1, (2a)

n∑
k=1

k2 B2
n,k = (3n − 2)C2n−2. (2b)

Observing another formula due to Shapiro [10, Corollary 3.5]

n∑
k=1

B2
n,k = C2n−1 (2c)

they proposed as one of the open problems to evaluate the following finite sum

Ωm(n) :=
n∑

k=1

km B2
n,k for m ∈ N0. (3a)

This can be transformed into the evaluation of the following binomial moments:

Θm(n) :=
n∑

k=1

km
(

2n

n − k

)2

for m ∈ N0. (3b)

The purpose of the present short paper is to resolve this problem in general, which will be accomplished through combining
inverse series relations with combinatorial computations. The key step will be expressing monomials as linear combinations
of shifted factorial products, which will be given in the second section. Then the moments of even order will be computed
in the third section by means of Chu–Vandermonde convolution formula on binomial coefficients. The fourth section will
be devoted to the computation of the moments of odd order via telescoping method. Finally, the paper will end with few
examples in the fifth section.

2. Symmetric functions and inverse series relations

For a sequence of indeterminate {γk}k�0, denote the elementary and complete symmetric functions (cf. Macdonald [8,
§1.2]) respectively by em(γ |�) and hm(γ |�):

e0(γ |�) = 1 and em(γ |�) =
∑

0�k1<k2<···<km<�

γk1γk2 · · ·γkm for m ∈ N, (4a)

h0(γ |�) = 1 and hm(γ |�) =
∑

0�k1�k2�···�km<�

γk1γk2 · · ·γkm for m ∈ N. (4b)

Then there hold the following inverse series relations due to Chu [2]:

fm =
m∑

k=0

(−1)khm−k(γ |k + 1)gk, (5a)

gm =
m∑

k=0

(−1)kem−k(γ |m) fk. (5b)

It is not hard to check that these inversions are equivalent to the following orthogonal relation:

m∑
k=n

(−1)k−nhk−n(γ |n + 1)em−k(γ |m) =
{

0, n < m;
1, n = m.

With the same γ -sequence as before, define the formal shifted factorials by

(x|γ )0 = 1 and (x|γ )m = (x + γ0)(x + γ1) · · · (x + γm−1) for m ∈ N. (6)

When γk = ±k for k ∈ N0, they will reduce to the usual rising and falling factorials
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(x)0 = 1 and (x)m = x(x + 1) · · · (x + m − 1) for m ∈ N, (7a)

〈x〉0 = 1 and 〈x〉m = x(x − 1) · · · (x − m + 1) for m ∈ N. (7b)

Then we can write explicitly the polynomial

(x|γ )m =
m∑

k=0

xkem−k(γ |m).

Comparing this equation with (5b) specified by fk = (−x)k and gm = (x|γ )m , we get from (5a) the following dual relation

xm =
m∑

k=0

(−1)m−k(x|γ )khm−k(γ |k + 1). (8)

Let y be another indeterminate. For the sake of brevity, denote by σk,�(y) the following special complete symmetric
function

σk,�(y) = h�

(
y2, (y − 1)2, . . . , (y − k)2)

=
∑

0�k1�k2�···�k��k

(y − k1)
2(y − k2)

2 · · · (y − k�)
2.

Putting x → −x2 and γk = (y − k)2 in (8), we may write the resulting equation as

x2m =
m∑

k=0

(−1)k〈y + x〉k〈y − x〉kσk,m−k(y) (9)

which will be our starting point to investigate the moments of Catalan numbers.
Furthermore, there is the following explicit expression for the connection coefficients

σk,�(y) = 2(−1)k

〈2y〉2k+1

k∑
i=0

(
2y

i

)(
2k − 2y

k − i

)
(y − i)2k+2�+1. (10)

Let [xm] f (x) stand for the coefficient of xm in formal power series f (x). By means of the partial fraction decompositions,
we can evaluate σk,�(y) as follows:

σk,�(y) = h�

(
y2, (y − 1)2, . . . , (y − k)2) = [

x�
] k∏

i=0

1

1 − x(y − i)2

= 2

k!〈2y〉k+1

[
x�

] k∑
i=0

(−1)i
(

k

i

)
(y − i)2k+1

1 − x(y − i)2

〈2y〉i

〈2y − k − 1〉i

= 2

k!〈2y〉k+1

k∑
i=0

(−1)i
(

k

i

) 〈2y〉i

〈2y − k − 1〉i
(y − i)2k+2�+1.

Then the formula displayed in (10) follows in view of the binomial relation

〈2y〉i

〈2y − k − 1〉i
= (−1)k−i

(
2y

i

)(
2k − 2y

k − i

)
i!(k − i)!

〈2y − k − 1〉k
.

3. Moments of even order for Catalan numbers

For the moments of even order, it is trivial to see that

Θ2m(n) =
n∑

k=1

k2m
(

2n

n − k

)2

= 1

2

n∑
�=−n

�2m
(

2n

n − �

)2

where m �= 0.

Recalling the relation (9), we can write

�2m =
m∑

k=0

(−1)k〈n + �〉k〈n − �〉kσk,m−k(n).

Substituting this relation into the binomial sum with respect to �, interchanging the summation order and then applying
the binomial relation
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〈n + �〉k〈n − �〉k

(
2n

n − �

)2

= 〈2n〉2
k

(
2n − k

n + �

)(
2n − k

n − �

)

we can manipulate Θ2m(n) as follows:

Θ2m(n) = 1

2

n∑
�=−n

(
2n

n − �

)2 m∑
k=0

(−1)k〈n + �〉k〈n − �〉kσk,m−k(n)

= 1

2

m∑
k=0

(−1)kσk,m−k(n)

n∑
�=−n

〈n − �〉k〈n + �〉k

(
2n

n + �

)(
2n

n − �

)

= 1

2

m∑
k=0

(−1)k〈2n〉2
kσk,m−k(n)

n∑
�=−n

(
2n − k

n + �

)(
2n − k

n − �

)
.

By means of the Chu–Vandermonde convolution formula on binomial coefficients, the inner sum with respect to � can be
evaluated as

n∑
�=−n

(
2n − k

n + �

)(
2n − k

n − �

)
=

(
4n − 2k

2n − 2k

)
.

Keeping in mind (10) and observing further the relation

〈2n〉2
k

〈2n〉2k+1

(
4n − 2k

2n − 2k

)
=

(
4n − 2k

2n − k

)/
(2n − 2k)

we establish finally the following theorem.

Theorem 1 (Moments of even order for Catalan numbers). There holds the following identity

Θ2m(n) =
m∑

k=0

λk(m,n)

2n − 2k

(
4n − 2k

2n − k

)

where the λ-coefficients are explicitly given by the binomial sum

λk(m,n) =
k∑

i=0

(
2n

i

)(
2k − 2n

k − i

)
(n − i)2m+1.

In this theorem, replacing the λ-coefficients by the last line and then interchanging the summation order, we can derive
another double sum expression.

Corollary 2 (Moments of even order for Catalan numbers).

Θ2m(n) =
m∑

i=0

(
2n

i

)
(n − i)2m+1

m∑
k=i

1

2n − 2k

(
4n − 2k

2n − k

)(
2k − 2n

k − i

)
.

4. Moments of odd order for Catalan numbers

Instead, for the moments of odd order, we have to take completely different strategy to show the following result.

Theorem 3 (Moments of odd order for Catalan numbers). Assume the same λ-coefficients as in Theorem 1. There holds the following
identity

Θ2m+1(n) = n

(
2n

n

) m∑
k=0

λk(m,n)

4n − 2k

(
2n − 2k

n − k

)
.

Proof. According to (9), reformulate Θ2m+1(n) similarly as the double sum

Θ2m+1(n) =
n∑

j=1

j

(
2n

n − j

)2 m∑
k=0

(−1)k〈n + j〉k〈n − j〉kσk,m−k(n)

=
m∑

(−1)k〈2n〉2
kσk,m−k(n)

n∑
j

(
2n − k

n + j

)(
2n − k

n − j

)
.

k=0 j=1
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Taking into account the equation

j = 1

2

{
(n + j) − (n − j)

}

and the binomial relations(
2n − k

n + j

)
=

(
2n − k − 1

n + j

)
+

(
2n − k − 1

n + j − 1

)
,

(
2n − k

n − j

)
=

(
2n − k − 1

n − j

)
+

(
2n − k − 1

n − j − 1

)
;

we may rewrite the summand in the inner sum as

j

(
2n − k

n + j

)(
2n − k

n − j

)
= 2n − k

2

{(
2n − k − 1

n + j − 1

)(
2n − k

n − j

)
−

(
2n − k

n + j

)(
2n − k − 1

n − j − 1

)}

= 2n − k

2

{(
2n − k − 1

n + j − 1

)(
2n − k − 1

n − j

)
−

(
2n − k − 1

n + j

)(
2n − k − 1

n − j − 1

)}
.

Now the inner sum with respect to j for the double sum expression of Θ2m+1(n) can be evaluated, via telescoping method,
as follows

n∑
j=1

j

(
2n − k

n + j

)(
2n − k

n − j

)
= 2n − k

2

(
2n − k − 1

n

)(
2n − k − 1

n − 1

)
.

This leads consequently to the expression

Θ2m+1(n) = 1

2

m∑
k=0

(−1)k〈2n〉k〈2n〉k+1

(
2n − k − 1

n

)(
2n − k − 1

n − 1

)
σk,m−k(n).

Finally, simplifying the last summand as

n

(
2n

n

)(
2n − 2k

n − k

)
λk(m,n)

2n − k

we derive the formula stated in Theorem 3. �
Similarly, substituting the expression of the λ-coefficients into the equation stated in Theorem 3 and simplifying the

result, we get another formula for Θ2m+1(n).

Corollary 4 (Moments of odd order for Catalan numbers).

Θ2m+1(n) = n

(
2n

n

) m∑
i=0

(
2n

i

)
(n − i)2m+1

m∑
k=i

1

4n − 2k

(
2n − 2k

n − k

)(
2k − 2n

k − i

)
.

5. Few examples

According to (3a) and (3b), it is trivial to see

Ωm(n) = n−2Θm+2(n).

Then we can reformulate the formulae of Theorems 1 and 3 as the following expressions of Ωm(n) in terms of Catalan
numbers.

Proposition 5 (Linear relations in terms of Catalan numbers).

Ω2m(n) =
m+1∑
k=0

C2n−k
1 + 2n − k

n2(2n − 2k)
λk(1 + m,n), (11a)

Ω2m+1(n) =
m+1∑
k=0

CnCn−k
(1 + n)(1 + n − k)

n(4n − 2k)
λk(1 + m,n). (11b)
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Both formulae together provide a complete solution to the second problem proposed recently by Gutiérrez et al. [6]. In
order to facilitate further computations, we display the first few λ-coefficients as follows:

λ0(m,n) = n1+2m, (12a)

λ1(m,n) = 2n(1 − n)
{
n2m − (n − 1)2m}

, (12b)

λ2(m,n) = n(n − 2)
{
(2n − 3)n2m − 4(n − 1)2m+1 + (2n − 1)(n − 2)2m}

, (12c)

λ3(m,n) = 2n(3 − n)

3

{
(n − 2)(2n − 5)n2m − (n − 1)(2n − 1)(n − 3)2m

− 3(2n − 5)(n − 1)2m+1 + 3(2n − 1)(n − 2)2m+1

}
. (12d)

Applying these polynomials, we can easily recover the formulae displayed in (2a), (2b) and (2c). Furthermore, we can also
derive the following identities:

Ω3(n) = CnCn−1
n2(n + 1)

2
, (13a)

Ω4(n) = C2n−3
15n3 − 30n2 + 16n − 2

n − 1/2
, (13b)

Ω5(n) = CnCn−2(n + 1)n
{

3n2 − 5n + 1
}
, (13c)

Ω6(n) = C2n−4
105n5 − 420n4 + 588n3 − 356n2 + 96n − 10

(n − 1)(n − 1/2)
, (13d)

Ω7(n) = CnCn−2(n + 1)n
{

6n3 − 12n2 + 6n − 1
}
, (13e)

Ω8(n) = C2n−5
945n7 − 6300n6 + 16380n5 − 21480n4 + 15496n3 − 6306n2 + 1376n − 126

(n − 1)(n − 1/2)(n − 3/2)
, (13f)

Ω9(n) = CnCn−3
2n(n + 1)

n − 1

{
30n5 − 150n4 + 252n3 − 185n2 + 65n − 9

}
. (13g)

Among these formulae, (13a) has been conjectured numerically by Gutiérrez et al. [6].
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