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Abstract 

We establish a large n complete asymptotic expansion for q-Laguerre polynomials and a complete asymptotic 
expansion for a q-Bessel function of large argument. These expansions are needed in our study of an exactly solvable 
random transfer matrix model for disordered electronic systems. We also give a new derivation of an asymptotic 

formula due to Littlewood (1907). 
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1. Introduction 

A q-shifted factorial (a; q), is 

(a; 9)O := 1, (a; q), := (1 - a)(1 - uq) * . * (1 - uqn-I), n > 0. (1.1) 

Sometimes the contracted notation 

(a17 Q2>**-Yar; 4),:= (a,; 4),@2; s), *‘* (a,; 4), 

is useful. A basic (or q-1 hypergeometric series is 
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The little q-Jacobi polynomials 

@;qx) =pl q--7 ;qPqn+l 
i I I 4, qx (1.4) 

were introduced by Hahn. The terminology is due to [l]. As q + 1, the little q-Jacobi 
polynomials tend to a multiple of Jacobi polynomials [19]. Complete asymptotic expansions for 
the little and big q-Jacobi polynomials and the Askey-Wilson pol~omials have been estab- 
lished in [lo] for 1 q I< 1. The parameter q in (1.4) will be referred to as the base parameter. If 
I q I> 1, the little q-Jacobi polynomials with a/3 # 0 and base parameter q are constant 
multiples of a little q-Jacobi polynomial with base parameter l/q. Thus when a/3 # 0, I q I# 1, 
there is no loss of generality in assuming I q I < 3.. 

Little q-Jacobi polynomials with /3 = 0 are q-analogs of Laguerre polynomials and are 
orthogonal with respect to a discrete measure on a countable set when 1 q / < 1, see Cl] or [S, 
Exercise 1.321. When I q I > 1, the moment problem does not have a unique solution [17]. This 
aspect was particularly interesting in [2-41 because the vacuum states are not unique. Moak [15] 
described the spectrum of the extremal measures with respect to which the polynomials in (1.5) 
are orthogonal. Ismail and Rahman [12] identified the Stieltjes transforms of all measures with 
respect to which the polynomials in (1.5) are orthogonal. This includes the extremal measures. 
For solutions of other indeterminate moment problems we refer the interested reader to [6,11]. 
In particular [ll] contains an explicit evaluation of the extremal measures for the q-Hermite 
polynomials when q > 1. 

In [3,4] we introduced an exactly solvable random transfer matrix model for disordered 
systems. This model describes electron transport in disordered systems. The results in the 
present paper were developed in order to show that our model has correct limiting forms. 

The potential of a single particle is required to be linear for small x and behaves as [ln xl2 
for large x. We found it convenient to use the potential V(x; q): 

X” 
w(x; q) ;= e-wm?~ = 

(-(I -4)x; 4)L 
O<q<l, a!> -1. 

We then needed to study the polynomials orthogonal with respect to w(x; q) and estimate the 
eigenvalue density normalized to N (= a,(~; q)). The polynomials orthogonal with respect to 
w(x; q) are the q-Laguerre polynomials. In our model, 

N-1 (P,(x; 4)y 
q&G 4) =w(x; 4) c h ) 

k=O k 

where the P’s are the orthogonal polynomials and h, are the squares of the L,(w(x; q) dx) 
norm of P,(x). To estimate the large N behavior of a,(~; q), we used the Christoffel-Darboux 
formula and we needed the first two terms in the large y1 behavior of the q-Laguerre 
polynomials. We also needed to compare the large x behavior of the limiting function (N -+ m) 
of a,(~; q) in order to compare it with the classical model associated with q = 1. This brief 
paragraph was added at the request of a referee but we refer the reader interested in the 
details of the model to our work 141, whose announcement already appeared in [3]. 
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When we take /3 = 0, (Y # 0 in the little q-Jacobi polynomials, then replacing q by l/q, we 
essentially get the q-Laguerre polynomials 

(9 a+l; q)n n (q-n; q)kqwlw 

Je’k 4) = cq; q>, k;. (q, q”+‘; q)k [(l -dXq”+a+llk~ 14 I < 1. 

Recall that a basic Bessel function is [8,9] 

(4 u+l; q), 
J,‘*‘(x; 4) := @ q) 

f (_ qn(+)~+*nq%n+v) 

(4 v+*, 4; q)n . 3 m n=O 

It is well known that q-Laguerre polynomials converge uniformly on compact subsets 
complex x-plane to [x(1 - q)]-ai2J~2)(2/~; q). 

The main results of this paper are Theorems 1 and 3 and Lemma 2 stated below. 

Theorem 1. The q-Laguerre polynomials have the representation 

Ljp’(x; q) = 
(q 

a+l; q), m qi(a+n+l) n (q-k-a; q)j4&k+n) 

(4; q)cc j?O (9; 4)j k?O (9, q”+‘i q)k [(‘- 1)X1k7 

and the complete asymptotic expansion as n + ~0, 

LJp’(x; q) = (q 
a+‘; q), m qj(a++.+l) m (q-k-a; q)jqk(k+a) 

(4; 4)m jF0 (9; 4)j kg0 (9, q*+‘; q)k ‘(‘- l)X1k* 

Lemma 2. Set 

Then, 

J,‘2’(.& q) = ;;Rui ;/= ($-)Y[f($x) q(“+‘/*)/*; q) +f( - ix, q(v+l/*)/*; q)]. 
m 

Theorem 3. As x --) ~0 with 0 < arg x < 2~, we haue 

k 

(1.5) 

(1.6) 

of the 

(1.7) 

(l-8) 

(1.9) 

(1.10) 

+(-iq 
(9 v+1/2. , &qk’* 1 kzO (q; q)k(-iq(y+1’2”2+x; fi)k * 

(1.11) 
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The asymptotic expansion (1.11) is not in terms of the usual asymptotic sequence IX-~, it = 
0, 1,. . .} [16], but is a sum of two complete asymptotic expansions in terms of the asymptotic 
sequences (( + +iq(n+u+1/2)/2x; q112),: yt = 0, 1,. . . ). This is to be expected since for real x a 
q-Bessel function is real and the asymptotic sequences involved are complex. The reader may 
also recall that Watson [20, Chapter 71 first established complete asymptotic expansions for the 
Hankel functions and then found a complete asymptotic expansion for J,(x) and Y,(x) from the 
fact that the Hankel functions are J,(x) f iY,(x). This process is mirrored in (1.10) and (1.11). 
It is worth noting that (x; q), is a q-analog of epX, hence ( f iixq(V+‘/2)/2; q1/2)m are analogs 
of exp( *( -ix)). 

Theorem 4. Let n be the smallest positive integer such that q(“+‘/2)/2 1 x I < 2q-“-’ and assume 
that 0 < p < 1. A basic Bessel function has the asymptotic behavior 

./,2)(x; q) z (+x)v-1’2q 
(V - 1 m/4 

(q 1’2; q), 

(4; q>co 

( _q-P+l/2e-iB, _qp+l/2eie; q1/2), 

X cos Glog( ix) - VT 
[ I i 

exp _.& [4 log2(;xq(V-‘/2)/2) - T2] 

asx-,a, larg x]<&r, where 8=arg xand o= -In q. 

In Section 2 we shall provide proofs of Theorems 1 and 3 and Lemma 2. The proofs use 
mostly the q-binomial theorem and series rearrangements. Lemma 2 is the key to prove 
Theorem 3 because it provides a convergent asymptotic series representation for a q-Bessel 
function. We shall also prove Theorem 4 from Theorem 3 and classic results of Littlewood [14]. 
Littlewood’s theorem in the case of q-exponentials is stated as Theorem 5. 

Although Lemma 2 follows from general results in q-series stated as [8, Exercise 3.8, p.92 
and Excercise 3.15, p.941, we included in Section 2 a simple direct proof to make this work as 
self-contained as possible. 

The Stieltjes-Wigert polynomials [5] are the limiting case (Y + 03 of the q-Laguerre polyno- 
mials of (1.5) and are orthogonal with respect to a log-normal probability density function. They 
appeared recently in a study of a q-harmonic oscillator [2]. A complete asymptotic expansion of 
the Stieltjes-Wigert polynomials follows from (1.8) as the special case qa = 0. 

In Section 3 we give a new proof of Littlewood’s Theorem 5 when x and q are real. Our 
proof uses the Jacobi triple product identity and the Poisson summation formula. In Section 4 
we included an alternate representation for the q-Laguerre polynomials provided by the 
referee. We also discuss a complete asymptotic expansion for q-Bessel functions. 

2. Proofs 

We first give a proof of Theorem 1. 

Proof of Theorem 1. Apply 

(q-“; q)k= (-l) 
kq 

-kn+k(k-1)/2(q; q)n 

(4; q)n-k 
(2.1) 
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and 

(s; q), = 

to see that the right-hand side of (1.5) equals 

(4 a+1; qLkgo (q. q) 

(qn-k+l; q)mqk*+ak 

> m 
(qn+n+l; q) (q qa+l; q)k b(q - l)l”* 

cc 9 

We then expand (qnekfl; q),/(q”+n+l; q), by the q-binomial theorem [8, (1.3.2)] 

to see that the right-hand side of (1.5) can be expressed in the form 

267 

(2.2) 

W) 

(2.4) 

When we interchange the k- and j-sums in the above expression, we obtain the right-hand side 
of (1.7). This establishes (1.7) and it easily implies (1.8). 13 

Proof of Lemma 2. In the series defining f(x, a; q) we use (b; fi),j -b; fi), = (b2; q), and 
(w; q),/(w; q)n = (wq”; q), to obtain the series representation 

f(x, a; 9) = C 
m (a*; 4n (. 

n=O (4; q>n lmq n’*; fi),qn’*. 

We then expand (iaxqn12; ql/‘), by Euler’s theorem [8] 

n(n-i)/* = (& q),* (2.5) 

The result is 

(a*; 4)J -iajk 
nz,, k=O (4; &(fi; fi)kqk’k-1)‘4qn(k+1)‘2’ 

Interchange the summations over k and II and evaluate the n-sum by the q-binomial theorem 
(2.3). The result is 

m (aZq(k+l)/*; q)m(-ia)k 

f(x, a; s> = C 
kEO (6; fi)k(q(k+l)/*; q), qk(k-1)‘4. 

The even part of f(x, a; q) results from summing over even k. Therefore, 

(2.6) 

$f(x, a; 4) +f(-x, a; s>l = E ( ; 4), 
k=O (6; ;;k+y;:+l,2; q), (-i42kqk(k-1’2)~ 
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and we obtain 

$[f(-v a; 4) +f(-x, a; 4)l = ( - 1)k(ax)2k (4, a2d’2; q)k 
, (2.7) 

where we used (6; fi)2k = (6; q)k(q; q)k and (2.2). The choice a = q@‘+“2)‘2 in (2.7) readily 

implies (1.10). 0 

It is now clear that Theorem 3 is an immediate consequence of Lemma 2. 

Theorem 5 (Littlewood [14]). Let z = reie, r > 1, and o = wi + iw,. Assume F(z) is defined by 

F(Z) = fi (1 + ze-‘w), Re w = o1 > 0, (2-S) 
s=l 

and assume that II is the smallest positive integer such that (n + l)o, > log r. Define a and p by 

(n+l)o,=log r+po,, o<p<1, u=p+ 
i[(n + l)w, - 01 

(2.9) 
w1 

Then, 

log F(z) = 
CO:+6J; log z 2ew, 
2o02 (log z)” - 2~ o1 + iw,(2P - 1) + - 

1 1 i I 

+$0[/3-$] -$[@-~~l+es F(e’U1)+Y1g F(eO-“O1) 

- i (-l)sz-s 
s=l ~(1 - e-‘@) ’ 

(2.10) 

It is worth mentioning that (2.10) of Theorem 5 is a corrected version of [14, Section 12, 
(1211. The original version contained three misprints. The remaining formulas in the same 
section seem to be accurate. 

Proof of Theorem 4. Apply (2.8) and (2.9) with z = ~ixq(y-1/2)/2, o = -In q > 0, so o2 = 0 and 
oz=o. 0 

3. A proof of Theorem 5 

The proof of Theorem 5 uses the Poisson summation formula 

f(r) = l_sdf(w)e~2”ir” dw, (3.1) 
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which holds if f is defined on ( - ~0, ~1; as 1 x 1 + m, there exist positive constants 
that 

I f(x)kA(l+lxl)y, l f(x) I <A(1 + l x pa. 

269 

A and 6 such 

For a proof of the Poisson summation formula, see [18, Section 7.21. Our proof also uses the 
Jacobi triple product identity 

( 
4,-q& 

zT4 ) 
= 54 

n(n + 1)/2, n 
(3.2) 

m n= -cc 

[8, (11.2811. N ex we shall prove an alternate version of Theorem 5, see (3.4) below. t 

Proof of Theorem 5 (for positive o and real x). Apply (3.1) to the right-hand side of (3.2) to get 

24 
n(n + 1)/2, n = 

2 Irn exp[ - $y2 +y(2Tin + 5 - +)I dy 
n= --m n=-_m --m 

= (~)1’2exp[~~~-i~i2].~~(-l)n exp[ 2ninEi2T2n2 

where 5 := Log X, p := exp( - 27r22/w) and, as we noted earlier, In q = -co. The above expres- 
sion can be summed by the Jacobi triple product identity (3.1). This proves 

i 
9,-9x,- 1. x, q)w = ( g)1’2exp[ J-&S - $J2](p2, pe2”i5/W, pe-2”i5/W; p2),. (3.3) 

Observe that when I x I > 1, then 

Furthermore we have 

log( pe2ri5/o, pe-2”i5/o; p”), 

= c 2 log(I _p2n+le2?rist/o) = _ C 5 2 ~p(ln+We2+m3F/~ 

s= *1 n=O s= *1 n=O m=l 

= _ C 5 ~e27rims~/wpm(l _p2m)-1 = _ 5 1 e2n’m5’w + e-2v’m5’w 

s=*l m=l rn 
m=l m e25+uw - e-27+/w 

=-e 
cos(29Tm5/o) 

m=l m sinh(2T2m/o) ’ 
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In the above steps we used the fact that I p exp( + 2nit/o> 1 =p < 1. The above dadatim 
yield 

cl (3.4) 

4. Remarks 

The interested reader will observe that by combining Littlewood’s Theorem (Theorem 5) 
with our Theorem 3, one will establish a complete asymptotic expansion for q-Bessel functions. 
We have not been able to find a closed form for the coefficients in this asymptotic expansion 
but it is obvious that one can find as many terms in the above-mentioned expansion of q-Bessel 
functions as desired. 

The referee kindly pointed out that we can deduce the identity 

i (q”; q)kq+w* 

k=() 47 4 ( a+1; q)k 
[(l - q)Xq”fa+llk 

m (q 
= (-(1 -q)xq”+“-l; q), c 

a+n+l; 4)k9 k@+a)[(l -q)$ 

k=O 474 ( a+1 (q - l)xq”+“+‘; q)k (44 

from Jackson’s formula [S, (1.5.4)] in a straightforward manner. The referee then observed that 
this gives the following representation of the q-Laguerre polynomials: 

The referee pointed out that the y1 + ~0 limit of the expression on the right-hand side of (4.2) is 
a q-Bessel function. It is clear that (4.2) is a single sum, so it may seem that (4.2) has an 
advantage over our (1.8). However, a closer look at (4.2) easily shows that it is not an 
asymptotic expansion because the terms in (4.2) do not form an asymptotic sequence. Thus our 
(1.8) is indeed a complete asymptotic expansion, while the formulas like (4.2) can be thought of 
as alternate representations for q-Laguerre polynomials, which may say something about the 
large II behavior of q-Laguerre polynomials. 

The reader undoubtedly noticed the power of Littlewood’s result (Theorem 5). It is clear 
that Theorem 5 will be useful in any asymptotic analysis involving q-functions. Somehow 
Theorem 5 is not well known to workers in the area of q-series. Littlewood’s paper [14] is cited 
in the excellent book [8] and a special case of Theorem 5 is used in [8, Section 4.31 but the 
theorem itself is not stated explicitly. 
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It is worth reminding the reader that Littlewood obtained Theorem 5 as a special case of his 
more general results and we only give a new and simple proof of Theorem 5. We feel the 
interest in the special case (Theorem 5) is justified for two reasons. Firstly, Theorem 5 is just 
what is needed to study asymptotic properties of q-infinite products. Secondly, the logarithm of 
the function F(Z) of (2.8) arises in the problem of the motion of a spinless electron gas under 
the influence of a strong external homogeneous and stationary magnetic field. The free energy 
is proportional to 

f log 1 - 2p2n+l 
n=O ] 

,,( T) +p4n+2] 

= 2 log[(l _pn+l/2c-2~i5/~)(l -p~+1/2e-2~iS/o)]. 
n=O 

It can be shown that the oscillatory terms in the free energy as a function of the external field 
gives rise to oscillatory magnetic susceptibility; an experimentally observed phenomenon called 
the de Haas-van Alphen effect [13]. 
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