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ABSTRACT

The history of genus distributions began with J. Gross et al. in 1980s. Since then, a lot of study has
given to this parameter, and the explicit formulas are obtained for various kinds of graphs. In this
paper, we find a new usage of Chebyshev polynomials in the study of genus distribution, using the
overlap matrix, we obtain homogeneous recurrence relation for rank distribution polynomial, which
can be solved in terms of Chebyshev polynomials of the second kind. The method here can find
explicit formula for embedding distribution of some other graphs. As an application, the well known
genus distributions of closed-end ladders and cobblestone paths [J. Combin. Ser. B 46 (1989) 22] are
derived. The explicit formula for non-orientable embedding distributions of closed-end ladders and
cobblestone paths are also obtained.

Key words: Overlap matrix; embedding distribution; Chebyshev polynomials; closed-end ladders;
cobblestone path.
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1. INTRODUCTION

1.1. Background. One enumerative branch of topological graph theory is to count genus distribu-
tions of a graph. The history of genus distribution began with J. Gross in 1980s. Since then, it has
been attracted a lot of attentions. Calculating genus distributions is NP-hard. Up to now, there are
three principal approaches which characterize this variable:

(i). The topological approach was developed by Gross which consists in applying to genus distri-
bution a topological operation interpreted in terms of Ringle-White adding edge lemma and
face-trace algorithm [6, 10]. The articles based on this kind of approach can be found in the
literature [8, 7, 21, 9, 15, 16, 33] etc.

(ii). The combinatorial approach is more recent and developed by Liu [35]. Since a genus embedding
corresponding to a rotation system, the main idea of Liu is transfer the rotation system to a
linear order of letters. The articles based on this kind of approach can be found in the literature
[11, 39, 36, 37] etc.

(iii). The algebraic approach was developed by Jackson [13], Stahl [30] and Mohar [23]. The ar-
ticles based on this approach can be found in the literature [2, 3, 9, 12, 29, 30, 31, 32].
Permutation-group algebra is a key to calculating the distribution of graphs with high sym-
metry. Gross, Robbins and Tucker established the equation for the bouquets B, gn(Bn) =
(n—1)12""1e,_(2p41)(n), where the quantity e;(n) is the cardinality of the set of permutations
T € Yo, corresponding to an arbitrary fixed cycle ¢ of length 2] for which there is a full in-
volution @ such that 7 = ¢ o 8 and such that 7 has k cycles. The value of eg(n) is given by
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a formula of Jackson [12]. Similarly, Rieper [27] (J. H. Kwak and J. Lee [19] independently)
did it for genus distribution of dipoles. Stahl [30, 32] introduced the concept of permutation-
partition pair (P, II) and proved the walkup reduction process that expresses the genera of the
embeddings of a pair (P,II) in terms of those of smaller pairs. He used it to find the genus
distributions of H-linear family graphs. Given a general rotation system for a graph and M
be its overlap matrix. Mohar [23] shown that the rank of M equals twice the genus, if the
corresponding embedding surface is orientable, and it equals the crosscap number otherwise. In
[2], Chen, Gross and Rieper firstly used the overlap matrix to calculate the total embedding
distribution of necklaces of type (r,0), closed-end ladders and cobblestone paths. In [3], Chen,
Liu and Wang did it for graphs of maximum genus 1. Furthermore, in [4], Chen, Ou and Zou
obtained explicit formula for total embedding distributions of Ringel ladders.

1.2. Total embedding-distribution polynomial. It is assumed that the reader is somewhat fa-
miliar with the basics of topological graph theory as found in Gross and Tucker [10]. A graph
G = (V(G),E(@)) is permitted to have both loops and multiple edges. A surface is a compact
closed 2-dimensional manifold without boundary. In topology, surfaces are classified into O,,, the ori-
entable surface with m(m > 0) handles and N, the nonorientable surface with n(n > 0) crosscaps.
A graph embedding into a surface means a cellular embedding.

A spanning tree of a graph G is a tree on its edges has the same order as G. The number cotree edges
of a spanning tree of G is called the Betti number, 3(G), of G. A rotation at a vertex v of a graph G
is a cyclic order of all edges incident with v. A pure rotation system P of a graph G is the collection
of rotations at all vertices of G. A general rotation system is a pair (P, A), where P is a pure rotation
system and A is a mapping F(G) — {0, 1}. The edge e is said to be twisted (respectively, untwisted) if
A(e) = 1 (respectively, A(e) = 0). It is well known that every orientable embedding of a graph G can
be described by a general rotation system (P, A) with A(e) = 0 for all e € E(G). By allowing A to take
the non-zero value, we can describe nonorientable embeddings of G, see [2, 28] for more details. A
T -rotation system (P, A) of G is a general rotation system (P, A) such that A(e) =0, for all e € E(T).

Theorem 1.1. (see [2, 28]) Let T be a spanning tree of G and (P, \) be a general rotation system.
Then there exists a general rotation system (P/7 )\/) such that

(1) (P, \') yields the same embedding of G as (P,\), and

(2) X'(e) =0, for all e € E(T).

Two embeddings are considered to be the same if their T-rotation systems are combinatorially equiv-
alent. Fix a spanning tree T' of a graph G. Let ®% be the set of all T-rotation systems of G. It is

known that
@& =2 ] (do— 1.
veV(G)
Suppose that in these |®%| embeddings of G, there are a;, i = 0,1,..., embeddings into orientable
surface O; and b;, j = 1,2, ..., embeddings into nonorientable surface ;. We call the polynomial
(o) (o)
IE(z,y) = Z a;z’ + Z by
i=0 j=1

the T-distribution polynomial of G. By the total embedding-distribution polynomial of G, we shall
mean the polynomial

Io(z,y) = 1§ (2, y).
We call the first (respectively, second) part of Ig(z,y) the genus polynomial (respectively, crosscap
number polynomial) of G and denoted by gg(z) = Y opaix’ (vespectively, fa(y) = Yooy biy').

=1
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Clearly, I (z,y) = ga(x)+ fa(y). This means the number of orientable embeddings of G is [], . (dy —

1)!, while the number of non-orientable embeddings of G is (2°(¢) — 1) [Icq(do — 1)L

veG

1.3. Mohar’s theorem. Let T be a spanning tree of G and (P/7)\/) be a T-rotation system. Let
e1,e2,...,eg(c) be the cotree edges of T'. The overlap matriz of (P/ , )\/) is the 8 x 8 matrix M = [m;;]
over GF(2) such that m;; = 1 if and only if either ¢ # j and the restriction of the underlying pure
rotation system to 1"+ e; + e; is nonplanar, or 7+ = j and e; is twisted.

Theorem 1.2. (see [23]) Let (P,\) be a general rotation system for a graph, and let M be the
overlap matriz. Then the rank of M equals twice the genus, if the corresponding embedding surface is
orientable, and it equals the crosscap number otherwise. It is independent of the choice of a spanning
tree.

1.4. Homogeneous recurrence relation and Chebyshev polynomials. To begin with the dis-
cussion, we give some concepts of the n-th Chebyshev polynomials of the second kind which is related
to the solution of the recurrence relation. Let the recurrence function U, (z) be

Un(z) =22Up—1(z) — Up—a(2)

with the initial conditions Ug(z) = 1, Uy(z) = 2z, then we derived the n-th Chebyshev polynomials
of the second kind U, (x) (see [26]). For instance, Us(z) = 422 — 1, Us(z) = 8x3 — 4z, Uy(z) =
162* — 1222 + 1. Moreover, we have the identity that

/2
(1) Un(z) = (=1)*(22)"~2F.
> (")

Now, we will build the relation between the recurrence relation and the Chebyshev polynomials of the
second kind. Let P,(z) =Y _ Cn(m)z™, satisfies

Py (2) = a1(2) Pa—1(2) + a2(2) Pr—2(2),
where a;(z) = > 7_, a;x2" for i = 1,2 and the initial condition Py(z) = ¢o. Note that P;(z) and
P5(z) can be derived by the initial values of C,,(m).
Let Qn(2) = Du2)  then it is easy to verify that

(Vaz(z)i)"

a1(z)

Qn(2) = —/—=Qn-1(2) — Qn-2(2)

as(z)i
with the initial conditions Qo(z) = Py(z), Q1(z) = %L% and Q2(z) = %%. Thus by induction
a2(z)r

on n, we obtain that

a1(z) a1(z) a1 (z)
@) Qn(2) v (2 ag(z)i> U (2 ag(z)i> e (2 ag(z)i>

where A, B and C' are determined by the initial conditions.

Thus we have

) a1(z) a1(2) a1(2)

3 P,(2) = (\Was(2))" |AU, | —— BU, | —— CU, o | —=— .
3) (2) = (2)) (2 ag(z)i> * (2 ag(z)i> * (2\/a (z)z)}

Using the fact that
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we can derive that
. ay(z n—j ey
(iv/az(2))" U, (¢> = Z( , j>(a1(z))” 2,
2+/az2(2)i So\ Y
Since a1(z) is a polynomial of degree less than ¢ then (ai(2))" 2/ can be expressed as the type of

power series. Plugging the above formula into (3) and comparing the coefficient z™ in both sides, we
obtain an explicit formula for C,,(m) for 0 < m < n.

2. TOTAL EMBEDDING DISTRIBUTIONS OF CLOSED-END LADDERS

An n-rung closed-end ladder L, can be obtained by taking the graphical cartesian product of an
n-vertexr path with the complete graph K, and then doubling both its end edges. Figure 1 presents

a 4-rung closed-end ladder.

F1GURE 1. The 4-rung closed-end ladder L4

2.1. The overlap matrix of L,. We adopt the same notation used by Ringel [27, p.17]. A cubic
graph at each vertex has two cyclic orderings of its neighbors. One of these two cyclic orderings is
denoted as clockwise and the other counterclockwise. We color the vertex black, if that vertex has the
clockwise ordering of its neighbors, otherwise, we will color the counterclockwise vertices white. This
will bring convenient to embed a cubic graph into surfaces, as we can draw an imbedding on the plane
and only need to color the vertices black and white.

v v v, Up— Vp—
1 1 2 co 3 n 26n72 n—1
ba b3 bn—1
al an
as as an—1
Uy U2 us Up—2 Un—1

FiGURE 2. The graph L,

Definition 2.1. An edge is called matched if it has the same color at both ends, otherwise it is called
unmatched.

We fix a spanning tree T of L,,_; shown as the thicker lines in Figure 2, that is, the cotree edges are

ai,as,...,a,. Then the overlap matrix M, of L,_; can be written as
1 Y
Y1 T2 Y2 0
Mn = Mri(’y = Y2 T3 Y3 ,
0 Yn—2 Tn—-1 Yn—-1
Yn—1 Tn,

where X = (iUl,LUQ,...,iUn) € (GF(Q))” and Y = (ylayQa"'aynfl) € (GF(Q))”71
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Each variable y; corresponds to a unique vertex of the L, 1 and has value 1 if and only if the two
corresponding cotree edges overlap. Each variable x; corresponds to one unique cotree edge of L, _;
and has value 1 if and only if the edge is twisted.

Property 2.2. Two cotree edges a; and a;+1, i =1,2,--- ,n—1, overlap if and only if the edge b; is
unmatched.

Property 2.3. For a fived matriz of the form MY, there are exactly 2" 1 different T-rotation
systems corresponding to that matrix.

Proof. Note that there are four different assignments of colors to the edge b;, two of them are matched
and two of them are unmatched. Since the edges b1,bo,--- ,b,—1 are independent, the property
follows. 0

2.2. The rank-distribution polynomial. We define
dy = {MXY | X € (GF(2))" and Y € (GF(2))" '},
which is the set of all matrices over GF(2) that are of the type M Y. We define the rank-distribution
polynomial to be the polynomial P,(z) = Z?:o Cn(j)#*, where C,(5), 7 = 0,1,...,n, is the number
of different assignment of the variables x;,yi, where j € [n] and k € [n — 1], for which the matrix
MY in 7, has rank j. Similarly, let
On ={M}Y |Y € (GF(2))"'},

and O, (z) = Z?:o O, (j)%’ be the rank-distribution polynomial of O, where O, (j), j = 0,1,...,n,
is the number of different assignment of the variables yg, where k € {1,2,...,n — 1}, for which the
matrix MY in 7, has rank j.

Proposition 2.4. The polynomial O,(z) satisfies the recurrence relation
On(2) = Op_1(2) + 2220, _2(2)
with the initial conditions Og(z) = O1(z) =1 and Oq(2) = 22 + 1.

Proof. We consider the matrix M2 and let us give a recurrence relation for O, (z).

Case 1. For y, = 0. It is obvious to obtain rank(M%Y) = rank(M>"}), so it contributes a term
Onfl(Z).

Case 2. For y; = 1. If yy = 0, then rank(M2Y) = 2 + rank(M.",). Otherwise y» = 1, we add the
first row and first column to the third row and third column respectively, and the rank of M2 is

Y., that

equal to 2 plus the rank of the lower-right matrix with order n — 2, which has the form of M,?;
is, rank(M%Y) = 2 + rank(M,). In total, it contributes 2220, ().

Hence, the polynomials O, (z) satisfy the recurrence relation O,,(z) = Op—1(z) + 2220,,_2(z) for all
n > 3. By studying the rank distributions of M]Q’Y for j = 0,1, 2, we derive the initial conditions of

the above recurrence, namely, Og(z) = 1, O1(z) = 1 and Oz(2) = 2% + 1, as claimed. O
Theorem 2.5. Foralln > 1,
-\ —2—3\ . ..
On(z) = (\/ng)nQn(Z) _ Z <n . J>21 227 _ Z <n : J>21 52042
>0~ 7 A

Proof. Proposition 2.4 gives that the polynomial Q,(z) = % satisfies the recurrence relation

a1 (sz) - )
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By (1), we have
A -2\ . ..
On(Z) — (\/ilz)nQn(Z) _ Z <n . j>2] 22] _ Z <n . j>2] 22]+2’
>0 > 7 iz~ Y
which completes the proof. d
Recall that O,(2) = >."" _ On(m)z™, the next corollary gives an explicit formula for O, (m). Com-

m=0 "1
paring the coefficient of 2™ in the statement of Theorem 2.5, we obtain the following result.

Corollary 2.6. For all m < [%],
0,(2m+1) =0,

0, (2m) = 2m<” ;m> gm <” e 1).
Proposition 2.7. The polynomial P, (z) satisfies the recurrence relation
Po(2) = (1 +22)Py—1(2) + 422 P —2(2)
with the initial conditions Py(z) =1, Pi(z) = 1+ z and Py(z) = 422 + 3z + 1.

Proof. We consider the matrix M;5Y" and let us write a recurrence relation for P, (z).

Case 1. For z; = 0,3, = 0. It is obvious to obtain rank(MX"Y) = rank(M.), so it contributes
Pn,1 (Z)

Case 2. For 71 = 0,y; = 1. We interchange the first and the second row, then the rank of M"Y is
equal to 2 plus the rank of the lower-right matrix with order n — 2, which has the form of Mffg, that
is, rank(MXY) =2+ rank(MT)f;g). Since the rank distribution is independent of the choice of za, yo
and it has four different choices, so it contributes 422P,,_5(2).

Case 3. For 71 = 1,y; = 0. It is easy to check that rank(MXY) = rank(Mffl/)—ﬁ— 1, so it contributes
ZPn71 (Z)

Case 4. For x1 = 1,y; = 1. We firstly add the first row to the second row, with the same discussion,
we have that rank(MXY) = rank(M;}) + 1, so it contributes 2P, 1(2).

Hence, the polynomials P, (z) satisfy the recurrence relation P, (z) = (1+22)P,_1(z)+42?P,,_2(z) for
all n > 3. By studying the rank distributions of M]-X’Y for j = 0,1,2, we derive the initial conditions
of the above recurrence, namely, Py(z) = 1, Py(z) = 1 + z and Py(2) = 42% + 3z + 1, as claimed. O

Theorem 2.8. Foralln > 1,

o 1422\ i 1+2:) 1 1422
Pu(2) = (2i2) {U”< Liz >+2U”1< Liz >_2U”2< iz ﬂ

where U, (t) is the s-th Chebyshev poynomial of the second kind and i®> = —1.

Proof. Proposition 2.7 gives that the polynomial Q,(z) = (’;gz()i{ satisfies the recurrence relation
1+ 22

Qn(z) = 7@7171(2) - Qn72(z)
with the initial conditions Q1(z) = 5= and Qa(z) = —%. By Section 1.4 and induction on n,
we obtain that

14 2z ) 14 22 1 14 22z

=U, | ——= Uy | —— | —=U,—
Qn(2) ”< 4iz >+2 " 1< 4iz > 2 " 2< 4iz >

which completes the proof. d

Recall that P,(z) = >." _, C,(m)z™, the next corollary gives an explicit formula for C,, (m).

m=0 "1
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Corollary 2.9. Forallm>1 and 0 <m < n,

L =\ (-2 R 1=\ (n—1-2j
— om _2m71
Cnlrm) Z( j ><n—m> 2 < j >< n—m >

j=0 j=0
[(m—2)/2] . .
_ n—2—j\(n—2-2j
ey (TR
JZ:% J n—m

Proof. By (1) we obtain that

(2i2)"U,, <1 i 22) =3 <n N j> (22)% (1 + 22)" %

4iz >0 J

Thus, by Theorem 2.8 we have that

Pu(z) =) <n j_ j> (22)7 (1422 % =2 <n —1- j> (22)2(1 4 22)7 172

30 30 J
N B : .
+2:23 <” ) j> (22)% (1 + 22)" 2%,
>0 J
Comparing the coefficient of 2™ in both sides of the above equation, we obtain the desired result. U

For instance, C,(n) = 2" 1F, 1, where F, is the s-th Fibonacci number (F, is defined by the
recurrence relation Fy = Fs_1 + Fs_o with the initial conditions Fy = 0 and F; = 1).

2.3. The total embedding-distribution polynomial of L,,.

Theorem 2.10. (see [15]) The number of embeddings of closed-end ladders L,_1 into orientable
surface S of genus i is

2n72+i (n*z) 2n—31 when i S [%}

(L. _ — [ n—i
9i(Ln-1) { 0 otherwise

Proof. Let the genus polynomial of L,—1 be g1, ,(2) = 3. gi(Ln—1)z%, By Theorem 2.8 and Corol-
i>0
lary 2.6, we have

Gr,,(2) =2""Ta(2)

W =210 <nj_-j>2j By <n_?_j>21 L2042

Jj20 Jj=20

Note that g;(L,—1) is equal to the coefficients of z27. By (4), we have

e {2

By the Newton’s identity (" ™) = 2= (”;ﬁ*l), the formula of Theorem 2.10 is the same as that of

m m 1

[15]. O

By the above discussion, the following theorem follows.

An evaluation version of novaPDFE was used to create this PDF file.
Purchase a license to generate PDF files without this notice.


http://www.novapdf.com/

8 EMBEDDING DISTRIBUTIONS AND CHEBYSHEV POLYNOMIALS

Theorem 2.11. The total embedding-distribution polynomial of an (n — 1)-rung closed-end ladder
L, is given by

I, (z,y) =2""" Py(y) — L(Ln-1, ¥°) + Io(Ln—1, z)

=2" 1y <n j_ j> (22)%(1+2:)" 2 =2y <n —1- j> (22)2(1 4 22)7 1%

>0 20 J
2 n—2—j 2j n—2—2j 2
+ 2z Z i (22) (1 + 22) —To(Lp—1, v°) + To(Lp—1, ).
j=0

where Io(Ln—1,x) is the genus-distribution polynomial of the closed-end ladder L,_1, which has been
derived by Furst et al [15], that is,

[

w3

! n—7\2n—3j
To(Ln-1,2) = 2“”( ' j) e,
=0 J n—J
and
(3] . .
_oiifm— 2n—3 .
HO(Lnflayz) = 2" Y < j j> —'jyzj'
=0 J n—J

Furthermore, by Corollary 2.9, we can obtain the following result.

Corollary 2.12. Let Ny, _, (k) be the number of non-orientable embeddings on the surface with genus
j for the (n — 1)-rung closed-end ladder L,_1, then we have

Np,_,(1) = (2n—1)2"1
Np, ,(2) = 2" '2n?*—2n—1);
2 1)(2n +1
Np,..(3) = 2”1< n(n + ?2( nt )—24n+28>;
n—1 n—1
Np,..2p+1) = 2"°Ch(2p+1), for0<p<| J;
—p\2n—3
Ni,_,(2p) = 2"1Cn(2p)—2““’<” p>u, for 0<p <[z,
) p n—mp 2

where N, _, (1) is the number of embeddings on projective plane, N1, ,(2) is the number of embeddings
on klein bottle, etc.

The following shows the non-orientable embeddings distribution for small values of n and j.

Pr, (y) = 6y° + 6y,

Pr,(y) = 48y° + 44y* + 20y,

Pr,(y) = 304y* + 416y + 184> + 56y,

Pr,(y) = 2048y° + 3072y" + 2048y° + 624y” + 144y,
)

Pr.(y) = 1318435 + 23552y° + 17600y + 13760y° + 1888y + 352y.

3. TOTAL EMBEDDING DISTRIBUTIONS OF COBBLESTONE PATHS

A complete similar analysis to what have given for closed-end ladders, we fix a spanning tree T' of
Jn—1 shown as the thicker lines in Figure 3, and the total imbedding distribution of J,_1 equals the
imbedding distribution of T-rotation systems of J,,_1.
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Note that J,—1 has the same overlap matrix M, as closed-end ladders, and each vertex of J,_1 has
degree four, thus, there exists six possible rotation at each vertex. Of these six rotations, exactly
two lead to the incident cotree edges to overlap, which implies that there are two ways to set each
y; to 1 and four ways to set each y; to 0. Assume that there are exactly p, 0 < p < n — 1, elements
in Y equal to 1 then n — 1 — p elements equal to O for some fixed matrix of the form M,,, then
there are 27~ 17P4P = 27FP~! different T-rotation systems corresponding to the matrix. It is hard
task to derive the total imbedding-distribution of J,, by the same consideration as we deal with the
total imbedding distribution of L, in the former section, since different overlap matrix corresponds
to different T-rotation systems.

Suppose that every edge of the n-vertex path P, is doubled, and that a self-adjacency is then added
at each end. Such resulting graph is called a cobblestone path of order n, denoted by J,. Figure 3
presents a cobblestone path of order 5.

FIGURE 3. The cobblestone path J5

A complete similar analysis to what have given for closed-end ladders, we fix a spanning tree T  of J,_1
shown as the thicker lines in Figure 3, and the genus distribution of J,,_1 equals the genus distribution
of rotation systems of J,—1.

Note that J,_1 has the same overlap matrix M, as closed-end ladders, and each vertex of .J,_1 has
degree four, thus, there exists six possible rotations at each vertex. Of these six rotations, exactly two
lead to the incident cotree edges to overlap, which implies that there are two ways to set each y; to 1
and four ways to set each y; to 0. See Figure 4.

a b a b a b
a g a Z a b

Case 1_ Case 2 Case 3
a b

OO g/
a b a b a b
Case 4 Case 5 Case 6

FIGURE 4. The six rotations.

Assume that there are exactly p, 0 < p <n—1, elements in Y equal to 1 then n — 1 —p elements equal
to 0 for some fixed matrix of the form M,,, then there are 2"~ 17P4P = 27+P~! different T-rotation
systems corresponding to the matrix.

Theorem 3.1. (see [2]) The genus polynomial J,—1 equals

i1+i2+ - +ir=n Zr: EN
_9 L2
GJn,—l(y) = E 2n+7‘ Syh=t .
11,82, 50 >0

Let Gy, ,(y) = >0 9., (8)y", where g, _, (i) is the number of embeddings of J, ;1 into orientable
surface of genus i. We can get the explicit formula of g, ,(¢) as follows.
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Theorem 3.2. (see [15]) The number of embeddings of Jn—1 into orientable surface of genus i equals

i i —1—2 ) ) 11—
gi(Jnfl) =3t <n ; Z> +2- =1l yn—1—i, <n Z> .

) 1—1
where i > 0,n > 2.
iitiztotie=n Y ]
Proof. In Theorem 3.1, we let R,(y) = > 2ryr=1" " " it is obvious that G, _,(y) =
i1,02, 48>0

2" 2R, (y). When 4, = 1, we have

1ot dip g =n—1 TilL%J
Rn(y) = > 2" yr=t T = 2Ry (y).
i1,d2, 0 yir—1>0
More generally, if i, = p, 1 < p < n, we have
nEtet IR iy
Ry(y) = > 2r = T =2ylsl Ry (y).

1,82, ,ip>0

Thus, we have

Ru(y) =2 y'*) R, ;(y)
j=1
n—1 1
=2R, 1(y)+2> y =T Ry (y)
j=1

n—2 .
= 2R, 1(y) + 2R 2(y) + 2>yt F R a(y)
j=1

=2R,—1(y) + 3yRn—2(y).

By Theorem 3.1, we have R;i(y) = 2, Ra(y) =2y +4, Rs(y) = 10y + 8 etc.
Let H(y) = (\1/2:%(%%’ by a simple calculation, see Section 1.4, we have

=1 (chg) k)

Thus, by (1), we have that
Rn(y) = ((V3y 0)")" - Hu(y)
_ Z <n_.j>2n2j 3Ty —
FEDIN
Comparing the coefficient of ¥™ in both sides of the above equation, we have

gm(Jnfl) _ <n—m> .Qn—Qm .3m _ <n_m— 1> .2n72m . Smfl
m m—1

Z <n— 2 —j> LQn22) L gi it

>0 J

By the Pascal’s Identity (" ™) = ("7 ("m0, the result here is equal to that of [15]. O

m m—1
Theorem 3.3. The total imbedding-distribution polynomial of the cobblestone path J,_1 is given by
HJn,—l(may) = 2n725«n(y) _HO(JnflayQ) +H0(Jn*1a$)a
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where To(Jn—1,x) is the genus-distribution polynomial of the cobblestone path Jn—1, which is already
known by Furst et al [15], that is, fori > 0,n > 2,

[n;l]

i ; —1—y ) ) — 1= ]
HO(JnflaJ:) = Z {3]4111] <n ) j> +92. gi—lyn—1-j <n . ]> } 2
i=0 J j—1
j=
71,—1]

[ 2 . .
HO(Jnflayz): {3]417,1] <n j j> +2.3]714n717] <nj_1 j>}y2]’
=0

j=

and

. _ 2+ 3y 4y 2+ 3y
Sn(y) = (iV6: ”1{21+ Up-— < >+—Un — 2,
) = (V) W\ 56y ) T 602 2y
where Uy is the s-th Chebyshev polynomial of the second kind, and i2 = —1.

Proof. In [2], obtained the rank distribution of the overlap matrix M,, as
Jit+jet+...+jr=n r
Py)= > v [[R.W.
J1sJ2se3r>0 h=1
Furthermore, the total imbedding-distribution polynomial of J,_1 is also obtained as follows:

Jitjet...+jr=n r
Ly (z,y) = 272 Z 2nynT H Rj, (y) — To(Jn-—1, y?) + 1o (Jn-1, )
h=1

G15525rdir>0
£ 2728, (y) — Io(Jn-1, ¥*) + Io(Jp-1,2).
For the function Sy (y), we consider the value j, for fixed r. Note that if j, = 1, then
jitje+...+ir—1+1=n

r—1
Sn(y) = > 2"y" " [ Ry ) Ra(v)
J1:J25--5Jr—1>0 h=1

Jit+je+...+jr—1=n—1

r—1
2R (y) > 27y D T Ry, ()

J1:J25--dr—1>0 h=1
= 2(1+y)Su-1(y).
Generally, if j,. = p, where 1 < p < n, we have

Jitjz+...+jr—1t+p=n

Saly) = > 2hy"r 1:[ R;, (y)Rp(y)
h=1

J15J25005Jr—1>0

Jitjz+...+jr—1=n—p 1
= QypflRp(y) Z 2r71yn7p7(7‘71) H th (y)
J1,52500Jr=1>0 h=1

= 2yp71Rp(y)Snfp(y)'

Synthesize the above discussions, we obtain
n

(5) Suy) =2 v " R;(y)Sn—;(y)
j=1

with the initial conditions Sp(y) = 1, S1(y) = 2 + 2y and So(y) = 10y + 10y + 4, where
R, (y) = round(2”/3) + round (2P /3)y
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with
(2P +1), if pis odd
P . ) )
round(2” /3) { %(21’ —1), if pis even.

1 _ 222 +1)—1, if pis odd,
round(2"/3) { %(21’ —1)+1, if piseven.
Now let us find explicit formula for S, (y). By induction on p it is not hard to see that the polynomials
R, (y) satisfy the recurrence relation R,(y) = 2R,—1(y) + (1 —y)(—1)?"! with the initial condition
Ri(y) = 1+ y. Hence, from (5) we obtain that

Suly) =23 4" Ri(y)Sn—s(y)

n—1

=201+ 9)Sn 1) +2> YRy ()Sn1-,()

j=1

= 2014 9)S01(0) +2 3 YRR ) + (1= 0)(-1))Sa15(0)

=2(1+y)Sn1(y) +2(1 —y) Z(—y)anafj(y) +4y Z Y R (Y)Sn-1-5(y)
=2+4Y)Sn1(y) +20—y) Y _(=y)" " IS;(w),
§=0

which implies that
Sn(y) + ySn—1(y) = 2+ 4y)Sn-1(y) + y(2+ 4y) Sn—2(y) = 2y(1 — y)Sn—2(y).
Hence, we have that So(y) = 1, S1(y) = 2 + 2y, S2(y) = 10y? + 10y + 4, and for all n > 3,
Su(y) = (2 +3y)Sn-1(y) + 6y*Sn—2(y).

Define T,,(y) = % with 42 = —1, so T,,(y) satisfies the recurrence relation
24 3y
Tuly) = NG Tr1(y) — To—2(y)
. " _ _ 243 __ 245y45y° :
with the initial conditions Ty(y) = 1, Ti(y) = —Qz‘\/éz and Tp(y) = —===*-. By Section 1.4 and

induction on n, we obtain that
1 2+3y> 4y <2+3y>}
T = 2(1 +y)Uy,— + —=Up 2| ———— 1|,

which gives that

. _ 243y 4y 2+ 3y
6 S —2\/5”1{21—5— U< >+—U — .
(6) n(y) = (iV6y) ( y)n12i\/€y 50 \aive,
Plug the relation into Iy, ,(z,y), it completes the proof. d

Let S, (y) = > _o Dyn(m)y™, and the following corollary derives an explicit formula for D,,(m).
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Corollary 3.4. Forallm>1 and 0 <m < n,

5 B [m/2] n—1 _j n—1-— 2] on—m m—2j J
wm =2 0 5 ) laiom) e

Jj=0

Lim—1)/2] 1— i 1—9i
+ Z NTATIN (T AT A gnemtl gme2j-1 gj
= J n—m

K229 N (n—2 -2
. 2n7m+2 . 3m72j72 . 6] .
S A0TSR

j=0

Proof. By (1) we obtain that

(/)" Uy <M>

P(" T ) e

N n—1-2j7 .
_ {(n—l'—j> Z <n—1—2j> .2n12js.35.6]’.ys+2j}.
7=20 J s=0 s

Plug the formulae into (6), and comparing the coefficient of y™ in both sides, then it leads to the

I
—N
|
—_

result. 0
For instance, the crosscap number polynomial Py (y) for the cobblestone J,, with n = 1,2,3,4,5 is
given by

Py, (y) = 8y° + 10y,

Py, (y) = 84y> + 1043 + 64y,

Py, (y) = 720" + 1320y° + 848y° + 352y,

Py, (y) = 6480y° + 13536y* + 12672y> + 5696y> + 1792y,

(y) =

56448y° + 140832y + 152064y* + 97536y + 34304y + 8704y.

4. CONCLUDED REMARKS

In this paper, we find a new usage of Chebyshev polynomials in the study of genus distribution, using
the overlap matrix, we obtain homogeneous recurrence relation for rank distribution polynomial, which
can be solved in terms of Chebyshev polynomials of the second kind. We think that the method here
can also be used to find explicit formula of embedding distributions for some other graphs in [32, 37].
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