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ON CERTAIN BILATERAL GENERATING
FUNCTIONS (*)

by A.K. CHONGDAR (in Calcutta)(**)

SOMMARIO . - In questo lavoro si prova un teorema sulle funzioni bilate-
rali generanti per polinomi estesi di Jacobi, dal punto di vista dei gruppi
di Lie. Vengono inoltre discussi alcuni casi speciali e un’applicazione

del risultato.

SUMMARY. - In this note we prove a theorem on bilateral generating func-
tions of extended Jacobi polynomials from Lie group view point. Some
special cases and an application of our result are also discussed.

1. Introduction.

The extended Jacobi polynomial as defined in [3] is

Rsia = SL () @-0=0-97 oy
d

x D" [(m —a)*(b— a:)ﬁ"'"] , D=—-.

The aim at writing this article is to derive an unified presentation
of bilateral generating functions for some special functions in terms
of Fy(a—n; B; z) — the modified form of extended Jacobi polynomials
which does not seem to have appeared in the earlier works.

The main result of this article is stated in the following theorem.
In fact, it is mentioned that our result with the help of limiting pro-
cess yields the corresponding bilateral generating functions involving
Laguerre, Hermite, Bessel and Jacobi polynomials.

(*) Pervenuto in Redazione il 17 giugno 1992.

(**) Indirizzo dell’Autore: Department of Mathematics, Bangabasi Evening Col-
lege, 19, R.K. Chakraborty Sarani, Calcutta, 700009 (India).
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THEOREM. If

Glz,u) = 3 anFale -, fiz)u" (12)

n=0

then

( z—a\oP1  (z— ABE2
_apafi1_,ZT—a z b—a zt
(1- M) (1 Ab._at) G(1-)\t§:g’1—tx) (1.3)

, 00
CLE= Z Fo(a—n,B;z)on(2)t"
: n;—*'-fo
where

| /an(z) Zak( )

k=0

The importance of the above theorem lies in the fact that when-
ever one knows a generating relation of the form (1.2), the corre-
sponding bilateral generating relation can at once be written down
from (1.3). Thus one can get a large number of generating relations
by attributing dlfferent suitable values to a, in (1.2).

2. Proof of the Theorem.
From [2], we have
WRer on i o r—a |~ P!
e flz,y) = QA+ wy)*q1+ w)\-—-——a (2.1)

b—

S . T + Awbi=2y Y
X
| 14+ wE2y ° 14+wly

where

R= F%Z(m—a)(b—‘q:)y—a%—)\y2{%+[(b-$)a—(ﬁ+ 1)(37*0)1,,)_\?(1
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such that
R(Fu(a —n; B 2)y") = —(n+ 1) Foa(a —n — 1, B;z)y™ ! . (2.2)
. Consider

G(z,w) = EanF (a—n,B;z)w™ . (2.3)

Now replacing w by wyz and then operating (exp(wR)) on both
sides of (2.3) we get

eRG(z, wyz) = ¥R z an(w2)"Fp(a —n, B;z)y™ . (2.4)
n=0

The left member of (2.4) is

(1 + Awy)® (1 + duy§ “) s (2.5)

G T+ )\bwy"’"“ wyz
1+ dwyE=2 ’ 14+dwy)

The right member of (2.4) is

Z Z an(wZ)"—R"(Fn(a —n, B;z)y") (2.6)
n=0 k=0

an(’w,z)" ( 1)k(n+1)an+k(a n— kﬁ,x)y"'*‘k

i
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Equating the two members (2.5) and (2.6), we get
r —a\ 2 A1 |
(1 + wa)a (1 + Awym) (27)

«clZ + /\bwy%fg wyz
1+ dwyE=2 14wy

Z(—wy)"Fn(a n, ﬁ, :D) i %_ (n :.4— 1)"( )n-—k

n=0

replacing wy by “—t” and (—=z) by z, we get

T—a) —a-p-1 (p— AbtI=2 2t

= Z tnFn(a n, ﬁ) ﬂI)Un(Z)

n-—(]
where

an(z)—Zak( ) ,

k=0
this completes the proof of the theorem.
3. Application.

As an application we consider the following generating relation

[4]:

(1- M) (1 — M

—a—f-1 00
2 :) =Y Fu(a—nBz)t". (3.1)

n=0

If in our theorem, we take a, =1, then

z—a\~ A1
={1- w)*{1-
G(z,w) = (1 — \w) (1 ,\wb a)
So by the application of our theorem, we get the following general-
ization:

(1= M(1+2))® {1 _ -b—-’Y—a(a,- _a)(1+ z)}.m—ﬂ"1 (3.2)
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= 3 Fala—n, fiz)on(a)t”

n=0

on(z) = goak (Z) &

where

4. Some Special Cases.

SPECIAL CASE 1: Putting —a = b = 1, A = 1, we get the
following result on bilateral generating functions involving Jacobi

polynomials:
Resurt 1: If
oo
G(z,w) = Y an PP (z)uw™ (4.1)
n=0
then

—a—-f-1 . 1 1
a-or{i-geen} e (FHE) ) o

= f: pBa—n) (z)on(2)t"

n=0

on(?) =Y (:) *

k=0
which is found derived in [1].

where

SPECIAL CASE 2: Puttinga =0, 8 =band )\ =1 and then tak-
ing limit as b — oo we get the following result on bilateral generating
function involving Laguerre polynomial:

REesuLT 2: If

G(z,w) = i an L™ (z)uw™ (4.3)

n=0
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then
(1 + £)* exp(—2zt)G (m(l +1), ﬁ t) (4.4)
[0 o]
= > L& (z)oa(2)t"
k=0
where

on(2) =) ak (k) 2,
n=0
which is found derived in [2]. '
SpeCIAL CASE 3: Putting a = 8, b = —a = /& and recalling
A= 72; and then taking limit as a — co we get the following result

on bilateral generating function involving Hermite polynomial:

"REesurt 3: If

Gla,w) = 3 an ey (45)
n=0 :

then -
exp(2et —19)G(z 1, 2t) = 3 Ha(z)on (z)% (4.6)

n=0
where -
n
O'n(Z) = Za’k (k) zk )
n=0

which is found derived in [5].

SPECIAL CASE 4: Puttingb=—-a=1, A =1, a=v—e—-1,
B = € — 1 and replacing z by (1 + 2ze/s) and ¢ by sw/e and then
taking limit as € — oo in our theorem and finally using the relation

[3]:
ln+1Fn v —e—1,e- 1 1+-2-ff =Yn(z,v,s)
en s
(4.7)

Lte—-»oo
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we get the following result on bilateral generating function involving
Bessel polynomial: If

G(z,w) = i anYn(z, @ —n; s) (SZ,)" (4.8)
n=0 )
then |
exp(sw)(1 — zw)~*+@ ( N _mxw,wz) (4.9)
= i Yo(z,a —n; 8)(_1%9')10"(2)
n=0 )
where

on(2) = i ax (:) &

n=0

The above result is noteworthy.
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