Discrete Mathematics 54 (1985) 143-152 143
North-Holland

ON TOUCHARD POLYNOMIALS

Ourania CHRYSAPHINOU
Statistical Unit, University of Athens, Athens 621, Greece

Received 29 June 1983

J. Touchard in his work on the cycles of permutations generalized the Bell polynomials in
order to study some problems of enumeration of the permutations when the cycles possess
certain properties. .

In the present paper (considering Touchard’s generalization) we introduce and study a class
of related polynomials. An exponential generating function, recurrence relations and connec-
tions with other well-known polynomials are obtained. In special cases, relations with Stirling
number of the first and second kind, as well as with other numbers recently studied are derived.
Finally, a combinatorial interpretation is discussed.

1. The Touchard polynomials

Definition. The Touchard polynomials denoted by T, ;. =T, ,(xy,..-;¥1,---),
n=1,2,...,k=0,1,...,n are defined by

=L knn!!rl! S (%)k a (?zxﬂ')k(yf) o (%) (D

where the summation is extended over all k, r,=0, i=1,...,n such that
?=1 kl = k9 Z?=1 i(kl +ri)= n, and ’I‘O,()= 1'

It is evident from (1.1) that T, o= Y,.(y4, - .., ¥»), where Y,, are the well-known
Bell polynomials, T,,, = x7= B, ,, where B, , the partial Bell polynomials (Com-
tet [5, p. 133)).

Touchard [9], using a combinatorial interpretation of T, ,, obtained the follow-
ing exponential generating function (e.g.f.):

Tu(2)= T Tuwto= o {x(2}e® a2
nek  n! k!
where

- Zz - 2z
@)=L x5, y@D=X %5
i=1 I- i=1 I:

Using (1.2) we get the generating function

n

Tzu= Y L Ty us=e=ene (1.3)

k=0 n=k
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and the following recurrence relation:
- (n
Tovix = Z (l){xl+1Tn—)\,k—1+ yl+1Tn—-A,k} (1.4)
1=0

which is useful for tabulation purposes.

2. Connection with other polynomials

Theorem 2.1. The Touchard polynomials are related with the (exponential) Bell
polynomials and the partial Bell polynomials as follows:

Z Tn,k(xls e YI, .. -)= Yn(x1+)’1, LR ,xn+)’n)
k=0

&S (n
_ ];0 (j)Y,.(xl, e )Y G ye) (221

and

- [n

Tn,k(xp N TR )= Z (j)Bj,k(xl, cey xj—k+1)Yn-j(Y1, cens Yn—j)-
=k

]

2.2)
Proof. From the generating function (1.3) we have

T(z, u)= exp{';1 (ux, + i) -Z,;-,}

or

n

Z Z Tn,k‘z_,uk= Z Yn(ux1+)’1,---,uxn+yn)z—'
n=0 k=0 n: n:

n=0
from which, taking z =u =1 and using a well-known result (Riordan [8, p. 45)),
we get (2.1). (2.2) is derived by expanding the right-hand side of (1.2) and
equating the coefficients of z"/n!. [
Remark. For the particular values of y; =y,="---=0 we obtain from (2.2) that
TG+ 50,.. )= Bui(xs, - ) 23)

and for the case of y;=y, y. =0, k=2,3,... we get

n n .
TorGn. 39,0, )= Y, (].)y"-’ . 2.4)
j=k

Theorem 2.2. The Touchard polynomials are related with the Rook polynomials as
follows:

T,.:(1,2x,0,...; 1,0,...)=(:)R"_k,k(x), n=1,2,...,k=1,...,n.
(2.5)
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Proof. The e.gf. of T, is written
2k
T (2)= ) (1+xz)*e=. (2.6)
Since (Riordan [8, p. 174)) the e.g.f. of the Rook polynomials is
Y R (x) == (1+ xz)*e*
n=0 X n!

we have from (2.6) that

from which (2.5) can be derived. [

Remark. Since the Rook polynomials are related with the Laguerre polynomials
(Riordan [8, p.-171]) we can get the relation

n!
T..(1,2x,0,... )—— X "‘Lz" T(=x7h).

3. Some properties of the Touchard polynomials

Theorem 3.1. The Touchard polynomials satisfy the following relations:

- (n
an k z ( )xu—rTr,k-—l’ (3-1)
r=k—-1 \I o
X, X .n!
Tn,k( 22 33 . :; Y1, .. ') = (_:-ic-)_' Tn+k,k(03 x2a X3ye..3 }’1, .- ')a (3-2)
Tn,lk(xl: e YIa .. ' Z ( )xlTn—r k—r(o X2, x39 ey YI’ .. -)
r=0

. ,
X2 X3 .

(3.3)
xq+1 xq+2 .
T’“((q*l)’(m)““’”"")
q q
| kn‘
((q+)kq)' n+kq,k(09 LECI ] Os xq+13 LI ; }’1, .. ')3 (3-4)
Toac(X1+ X1, ... 5 Y1+ Y1,--2)
k n n
D (| ORI AN CANF LA (3.5)
r=0 s=r
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Proof. Considering the e.gf. of kT, , we have

3 k—1_,vy(z)

T M Z- gy e )
or

@ n oo z] ) Zn

Zan,k " in‘.T Z Toi— "

n=k i=1  I'n=k-1

from which (3.1) is derived.
(3.2) is obtained from the e.g.f.

x z" 1 (1 k
T.(2)= Z k(2 = -.;yl,--.);l—,=-,;—,{;(x(2)—xlz)} e’®

2°3°
or
1 ¢ z"
Tu2)=— Z Toi0, %2, X3, -5 V10 ) o

-]

n! 2
=k (n +k)' T""'k-k(o’ X2y X35 - 003 ¥Y15 - ')— .

The e.g.f. (1.2) can be written

© Nk
Tk(Z)——{x(Z)}"e”“)=l{x12+ 2 nf—} e’ ®
k! =2 j!

or

k k © z]' k—-r
T"(z)—kv o(r>"'lzr{.§' "f}T} e

k ©
VA
Z xlz' z n,k—r(o x2, ey Yl: .. -)——'
. =k— n:

r= n -r

P k z
Z Z ( )xlT —rk—r(O x2’-'-9y1"°~)—'

O

Using (3.2) and the last relation we obtam (3.3).
Considering again the e.g.f.

a+1 Xq+2 . f_n
Tk(z) ngk (( +1) (q+2)’--~ ’yl"--) n!
al \q

k q Nk
(22 k‘ {x(z)_.z x,z—} ev(z)
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or
(@Y < z"
T (z)= ey Tox(0,...,0, X341, -+ -5 V15 ) o
e St ) z"
=(q!}) ngk (n+ kq)! Thikar(©, .. .0, Xg01, .05 Y150 -2) 1
we get (3.4). ‘
Finally, we have from (1.2)
[--) zn
Ti(z)= Z Tn,k(x1+x’13 s Yt YL );I'T

n=k

1 [}
=4 {x(2) +x'(z)}eey@+y
where ]

L) Zj © z]
x'(z)= Z x,f,—' and y'(z)= Z y,!_—'.
i=1 I: =1 I:

Now, writing the above e.g.f. as follows:

k
TH) = ) (“)eeyw@prenve

k
=Y T TiA2)
where r=0

T,(Z)=rl!{x(2)}’e”"’ and T} _[(2)= {x'(z)} e’ ™

1
(k—r)
we obtain (3.5). O
Theorem 3.2. The Touchard polynomials are related with the Stirling numbers of the

first and second kind for special values of x;, y;, j=1,2,... as follows:
If ,=(-1)! and y;,=0, j=1,2,..., then

T = |s(n, k)|. (3.6)
Ifx,={(-Dand y,=(G—-1!, j=1,2,..., then

T =|s(n+1,k+1). (3.7)
If ;=(-1y7'G-D! and y; = (17—, j=1,2,..., then

T,x=s(n, k)+ns(n—1, k). (3.8
If ;,=1and y;=0,j=1,2,..., then

Tox = S(n, k). (3.9)

Ifx,=1,j=1,2,...and y,=1, y;,=0, j=2,3,..., then
T..(,...;1,0,..)=S(n+1,k+1). (3.10)
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If x,=1and y;=1, j=1,2,..., then

n

T.=3 (D560 T se-in. (3.11)
1=0

i=k ]

Proof. Since B, (0!,1!,2!,...)=|s(n, k)| (Comtet [5, p. 135]), (3.6) results im-
mediately from (2.3).
Ifx=@(-1'and y;=(G-1!, j=1,2,... the e.g.f. (1.3) is written

T(z, u)=(1—-z)"“*?

or

Z Tou*=u+1D)u+2)---(u+n)= Z |s(n+1, k+1)| u*
k=0 k=0

(Comtet [5, p. 214]) from which (3.7) is implied.
In the case of x; = (=1 ' - D, y; =(=1)"'G-1), j=1,2,... thee.g.f (1.2) is
written

Tk<z>=-k1—!{1og(1+z)}'°(1+z)

or

- -]

T (z)= Y, s(n, k)§+ zks(n, k)

n=k

zn+1

n!

from which (3.8) results.

Since B, (1,1,...)=S(n, k) (Comtet [5, p. 135]), (3.9) follows immediately
from (2.3).

From (2.4) we have that

il
™M=

Tox(L,-..51,0,...)

k (;,')Bi,k(l, )

(")S(j, k)=S(n+1,k+1)

i
or

T,.(1,...;1,0,...)

)

]

il
i

(Riordan (8, p. 43)).
Finally, for x;=1, y;=1, j=1,2,... the e.g.f. (1.2) is written

T(2)= e — e

or
=) Zn oo zn
T(2)= X S k)= ¥ Y.(L,..., D=
n=k n: n=0 n:
where Y,(1,.., 1) are the Bell numbers for which we know that Y,(1,...,1)=
k=0 S(n, k). Thus the last relation (3.11) is derived.
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Theorem 3.3. If x, = (—1)"'G—-1)! and y;=(-1)la(G-1)!, j=1,2,..., then
T, 0! -1 .. ;a,—1a,..)=s,(n k) (3.12)

where s,(n, k) are the non-central Stirling numbers of the first kind (Koutras [7]).
Ifx,=1,j=12,... and y,=—a, y;=0, j=2,3,..., then

T, ...5-6,0,..)=S,(n, k) (3.13)

where S,(n, k) are the non-central Stirling numbers of the second kind (Koutras
[7D.
If x,=(r); and y;=(=1)"'s(j—1), j=1,2,..., then

T, (. ..58-1s,..)=G(n, k;r1,5) (3.19)
where G(n, k;r,s) are the Gould—Hopper numbers [6].

Proof. (3.12), (3.13), (3.14) result by comparing the e.g.f. (1.2) with the e.g.f’s

Y. sa(n k) 2= flog(1+ ) (1 + 2,

n=k
- z" 1 k —ax
L Su(m k) y=irfet e

and
z G(n,k;r,s)z—=—1--{(1+z)'—1}"(1+z)s
n=k n! k!

respectively (Koutras [7], Charalambides and Koutras [4]). O

Theorem 3.4. If x;=1,j=1,2,... and y;=A, y,=0, j=2,3,..., then
T.(1,...51,0,..)=R(n, k,A) (3.15)

where R(n, k, A\)=S(n, k+1,1)+S(n, k) and S(n, k, \) are the weighted Stirling
numbers of the second kind.
If x,;3=(G—1)! and y;=A(G-1)}, j=1,2,..., then

T, 0L 1. . ;00N 1A, .. )=Ry(n, k, A) (3.16)
where R,(n, k,A\)=8,(n, k+1,A)+|s(n, k)| and S,(n, k+1,A) are the weighted

Stirling numbers of the first kind.
Proof. Comparing the e.g.f (1.2) with

Y R(nkA)= 7(1—' (e* —1)ke*

n=k
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(Carlitz [3]) we get (3.15). The (3.16) results from (1.3) and that

z ZRl(nk)t)—u =(1-2z)*™

n=0 k=0

(Carlitz [3])). O

Remark. The definition of T, , leads to new explicit forms for the numbers we
considered in Theorems 3.3 and 3.4 as well as recurrence relations for these
numbers. Finally, using Theorems 2.1 and 3.2 we can get some of the relations
which have been proved by Carlitz [3] and Koutras [7]. For example,

Y Rin,k,\)= Y, T (1,...510,0,..)=Y,(1+A,1,1,..))
k=0 k=0

by Theorem 2.1. For A =0 we get the Bell number (cf. [3, 3.17]). For A =1 we
have

R(n k,1)=T,(1,...;1,0,..)=S(n+1,k+1)

by Theorem 3.2 (cf. [3, 3.16]).
The e.g.f of Ry(n, k,A)=T,,(0!,1!,...;0! A, 11 A,...) is written

i R,(n, k, A) z—',l = % flog(1—2)" (1 -2)™

n=k

The summation of these numbers is
Y Ry k,A)=Y, (00 (1+A), 11 (1+A),..)=(1+A),
k=0

by Theorem 2.1 (cf. [3, 5.7]).
For A =1 we have

Ri(n, k,1)=|s(n+1,k+1)|
by Theorem 3.2 (cf. [3, 5.10]).

4. A combinatorial interpretation

We recall the combinatorial interpretation given by Touchard [9]: The number
of permutations of n elements, say u,, ..., u,, in which exactly k cycles possess a
property A and all the rest a property B is given by T, (x;,...; y;, .. .), where x,,
j=1,..., nis the number of the cyclic permutations of a cycle of length j which
possess the property A and y;, j=1,...,n is the number of the cyclic permuta-
tions of a cycle of length j which possess the property B, provided that any cycle of
length j gives the same numbers x;, y;. In the sequel we give a special case of the
above combinatorial interpretation. Let property A be as follows: the elements
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(i, ..., u;) of a cycle of length j, j=1,...,n appear such that i, <i,<---<j,
and property B: the elements (u,,.. .., u;) of a cycle of length j, j=1, 2, ... appear
in any way except that of proiaerty A. Then obviously we have x; =1, j=1,...,n
and y;=(j—1)!—=1,j=1,..., n and the number of permutations of n elements in
which exactly k cycles possess property A is given by

T,.(1,1,...;0,0,1,...,G—-D!-1,...). (4.1)

To obtain an explicit formula for (4.1) we use the e.g.f. (1.2) which is written

Tu(2) =1 " ~ 1 expflog(1—2) (" ~ 1)

_ 0 (ez__l)k+n
= — 1 N
(1=2) ,,go( -
o = ) 1
=Y z" ) (——1)“("+k) Y Stn+k)=.
n=0 n=0 k l=n+k l'
Therefore
T,.(1,1,...;0,0,1,...,G—-D!'-1,..))
n n—r—k , l+k
=3 Y (T stn-n 4 @2)
r=0 1=0

where S(n, k) are the Stirling numbers of the second kind.

In the case of k =n we have T, , =1, as it is expected, and in the case of k =0
that

Too=Y,(0,0,1,...,G-1!-1,...).

Using an analogous combinatorial interpretation for the Bell polynomials [9]
we can conclude that the Bell number Y, (1,..., 1) enumerates the permutations
of n elements with all their cycles having property A.

Finally, comparing (4.2) with the well-known result that the Stirling numbers of
the second kind S(n, k) enumerate the permutations of n elements with k cycles
when only those cycles with a specified order are permitted [8, p. 76], we could
say that the special case we considered above consists a generalization.
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