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SUMMARY
It is shown that Rota’s theory of Sheffer polynomials can be generalized to the

1
quotient field of the ring of formal power series in —. As a special case we give some
z

applications to the classical theories of factorial series and of Laguerre polynomials.

. INTRODUCTION

The purpose of this note is to show that Rota’s theory of polynomials
of binomial type and more generally of Sheffer polynomials (cf. [2], [4],
[11) can be generalized to include ‘“‘polynomials of negative degree”. This
generalization makes jt possible to include the theory of factorial series
into Rota’s theory and thus solve a problem posed in [4], p. 753.

In order to avoid repetitions of well-known facts we follow the notation
and terminology of [4] if not stated otherwise. The starting point of this
investigation was the observation that there are a lot of functions which
may be called Sheffer polynomials of negative degree. Simple examples
are the powers z" or (14 )" and the (lower) factorials

Ixz+1)
= Te—nr1)

which are defined for all » € Z. The problem of connection constants for
these examples leads to binomial and factorial series. Since convergence
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questions would obscure the simple formalism we want to develop, we

1
have chosen to work in the quotient field # of formal power series in z

2. OPERATORS ON F
1
Let F be the quotient field of the ring of formal power series in o
(over a field of characteristic zero). An element f € F has a unique repre-
sentation in the form

fla)= 3 axx*

keZ

where a; = 0 for all k>n. The largest integer n such that a, =0 is called
the degree deg f of f.

If fl@)= Y axx® and g(x)= > bt are elements of F, then multiplication
is defined by (fg)(z)= 3 cnx" With cy= Sg11-n arbi. Since all coefficients
with sufficiently high index vanish, this sum is always finite.

A finite or infinite sequence (f»)i° of elements f, € F is called summable
if deg fn < M < oo for all » and only finitely many elements of the sequence
have the same degree.

For each summable sequence (fn), fa= > dnix*, we define the sum

Z fa by

(X fadlz)= g (2 ank)*.
Let us denote by P the ring of all polynomials in z. Then P is a subring
of F.

By multiplying both sides with (x +a)” for n>0, it is clear that formulas
such as

1 A ) 1
— 14
(x+ a)ﬂ - kgo < k ) a xﬂ'{"k

hold in F.

DEFINITION: A linear mapping S8: F — F is called operator if for each
summable sequence (f») the sequence (Sf,) is also summable and S(3 fn) =
= > (8fu). The set of all operators on F is denoted by L(F).

EXAMPLES:

I. Let ge F. Then f — gf defines an operator on F, the multiplication
operator g.

(From the context it is always clear whether we mean the element
g€ F or the operator g).

2. Define D by
D(z akx") = Z akkxk—l.
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Then clearly D € L{F). We call it the differentiation operator. In order
to have a suggestive terminology we call an element p, € F of the form

pulz)= > ax Dkt nelZ, ap+#0,
k=0
a polynomial of degree n. For n>0 this gives of course an ordinary

polynomial.

o0

3. Let now E E_D be a formal power series in D. This defines an

operator a(D) & L(F) by setting a(D)f= z 2 i (D¥f). The element a(D)f

is well defined since (D*f) is a summa,ble famlly. It is also clear that
deg a(D)f <deg f. Therefore a{D) e L(F).

REMARK: In P we have
o0 “k
Eep@) =ptea)= (5, 507 pie)
Since for n>0 we also have

1 1 —7 1 ak 1
e~ — B i = —— kY —
v (x+a) kgo (*k ) © g (kgo ! D ) an’

we may define

fz+a) = (B*f)(x) = (e*Pf)(x)

for each fe F and get thus an extension of the translation operator Ee
from P to F.

4. We call a set (pn)nez of polynomials p, € F admissible if each p,
has degree » and po = 1. Tt is clear that each f € ¥ has a unique repre-
sentation of the form

= kz axpi()

Given an admissible set p=(ps), we define an operator

T=T(p)e L(F) T(Y arpr)= 2 axPi+1.

We call 7 the admissible operator corresponding to ». We may then
write pu(x)=T71, ne Z.

5. For any admissible set p with corresponding operator 7' denote by
F(p) the quotient field of formal power series in 7-1. Defining &, : F — F(p)
by

ep O axpr)= 3 arT*
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we can interpret F as a vector space over the field F(p) by setting
Aeyt(w)=e5" (Au) for 4, ue F(p).

It is then obvious that each element (7)€ F(p) defines an operator
{(T') € L(F) by

Ty & (@(T)) =2 " (H{T)g(T)
for each g(T) € F(p).

6. Given any admissible set p with corresponding operator 7' there
exists a uniquely determined operator R such that R1=0and RT-TR=1
where I denotes the identity operator.

PROOF: Suppose that B exists satisfying R7 —~TR=1. Then we have
for all neZ

RT#=TnR 4 nTr1,

This follows by induction for n>0.

By multiplying both sides of RT —T'R with T-1 we get T-1R — RT-1 =12
or RT-1=T-1R--T-2 Again by induction we get the desired equation for
all ne Z.

Now we use R1=0. This gives us

Rpn=RT?1=(T*RE+aTr 1 =nTr11=npy1.

Therefore B must satisfy B > arpr= > arkpz-1. But it is clear that this
R satisfies indeed R1=0 and RT -TR=1.

In the special case p=(2”) we have T ==z and R=D. Therefore we call
R=R(p) the p-differentiation operator.

7. Let p be an admissible set and R p-differentiation. Then for each

formal power series z —R" we get an operator a(R) on F by
aB) = 3 7 (RH).

3. THE PINCHERLE DERIVATIVE
0
The Pincherle derivative is the mapping 5D L{F)y — L(F) defined by

3OS
5D =Sz —=zS8.

It is in a certain sense dual to differentiation with respect to 2, defined by

o8 =DS—-8D.
dx
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oD
The equation Dz — 2D =1 means 3D =1 a,ndb—-z =]. Furthermore we have

25D b bbe and D bb _b%:
Now we want to generalize this situation:
Let p be an admissible set of polynomials and 7 the corresponding
operator. Let R be p-differentiation.

We can now define two linear operators on L(F'), the Pincherle deri-

N o) d 0
vatives 3B an ST

D.

DEFINITION: Let 7 be an admissible operator and R the uniquely
defined operator satisfying R1=0 and RT -TR=1I. Then we define

)
(S% =87 -T8 and

in this definition).

o8
3T =R8 — SR for each S € F(S). (Note the asymmetry

OR T o 0
It is obvious that 3E =1 and 3T =71 and that Tﬁ = b_RT and
) b}
R i b‘TR holds.

Furthermore we have shown in 2. Example 6. that

o7
el -1
i =nTr1 for ne Z.

ORr
In the same way we can show that 3F =nR?1 for n=1, 2, 3, .... (Note

that R is not invertible).

LEMMA: For the Pincherle derivative the Leibniz formula

(%1) (HT)g(T)) = g ( ) (g%)k (1) (%)Hg(ﬂ’)

holds for n=1,2,3, ....

PROOF: It suffices to show this formula for n= 1. Then it follows easily
by induction. But for n=1 it is trivial:

(D) = RI(T)g(T) —{(T)g(T)R =
= (B(T) - (T)R)g(T) + {T)(Bg(T) - 9(T)R) =
0
— o HT) - g(T)+T) gD,
We can now prove a very useful formula.
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THEOREM 1: Let p be an admissible set of polynomials, 7 the corre-
sponding admissible operator and R p-differentiation. Then for each
formal power series a{R) and each fe F(p) we have

aBID = 3 5 (57) 10 (55)

PROOF: First observe that

d
5 (%) = 5 1= (BRI = BT = B )

Now let a(R)= Z%Rk and g(T) € F(p). Then we have

AT~ 3 T B (T -

_ 3 l!(b%,)k HT) (53—{)’6 a(R) g(T)1

Since this holds for each g(7") € F(p) and thus for each g € , the theorem
is proved.

corOoLLARY: Under the same assumptions we have

a(R)Tn — EO (’Z) Tt (%)k a(R)~ <T+ b—%)“ a(R) for neZ.

4., SEQUENCES OF BINOMIAL TYPE AND SHEFFER SETS

1
Consider now the operator T:F — F defined by (Tf)(x)=x o f(x)

© g o
where @ = ¥ 75 D*¥ with a1 # 0 is a delta operator and @' = 5% its Pincherle
k=1""

derivative with respect to D.
It is obvious that g,(x)=7T7"1, nc Z, is a polynomial of degree »n. So
g=(¢n) is an admissible set and T the corresponding operator.
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Since ¢@1=0 and Q(xé) ( Q)Q (Qr—20) -Q— =1 we see that @ is

the corresponding g¢-differentiation operator.
Therefore Qgn=n ¢n-1 for each ne Z.

1
Since for n>0 we have qn(x)-_—(x @)qn_l(x) and thus ¢,(0)=0 we see

that for n>0 the set (ga(x)) is precisely the set of basic polynomials for
the delts operator @ ([4], p. 688).

So we have got an extension of this set of polynomials to negative
indices.

EXAMPLE: Let @Q=A=eP—-1. Then @ =eP=E and we get qu(a)=
=(xE-1)r1 = (2), for all ne Z. Suppose n>0. Then we have
1

(@ha=al@—1) ... @=—n+1) and (@)-n= Cgo—ar—r -

It should be noted that the polynomial ¢_i{x) contains the whole infor-
mation about the delta operator .

For let Q= 3D+ %Du.... Then

1 a a a3

9@} = (Q 1>1“(‘III+ 2D+ );Z'm- ~ =4+ =—4...

Thus given ¢-1(x) we can find the coefficients ax and therefore the delta
operator @.

proposITION: The sequence (¢n)aez has the binomial property

o0

(B g =gale+a) = 3 () as(@) gn-s(2

for all n e Z.

PROOF: As is shown in [4] we have
abD . S a’_ Q’k(a
=3 E 2
This identity holds on P. But it is easy to see that it holds on F too since
ak qx(a)
sho- 3 2o

is an identity in D (or @) where each power D¥ of D occurs on the right
side only finitely often.
Therefore we have

B = (3 57 = 3 () @) s

for all n e Z.
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Another way to show this is by using Theorem 1. Apply this to esDT'=,
We get

“(e) ~&)(a) (o)

Qk(a)

Now from el = z Q% we see that <bQ) eD] = gi(a) and therefore

gae+a) =ewD qm)—ew( Q) -3 ()qm) (x%)""’“l__.
-3 ( )M,) Gn-s(2).

EXAMPLE: For Q=4 and n=—1 we get

1 oo
2 —1)*¥(a)k (x)—k-1-

Ea(x) =
S =

For a= —1 this reduces to

| k!
z ,Zo T+ 1)(x+2) ... (x+k+1)"

In order to get more insight into polynomials of binomial type of negative
degree let us first define a composition for admissible sets of polynomials
which generalizes umbral composition to arbitrary indices.

Let p={ps) and g=(g,) be two admissible sets. Then we define r=p o g
by (p o @)n (@)=2n (q( ) in the umbral notation of [2]. This means the
following: Let pu(x)= > auxx*. Then

(p o @alz)= Z Ank Qr{T).

It is clear that the admissible sets form a group under this operation,
the unit element being the set e=(2")zez.

Let T'(p) be the operator corresponding to the admissible set p. Then
T(e)f(x) =xf{x), the multiplication operator by =x.

We now define 7'(p) o T(q):=T(p o q). This defines an operation ¢ on
all admissible operators. Theorem 7 in [4] proves that for the sets of
binomial type p corresponding to the delta operator P and g corresponding

1 1
to the delta operator @ with T(p):mp and T(Q):x(—f we have

1 1
T@) e Tq)=T(poq)= xQ S R XY A
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As a special case we get for the inverse set p=¢! with

pog=qop=e
that T(p)=T(g )= x(G(D))' if @=g(D) and @ is the inverse defined by
Glg(D))=9(@(D))=D

EXAMPLE: The inverse set to ((x)s) corresponds to the delta operator
G(D)= log (1+.D). Therefore it is given by

pa(x) = (x(1 + D)1 for n e Z.

For n>0 we get the exponential polynomials.
A direct computation gives us

1 1 1 1 1t 2!
= = (1— 2 __ i i
P(x) 5D » (1-D+D te)o =gt gt and
1 1 1 1
p—z(x): ﬂ_ﬁ ; kgo (k+1 (1‘*‘%_{“ .+ k+1)xk+2

Now we can prove a remarkable fact.

THEOREM 2: Let ¢=(gs) be the set of binomial type corresponding
to the delta operator @=g(D) and let p=(p,) denote the inverse set
corresponding to the delta operator P=@Q(D). Then we have

(~1F ) 35 = 3 (1) 0¥ poa).

M3

k=0

PROOF: We start with the formula
%W - 5% D
= 257 W= 25D
which implies
qx(a) ak
eaG(D) = z '—k—!'— Dk_—“ z Z)_!G(D)k.

Now we have

JeaG(D)
3D

= €3G D)z — geaC D) = ' (D)estiD),
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1
Applying this to — € F we get,

£aG(D)] — geaG(D) 1_ a eaG(D) (G'(D) 1)
z x

1
= 1-—qest(D) p =gq e"¢D) p_; (x)

oo

= 2esG(D) % = 2 G(D p-1 (2)

-~ 3 (-ratp (o)

On the othe: hand we have

o

1
ceoo —e 3 BHD = 3 (-0 a5,

which proves our theorem.

COROLLARY: Let p and ¢ be as in the theorem and set

n

= z wk for n>0.

Then

1
(— 1)k Catkmn g -

M3

P (Z)=
P

I

0

anr
PROOF: The coefficient of —=—z in the first sum of the theorem is

{—1)ywtke, . p » and in the second sum = (—1)* times the coefficient of

1
Zatk 10 P-n(T).

REMARK: This may be considered as a generalization of [4], Theorem 5,
Cor. 2.

EXAMPLE: Let gu{)=(x), and let p be the inverse set. Then

s(n, k)xz* for n>0,

M=

(@)n=

k=0

I

Therefore we get

(=¥ s(n+k, n)— z ls(n+k, n)| nl+k
=

M3

P (2)=

n+lc

k=0

where s(n, k) are the Stirling numbers of the first kind.

36



1
Now let the delta operator @ be given. Then T=x@ is one operator
satisfying QT —T@=1. If a(Q) is any formal power series in @,

a(Q)=aol + fl‘-l,m ?23,@2+...,

then clearly also 7 —a(Q)) satisfies @7 —a(Q)) — (T —a(@))@=I. (On P
this would be the most general operator with this property. But un-
fortunately this is not so on F).

Define now

s(@) = exp (‘—L"—@ + %ﬁf a;?a + )

Then bgg) =a{@)s(@) and therefore we have
T—a(Q) -2 g —a(@ =73 — TP with #/(Q)= 2D

Q T Ts@ oQ

This may also be written in the form
2 g —al@)= s-1<Q)( Q,) (@)
since
1
(xQ—,) (@)= 5(Q) 2 7 ~(@).

From this representation it is obvious that each such operator is ad-
missible.
For n>0 we get

(T -a@r1=5@ ()" s@1 =) (2 7) 1

since s{@)1=1. This means that s,{x)=(T—a(@))?1 is the Sheffer set
relative to ¢ and the invertible operator s(¢) with

oo

sHQ)= > % @% and sp=1.

We have thus obtained an extension of each Sheffer set. It is clear that
@sn=n8, 1 holds for all ne Z and also that

sulz+a)= OEO: (Z) k(@) gn—ik(x)

k=0

holds for all ne Z.
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EXAMPLE: For the Hermite polynomial with variance v we get the
operator

x— D =ev(DE2) g gv(DE2),
This means that
wx) = (x—vD)nl for all neZ.

5. SOME GENERALIZATIONS AND EXAMPLES

Given any admissible sequence of polynomials (g.) we can construct
the pair of operators 7' and R. Let us call (g5) a basic set if ¢,(0)=0 for
n=1, 2, 3, .... Consider now an operator of the form 7 —a{R) for some
formal power series in R. As before there exists an invertible formal
power series s(R) such that

T —a(Ry=s5R)Ts(R).
We then call the corresponding set of polynomials
sp(x) = 8"UR)qn(2) = (T —a(R))*1

the Sheffer set relative to 7 and the invertible operator s(R).

We can then carry over some of the results on basic sets of binomial
type to this more general situation. Let e.g. ¢=(gxn) be basic and T, R
the corresponding operators. Then for each formal power series g the
operator

T 5—7,—(%}, where g'(R)= 99(R)
is admissible and corresponds to the derivation g(R). But in this case
the inverse set to ¢ need not be Sheffer for any function G(R} of E.

It depends of course on the special problem, what operators have to
be studied. Suppose e.g. that we want to study Laguerre polynomials.
We may start from the formula

R L PP AU (ILLOF

k=0

if «¢Z.

It is natural to consider in this case the admissible set (#*(x)-i)rez. In
order to include also the case a=1lc Z we are led to redefine (x); by
replacing each factor &« —1=0 by the factor 1. This gives no change in
the Laguerre polynomials themselves since they depend only on the

. X ) . . . .
quotient % which remains unchanged. For convenience we restrict
—n
ourselves to o> —1. Let 7% and R, be the operators corresponding to

the sequence (w¥{o)_g).
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It is easy to verify that for x=0 the operator Ty is given by

1 1
Toxk= Pl 2k if k% —1and T"E =1, and Rox¥=k2x*3=(DxD)x*. Let

&
us denote by 7' the operator on P defined by (Tp}(z)= f p(t)dt. Then
o0

on P we have To=T and Ry=DzD.
Similary we can convince ourselves that for «> —1 we have on P the

equations
Ta=z*Tz* and Ru=D{(x+oT)D.

Our formula for L$’ (z) gives us at once the representation
(%)-n ¥ (2) =(1 - Ta)"1.

From this formula some immediate consequences can be drawn:

1. (—1)» L&(@)(x)—n—=e-B= T21.
This follows from the equation e B+ T,efs—T,—1 and shows that
(= 1) L (@) (x)-n is a Sheffer set relative to T and the invertible ope-

rator eFs.

2. The duplication formula:

L¥ (ax){a)-pn=(1—aT =[1-a+a(l-T)]Pl=

- 3 () 0-arran-rpi= 5 (D) ot 1 @)

k=0

3. L is self-inverse:
(1—(1=Ta))»=Ts gives

=T~ 5 (1) 0-Tp = 5 e () 10 @i
ie. L& (L@(z))=an.

These easy proofs show that this is perhaps a more natural view on
the Laguerre polynomials than that proposed by Rota ([4]). This feeling
is supported by the fact that the classical inner product for Laguerre
polynomials

1 o0
(f=), glx)) = TarD g z* e* f(x)g(x)dx
has a simple expression in terms of R. and 7.
REMARK: It is of course possible to translate our formulation into

Rota’s and vice versa by working directly with the corresponding ope-
rators.
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1. For example we know that (—1)» L¥(x)=n! (T —1)#1. From Rota’s
theory we get (— 1)» LY(x) = (1 — D)[#(1 — D)?]71. That these formulas are
equivalent can be seen as follows:

(1 — D)[z(1 — D)2]»1 = [(1 — Dy&(1 — D)]n1 = [(T D — Dyx(DT — D)]*1

since DT =1, and TD =1 on all polynomials with vanishing constant term.
The last term equals

(T -1)DeD(T-D)]"1=[(T-1DRT - 1)]*1=n! (T —1)71
since R(T —1)*1=n(T—1)»"11.

2. Let us show that L{(x)=x*D—1)r2*+ for n=—0, 1, 2, .... Since we
suppose a> —1 we have x~*Dx*=D,=T;"' on P. This implies

2 (D-1yrgtxn=(D,— 1)yrgn= (1T )" D =
1

(@)

=(1+a}24+a)... (n+ax)(1-T,)"1 (1=T,)"1 =L (x).

6. THE UMBRAL CALCULUS

Let p and ¢ be admissible sets of polynomials. Then there exists a
uniquely determined linear operator UjZ: F' — F which maps ¢,(x) into
{p o ¢)alx) for all n € Z. To this operator U7 there corresponds a uniquely
determined ring isomorphism ¢f: F(p) — F(p o ¢) such that the diagram

U»
F— % L F

&g Epog

F(g) > F(pog)

(
commutes. This ring isomorphism is given by

g2 @ T(@)) = Z ax (T(p o ).
It satisfies ¢f ¢% =¢7°? because of

evor P20 £oa™) = (p o Q)alx)= U Ul(@")=epg #heq  eqpiec” (27).

This formulation of the umbral calculus seems to be slightly more sug-
gestive than the original formulation of Rota to which it is logically
equivalent.

The only new fact is the observation that the umbral calculus also
holds for negative indices.
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1
EXAMPLE 1: Consider the problem of expanding por into a factorial

1
series, o= > ax(x)-k

Let ¢=((x)») and p its inverse set. Then this equation is equivalent
with

pal@)= 3 5%

But we know already that

oo

pn(x)= 3 [s(n+k, n)lx,ﬁk

k=0

Therefore we have
1 o0
i Z ls(n+k, n)|[(2)-n—k-

EXAMPLE 2: Let fe F have the factorial expansion

i ag k!
ftz) = ,Zl @t .. (@rkrl)

Determine the expansion of f'=Df.
Now
S (D
D=log(1+d4)y= 3 ——5— 4*

1

Therefore we have

N 00 (_1)}:—1[]% Nad ag‘“ .
f@) = kgl A S @+ 1) (@ l+1)

- E (“"+“—"‘—1+ o+ )(x)n—l

All other purely formal results on factorial series (cf. [3] and the papers
cited there) can also be easily obtained in the same way.

PROBLEM: Formal manipulation with polynomials of negative degree
would be much simplified if we could give a precise meaning to some
infinite sums and integrals in F. E.g. starting from the formula

0

1
— = z8
z [ e ds

—oQ
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we would get
1
HD) = = [ faje ds
and finally

g-1(z) =g (D = § g'(s) e¥ds= [ e=Clds

and more generally
qn(2) = (=1 f sl e260)ds.
(n—1)!
We could extend then the evaluation at 0 funetional L on P to all elements

[~ (D)3t ¥ by L)~ §_foa

whenever this integral exists. By doing this we could generalize some
formulas conta,ining L. E.g. formula 2.4 of [1] would give us

(Ucf)(y) = L(evSD)f).

Is it possible to make these things precise?
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