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Abstract. In [8] Dumont and Randrianarivony have given several comrioinal interpretations
for the coefficients of the Euler-Seidel matrix associated!t In this paper we consider @
analogue of their results, which leads to the discovery afva mahonian statistic “maf”’ on the
symmetric group. We then give new proofs and generalizatafrsome results of Gessel and
Reutenauer [12] and Wachs [17].
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1. Introduction

Euler (see [8]) considered thifference tablédX)o<k<n, where the generic coefficients
dk are defined by

d'=n and d¥=di1-dk, (1<k<n-1). (1.1)

Letak = dr‘j+k (n,k > 0). Then the above relations can be written as

af=k and a=al'+akl  (nk>0).
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The matrix(a)n k>0 is also called thé&Seidel matrixassociated to the sequera%in
the literature (see [7,9]). The first terms of these matrazesas follows:

nk|] 0 1 2 3 4 5 Kkn| 0 1 2 3 4 5
0 | 1 0] 1T 0 1 2 9 44
10 1 1]/1 1 3 11 53
211 1 2 2| 2 4 14 64

3|2 3 4 6 - 3|6 18 78

4 |9 11 14 18 24 4 | 24 96

5 |44 53 64 78 96 120 5 | 120

(df) (a)

Iterating the difference equation (1.1) we derive

1 1 1
aﬂdﬁn!<1ﬁ+§m+(l)”ﬁ>, 1.2)
which is theclassical derangement numbey, dhat is, the number of derangements on
{1,2,---,n} (cf. [16, p. 67]).

In several recent papers [4,6,12,17], thenaj counting of the derangements on
{1,2,---,n} has been studied. Consider tpelerangement numberg(d)) defined by

(@)= 5 g™, (1.3)

0€Dn

whereD, is the set of all derangements 61 2, - - - ,n}. Then the followingy-analogue
of equation (1.2) has been obtained:

"o
dn<q>:[n1q!_;<71>'ﬁ]7 (n>1). (1.4)

Here,[njq=1+q-+---+q"1is theg-analogue of the nonnegative integeand[njq! =
[1]q[2lq- - - [nlq is theg-analogue of!.

In this paper, we shall put thgederangement numbers in the context of a Seidel
matrix as Dumont and Randrianarivony [8] did for the ordinderangement numbers.
To this end, in section 2 we introduce the notiongeBeidel matrix. In section 3 we
define a new statistic “maf’ on permutations and then proyectively that this is a
mahonian statistic. In section 4 we consider ¢p8eidel matrix associated to tle
derangement numbers and give combinatorial interpretafior all of the coefficients
in this matrix in terms of the new statistic "maf”. As a conseqce we get a new proof
of a formula of Gessel and Reutenauer [12] and of Wachs [lifijally we close this
paper with some remarks and open questions.

We will need the following notations and resultsgtalculus (see [11]). The-
binomial coefficients are defined by

N\ _ I
<k)q " [Kg![n—Kg! (n>k>0).
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Define also(t;q)n = (1 —t)(1—qt)--- (1 —g"t) and (t;q)e = liMn_w(t;q)n. Then
the twog-analogues of the exponential seréés- 5 ,-ot"/n! are defined by

t" 1

AP N (R (49
Ben
B =y T - (-ata (16)

Notice thateg(t) - Eq(—t) = 1.

2. g-Seidel matrices

Let us introduce the following generalization of Seidel rxat

Definition 1. Given a sequenc@n(x,q)) (n > 0) of elements in a commutative ring,
we call the g-Seidel matrix asssociated (& (x,q)) the double sequenc@X(x,q))
(n> 0,k > 0) given by the recurrence

{aﬁ(x, a) = an(%,0), n>0)

—~

ak(x.0) = xqak1(x,0) + & 1(x.q). (k>1n>0) 2.7)

Moreover(ad(x,q)) is called the initial sequence ar(@J(x,q)) the final sequence of
the g-Seidel matrix.

Lemma 1. We have

dxa) = 3 o) () ) 8)

().~ (000,

We proceed by recurrence &n Clearly (2.8) is valid folk = 1. Suppose (2.8) is true
for k— 1. We then have

Proof: Recall that

k-1

5 (51 (e )+ R )

ak(x,q)

k=1 B
= Oeellna)+ 3 o) (k . 1) Hatra)

k2 e
# 5 o (T @ ea +aca
i= q

k—1

= oafaea+ 5 0 () aRioca) vyt
= q

Thus completes the proof. []
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In particular we pass from the initial sequence to the finqusace and conversely
by theGauss inversion formulg, p. 96]:

axaq) = iX”‘ (?)qe\-O(x,q), (2.9)
dixa = 3 -xma)(7) dixa (2.10)

Define the generating functions as follows:

a(t) = Zoag(xa q)tna E;(t) = a8(x, q)tna

and

_ 0 L N, _ n
Alt) = n;]an(x,q) g AD= 2 aslxa)

[n]g!”

Proposition 2. The generating functions of the initial and final sequencesealated
by the following equations:

_ tn
t) = O(x, : 2.11
alt) n;an(x e (2.11)
Att) = eg(xt)A(). (2.12)
Proof: Note that
1< <n+k> k
Gt & k /4
Hence
0 t (n+k) 0 ken+k
,9) = X, )Xt
2 an( )(Xt,q)n+1 n;>0 K qan<
= 55 (1) wreixa
m>0 n= q
= Y agx o™
m>0
By (1.5) we have
adx, g’ xith
x)A(t) = - C e
SOOAL = 5 S

which completes the proof of (2.12) in view of (2.9)[ ]
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Remark: If x=q= 1 we get the classical formulas [7, 9]:

a_(t):ﬁa(ﬁ) and A(t) = At).

If x=0 we haveA(t) = A(t).

3. A new mahonian statistic “maf”

Let S, be the set of permutations gmj = {1, 2, ..., n}. Recall that € [n] is afixed point
of o € $yif o(i) =i. Let fixo denote the number of fixed points@f The permutation
o has adescenati € {1,2,...,n— 1} if a(i) > o(i + 1) and we cali thedescent place
of 0. Themajor indexof g, denoted mag, is the sum of all the descent placesiof.et
FIX(o) = {i | o(i) =i} be the set of all fixed points af andd therestrictionof o to
{1,2,...,n}\ FIX(0).

Definition 2. If 0 € $y with FIX(0) = {i1, i2, ...,i|}, then the statistic “maf” is defined
by
[
mafo=$ (ij — j) +majo.
P

Example 1. Letc =321659487ThenFIX (o) ={2,5,8} andG =316947 Hence
fixc=3, majoc=1+2+4+6+8=21landmafo=(2—1)+(5—-2)+ (8—3)+ (1+
4) = 14,

We now show that the bistatisti¢Bx, maf) and(fix, maj) are equidistributed on the
symmetric group$, (Corollary 7). In particular, this shows that maf is a Matami
statistic.

Let 0 = x1X2...Xy € Sy. For convenience we pih = —oo and X1 = +oo. For
0<i<n,apair(i,i + 1) of positions is the-th slot of o provided that x# 1, i.e.,i is
not a fixed point oty and thato hasi — j fixed pointsf such thatf <i. Clearly we can
insert a fixed point into thg-th slot to obtain the permutation

(©3) = XX (1) K. X (3.13)

wherex' = xif x<iandx =x+1if x> 1i.

More generally, ifo is a derangement i, and(i1, iz, . . .,im) @ Sequence of integers
such that <X i <ip <--- <ip < n, we can inserin fixed points into the derangement
o successively, finally obtaining

(0,i1,...,im) = ((0,i1,...,im-1),im)-
Note that the fixed points of this last permutationiare 1,io+2,...,im+m.

Example 2. Leto =2143and (i1, i2,...,im) = (0,1,1,4). Then we havéo,0) =
13254 (0,0,1) =143265(0,0,1,1) = 1534276and(0,0,1,1,4) = 15342768
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We can of course undertake the reverse operation. Thatasp&rmutatioro in
Sm+n hasmfixed points we can find a unique derangemeritdg .5, called (following
Wachs [17]) thelerangement paxif o, and a unique sequence of integiers - - - <im,
which we call thefixed point sequena# o, such that

o = (dp(0),i1,...,im)-

Itis easy to see that
mafo = majdpo) +i1+ - +im. (3.14)

Consider a permutatiamwith n slots. Thej-th slot(i, i+ 1) of o is said to begreen
if deg(o, j) = deso, red if des(o, j) = deso + 1. We assigivaluesto the green slots of
o from right to left, from O tog, and to the red slots from left to right, frogr 1 ton.
Denote the value of th¢-th slot bygj. (When we refer to the "largest” slot, we will
mean largest in terms gf)

Example 3. Leto =2143 Then(o,0) =13254 (0,1) =32154(0,2) =21354
(0,3)=21543 (0,4) = 21435 Hence slots 0, 2 and 4 are green, while 1 and 3 are
red. Therefore

(do,---,0n) = (2,3,1,4,0). (3.15)

Itis easy to see that every slot is either green or red. Indeet can see thét i+ 1)
is green if eithexi;1 < X <, ori < X1 <X, orx <i<X1. So(i,i+1)is red if
eitherxip1 <i <X, ori <x < X41 0orx < X1 <i. (Expressed in terms of cyclic
intervals €f. [13]), slot(i, i + 1) is green ifi + 1 € [)xi, Xi1].)

Denote byd; the number of descents (4, j) that lie to the right ok in (3.13).

Lemma 3. Let o be a permutation inS,. If the j-th slot(i,i+ 1) is green then
maj(o, j) —majo = dj, if (i, i+ 1) is red thermaj(o, j) — majo = d; +1.

Proof: Let (i, i+ 1) be a green slot. Since no new descents are formed by inserting
fixed point into thej-th slot ofo, maj(o, j) — majo equals the number of descentsmof
that are displaced to the right when this fixed point is ireskriThis number equats.
The case in whiclfi, i + 1) is red is dealt with similarly. [ ]

Remark: If ¢ is a derangement i, the j-th slot ofa is just(j, j+1)forO< j <n.
Lemma 4. If o is a derangement i, then
maj(o, j) =majo+g; for 0<j<n.

Proof: Leti and]j be slots. It follows from Lemma 3 thatifand j are both green and
i < j then majo,i) > maj(o, j), while if i andj are both red and< j then majo,i) <
maj(a, j). Therefore O is the green slot of of highest value, and if is red andj
is green we have m@,i) > maj(o, j). This is because for any red slotve have
maj(o,i) > maj(o,0) by Lemma 3. Hence, inis the largest red slot af, i.e.,gm = n,
for any two slotd andj with gi < g; we have

majo < maj(o,i) < maj(o, j) < maj(a,m).
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It therefore suffices to show that
maj(a,m) = majo + n.

Now, consider a green slét, i +1). If i + 1 is a non-excedance place, ix.,1 <i+1,
then, aso is a derangmenk; 1 <i. Hencexi 1 < X <i. Thusi is a non-excedance
place. Sincen is a non-excedance place amd+ 1, m+ 2, ..., n are green slots, we
have

m+1> Xme1 > - > Xn.

As the slotmis red, eithemis a non-excedance place amds a non-descent anis an
excedance place amdis a descent. In each case, inserting a fixed point intarthie
slot introduces a new descent for m+ 1 and move® — (m+ 1) descents one place
further to the right. Hence

maj(o,m) = majo+ (m+1) + (n—m—1)=majo+n,

as required. []

Remark: Suppose that is a derangement {§, and 0< i < n. It follows from Lemmas
3 and 4 thatl; = g; if i is green andl; = g; —i if i is red. Ifi is green then

maj(o,i,i) = maj(o,i) +g;.
Hence, ifj <1, it follows from Lemma 4 that
maj(o, j,i) = maj(o,i) + g;.
On the other hand, ifis red, then
maj(o,i,i) = maj(o,i) +gi —i.

Now one can easily see thatkiis the largest green slot to the left of slpgx = g; —i.
Hence, ifj < i, it follows again from Lemma 4 that

maj(o, j,i) = maj(o,i)+g;+ 1.

We are now ready to state the key result of this section.S.@fm) denote the set
of permutations s, m with derangement paa € D,. Note that

S(o,m) ={(g,i)]i = (i1,...,im) and 0< i1 <ip < -+ <ipm < n}.
Theorem 5. There is a bijectio¥ on S, m) such that if¥(o,i) = (o,j) then
maj(o,i) = maf(o,j). (3.16)

Proof: We divide the proof into two parts.

The definition of W. We will define such a bijectio® by induction onrm > 0.



8 R. Clarke, G. Han and J. Zeng

First, W is the identity mapping 08(0,0). Next, we defindl on §(o, 1) by
W(o,i) = (0,9).

Then using equation (3.14) and Lemma 4 we seethsatisfies equation (3.16).

Letm> 1 and suppose th&f has been defined d¥o,k) for 0 < k< m-—1. Con-
sidert = (g,i1,...,im). Suppose that thig,-th slot of (g, i1,...,im—1) is green. Then,
if

LIJ(O-ailv' . .,imfl) = (0-5 j27' (K] jm)a
we define
LIJ(T) = (Gvgima j27 ey Jm)

Suppose that thig,-th slot of (0,i1,...,im-1) is red. Then the slots,...,im cannot be
all the same. Lek be the smallest positive integer such thaty < im. Thusim k <

l-|J(O',i1, .. -,imfk) = (O', jl,...,jm,k),
we define

L'IJ(T) = (O-,gim*im,---,gim*im,j1+1,---,jm7k+1,gim)-
k—1terms

The following lemma is easily proved by induction.

Lemma 6. Lett = (0,i1,...,im) and¥(1) = (0, j1,..-, jm)-

Suppose that at least one of the slats.i.,im is either green or is repeated. Let
ii be the largest such slot. Ifis green then = g;. Ifij is red and is repeated then
j1=9, —i.

If on the other hand all of the slots,i..,im are red and are distinct, then j= g, .

Suppose that at least one of the slats.i., iy is red. If i is the largest red slot then
jm =0

If on the other hand all of these slots are green thgnr=jg;, .

It follows from this lemma thafs,. .., jm as defined above are in ascending order.

We now show by induction omthat satisfies equation (3.16).

If i is green, then using Lemma 4 we have

maj(o,i1,...,im) = maj(o,i1,...,im-1)+ i,
= maf(07j27"'ajm)+gim
= maf(cvgimaj27"'7jm)'
If i is red, letk be the smallest positive integer such thatx < iy, then
maj(o,i1,...,im)
= maj(o-a ila cee 7im*k) + (mi k) + (ki 1)(g|m7 |m) +gim
maf(c, j1,...., jm-k) + (M—K) + (K= 1)(Gip, — im) + i,
= maf(o-5gim_im7"'5gim_imaj1+17"'7jm7k+17gim)-
k—1terms
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This is because inserting the first fixed pdipinto (o, i1,...,im-k) adds a descent and
increases maj by;, + (m—k). Inserting each of the remaining fixed poiitshas the
same affect as inserting a fixed point into a green slot ofesig|— im.

W is a bijection. It remains to show tha¥ is a bijection ornS(g, m). It suffices to
show that¥ is an injection.

We use induction om. The result is clearly true fan= 0 andm= 1.

Lett=(0,i1,...,im) and¥(1) = (0, j1,..., jm). Suppose tha¥(1) = W(1'), where
T =(0,ih,....,ip)-

If both i, andif, are green or red then it is easy to show using the inductioothyp
esis thatt = T'. So suppose tha, is green and, is red. Thusjs = i, jm = i,

Suppose thdt,...,im are all green. Thei, = g;,. Hencel1 = iy, contradiction.

Letiy be the largest red slot amongst.. . ,im. Thenjm = gj,. Henceir, =iy < im.

Case 1:Suppose that one of the slafs. .. i, is either green or is repeated. ligt
be the largest such slot.ilfis green, then

LP(T/) = (O-a gl(, + (m—V), s 7gi§n)'
Henceji = gi,, = gy, + (M—r). Sincein andi, are both green, this means thgt<
iy, < im, contradiction.
If i}, is red, then
\-P('[') = (Gvgi(, - |</+ (m7V), s agif-n)'

Hencej1 = @i, = gi, — iy, + (m—r). Butgy — iy is the value of the largest green sigt
less than,. Asim is green this means thi} < iy, < i, < i, contradiction.

Case 2:Suppose that all of the slaifs ... , iy, are red and distinct. Then
/

W(T') = (0,07 +(M=1),....i%).

Hencej1 =gi,, = g{l +(m—1) > g _,. Thisis a contradiction, sindg, is green and;
isred. []

Example 4. Leto = 2143and conside(c,0,1,1,4) € S(0,4). Then the values of the
slots ofo have been calculated in (3.15). The bijectidrgoes as follows:
since slot 0 is green io we have

Y(0,0) = (0,90) = (0,2);
since slot 1 is red we have
Y(0,0,1) = (0,24 1,01) = (0,3,3);
again, since slot 1 is red we have
¥Y(0,0,1,1) = (0,01 — 1,2+ 1,01) = (0,2,3,3);
Finally, since slot 4 is green we obtain
W(0,0,1,1,4) = (0,04,2,3,3) = (0,0,2,3,3) € S0, 4).

Lett=(0,0,1,1,4) andt’ = (0,0,2,3,3). Themt =1534276&ndt' =13248675
Itis easy to see thamajt = 12andmaft’ = 12. Hence we have checked equation (3.16).
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Using theorem 5, we obtain the following result.
Corollary 7. (a) There is a bijectionp: S, — Sn such that for any € §, we have
(fix, maf)o = (fix, maj)@(o).

(b) The bi-statistic(fix,maf) is equidistributed with the bi-statistiffix,maj) on the
symmetric grousy.

The following result was first proved by Wachs [17, coroll&8ty

Corollary 8. Leto be a derangement i, and m> 0. We have

i o/ M+nN
; qmajn _ qmajo < . ) ]
neS(o, m) q

Proof: By theorem 5 we have

z qmajn — Z qmafrr
neS(o, m) neS(o,m)
qmajc qi1+i2+---im

0<iy <“<im<n

qmajc m-+n
n q'

The last line follows from a well-known result [1, p. 33].[]

4. g-derangement matrices

We first prove the following result.

Proposition 9. Let (ak(x,q)) be a g-Seidel matrix. Then the following three conditions
are equivalent:

o )
Bxa) = [t 3 (e (4.17)
0 N (x—1)(x—q)---(x—qg "t
ag(x,q) = [nlg (1—1—21( I [i])q! ( )> , (4.18)
ad(1,q) = [ng¢¢ and &(xq) isindependentof .x (4.19)

Proof: By theg-binomial formula [11, p.7]

(o]

Zo (@a)nn_ (A6

(0 O)n (o)

we have in view of (1.5) and (1.6),

14 § X DEa (e

n=1 [n]q!

t" = e(xt)Eq(—1).
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Therefore the generating functions of (4.17), (4.18) antiq¥are respectively the fol-
lowing:

Ay = 5 e = ) (4.20
Ay = 3 ajxa) = R, (4.21)
Aha = 5 b= (@.22)

So, it suffices to prove that the equivalence of (4.20), (fa2d (4.22). Indeed,
(4.20)<=> (4.21): this follows from proposition 2;
(4.21)= (4.22): this is obvious;
(4.22)=> (4.20): sincéA(t) is independent af, equation (4.20) follows then from
(2.12) by settingk=1. []

Definition 3. A g-derangement matrix is the g-Seidel matrix satisfying@frthe three
conditions of proposition 8.

If x= 1, thenag(x,q) = [n]q! and theg-derangement matrix is as follows :

k\n| 0 1 2 3 4
2 q+20°+29°
0] 1 0 j ; q+2qqiz?13 (M ot sp)
1)1 g a+a+q (o264 9)
2. o8 q+20°+3q
2 |1ta  gt+20+g (" a3 )
g+30°+5q

3 | Bl ( +5q4+3q5+q6)
4 | 4

(ah(1.a)

Denote bySK the set of permutations on + k] of which all the fixed points are
included in{n+1,n+2,...,n+k}. In particulars? is the set of permutations with-
out fixed points orjn] and s¥ the set of all permutations di]. The following result
generalizes a result of Dumont and Randrianarivony [8].

Theorem 10. The coefficientsidx,q) (n, k > 0) in a g-derangement matrix have the
following combinatorial interpretation:

a(xq)= Y x™ogme. (4.23)

oesk

Proof: Notice thats¥ 1 ¢ Sk. Set

By = Si\Shit = {oe sy o(n+1) =n+1}.
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We construct a bijectiot : Ak — sk~ such that for alb € A,

mafo = n+maf$(o)),
fixo 1+fix(¢(0)).

Indeed, ifo € AX we defined(o) as the word obtained from by deletingn+ 1 and
reduce all the values strictly bigger than- 1. It is readily verified thap is the desired
bijection. Therefore

Z Xﬁxo’qmafo‘zan Z Xfixcqmaf0+ Z Xfixoqmaft:;7 (4_24)
1

oesk oSt oesi

which is the recurrence (2.7). So it remains to check thairgondition. Nowsg = Sy
and it is well-known [14] tha§ .5, "4 = [n]g!, so it follows from corollary 7 that

ag(la) =y q"C =3 " =njg.

0ESn 0E€Sn

The theorem follows then from proposition 9, siradx, q) is clearly independent of

[

Remark: Since(fix, maf) and(fix, maj) are not equidistributed d& we cannot replace
maf by maj in the above theorem.

From Corollary 7, proposition 9 and theorem 10 we derive tieding result.

Corollary 11. The final sequence of the g-derangement matrix has the foligwer-
pretation:

xa) = Y xxogna (4.25)
O0ESh

— Z Xfixoqmajc (4.26)
O0ESh

i [i]q!

Note that the last equation has been obtained by Gessel atdrReer [12] and by
Wachs [17] in the speciad= 0 case using different methods.

]! <1+il x=Dx=0) (Xqil)> . (4.27)

5. An open problem aboutg-succession humbers

Let 0 be a permutation its,. For convenience pui(0) = 0. We say that an element
p (with 1 < p < n) is asuccessionf o if o(p) =o(p—1)+ 1. Thepis called the
succession positigwhile o(p) is called thesuccession valud_et SUQo) be the set
of succesion values af and let suo be the number of successionsmfFor example,

if
s_(123458673809
“\1 43895867 2)
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then SUGo) = {1,9,6,7} and suo = 4.

We use a variant of Foata’s first fundamental transformdti®hto show that the
statistics fix and suc are equidistributed $n

Given a permutation = (1) (2) ---a(n) € S, we seto? = 6(2) ---a(n)o(1). We
call thestandard formof the factorization into cycles af the unique writingo such
that in each cycléa, a(a),...,d' (a)) the maximumo' (a) is in the last position and the
cycles ofo are decreasingly ordered according to their maxima. (Nwéthis isnot
the usual definition of standard form.) We defip@) as the permutation obtained by
erasing the parentheses in the standard forofof

The following lemma is easy to verify.

Lemma 12. The mappingp is a bijection onS, such that for allo € 5, FIX(0) =
SUC(¢(0)) andfixa = suah(o). Hence the statisticix and sucare equidistributed
OnSn

For example, iio =14283675% Sy, then
09=428367591 and 0% =(14389(567)(2).
Erasing the parentheses we obtain the permutation = 14389567 2. We have
FIX(o) =SUC($(0)) ={1,6,7,9}.
Define the statistic

suéo — {suoo, if o(1) #1,
suco—1, if o(1)=1;

and let _
P = 3 X% S00= 3 xve.
0eSn 0€S5n
Then, using lemma 12, we obtain a bijective proof of the feifey known results (See
[3,15]).

Proposition 13. We have

Se1(X) = Fasa(X) + (1~ X)Fa(), (5.28)
and in particular
Sh+1(0) = dny1+ dn. (5.29)
Settingg = 1 in (4.20) we see that
a1t
nZblzn(x)E =Tt (5.30)

Hence, from equation (5.28), we have

tn e(Xf 1)t tn

n;)Sn(X)ﬁ =77 1-x5 Fn—l(x)ﬁa (5.31)

n>1
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in which by conventiorg(x) = Fp(x) = 1. Thus

—t -z

tn e(x—l)t t e(x—l)z
n;]&(x)ﬁzl +(1—x)/0 ——dz (5.32)

Let £ be the formal Laplace transformation on the ring of formakppseries, that is,
L(Yax"/nl) = anx". Then

Eon—r (80 D 5.33
n;) n(xt" = 1-t ’n;)[l—(x—l)t]nﬂ' (5.33)
Therefore
SN =Y Fa( (o™t
2,50 % ) 2l
== X 1 Fn tn
nit"

— R 5.34
%[fol)t]” (5:34)

In the case ofj = 1, using lemma 11, we can restate theorem 9 in terms of succes-
sions. Unfortunately, since the mappifgloes not keep track of the maj statistic, we
do not have a full interpretation in the last model.

The distribution of our statistics afy is as follows:

o\stat| maf maj suc fix
123 O 0 3 3
132] 1 2 1 1
213| 3 1 0 1
231| 2 2 1 0
312 1 1 1 0
321 2 3 0 1

Statistic distributions on $3

Finally we record two open problems related to our work.

1) Find a mahonian statistic “mag” such th@ucmag is equidistributed with
(fix, maj) on the symmetric groug,.

2) Generalize the statistic “maf” on permutationsaxordsas in [5, 13] for other
mahonian statistics.
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