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1. Introduction

Euler (see [8]) considered thedifference table(dk
n)0≤k≤n, where the generic coefficients

dk
n are defined by

dn
n = n! and dk

n = dk+1
n −dk

n−1 (1≤ k≤ n−1). (1.1)

Let ak
n = dk

n+k (n, k≥ 0). Then the above relations can be written as

ak
0 = k! and ak

n = ak−1
n +ak−1

n+1 (n, k≥ 0).

1



2 R. Clarke, G. Han and J. Zeng

The matrix(ak
n)n,k≥0 is also called theSeidel matrixassociated to the sequencea0

n in
the literature (see [7,9]). The first terms of these matricesare as follows:

n\k 0 1 2 3 4 5
0 1
1 0 1
2 1 1 2
3 2 3 4 6
4 9 11 14 18 24
5 44 53 64 78 96 120

(dk
n)

−→

k\n 0 1 2 3 4 5
0 1 0 1 2 9 44
1 1 1 3 11 53
2 2 4 14 64
3 6 18 78
4 24 96
5 120

(ak
n)

Iterating the difference equation (1.1) we derive

a0
n = d0

n = n!

(

1−
1
1!

+
1
2!

−·· ·+(−1)n 1
n!

)

, (1.2)

which is theclassical derangement number dn, that is, the number of derangements on
{1,2, · · · ,n} (cf. [16, p. 67]).

In several recent papers [4, 6, 12, 17], theq-maj counting of the derangements on
{1,2, · · · ,n} has been studied. Consider theq-derangement numbers dn(q) defined by

dn(q) = ∑
σ∈Dn

qmajσ, (1.3)

whereDn is the set of all derangements on{1,2, · · · ,n}. Then the followingq-analogue
of equation (1.2) has been obtained:

dn(q) = [n]q!
n

∑
i=0

(−1)i q
( i

2)

[i]q!
(n≥ 1). (1.4)

Here,[n]q = 1+q+ · · ·+qn−1 is theq-analogue of the nonnegative integern and[n]q! =
[1]q[2]q · · · [n]q is theq-analogue ofn!.

In this paper, we shall put theq-derangement numbers in the context of a Seidel
matrix as Dumont and Randrianarivony [8] did for the ordinary derangement numbers.
To this end, in section 2 we introduce the notion ofq-Seidel matrix. In section 3 we
define a new statistic “maf” on permutations and then prove bijectively that this is a
mahonian statistic. In section 4 we consider theq-Seidel matrix associated to theq-
derangement numbers and give combinatorial interpretations for all of the coefficients
in this matrix in terms of the new statistic ”maf”. As a consequence we get a new proof
of a formula of Gessel and Reutenauer [12] and of Wachs [17]. Finally we close this
paper with some remarks and open questions.

We will need the following notations and results ofq-calculus (see [11]). Theq-
binomial coefficients are defined by

(
n
k

)

q
=

[n]q!
[k]q![n− k]q!

(n≥ k≥ 0).
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Define also(t;q)n = (1− t)(1−qt) · · ·(1− qn−1t) and(t;q)∞ = limn→∞(t;q)n. Then
the twoq-analogues of the exponential serieset = ∑n≥0 tn/n! are defined by

eq(t) = ∑
n≥0

tn

[n]q!
=

1
((1−q)t;q)∞

, (1.5)

Eq(t) = ∑
n≥0

q(
n
2)tn

[n]q!
= (−(1−q)t;q)∞. (1.6)

Notice thateq(t) ·Eq(−t) = 1.

2. q-Seidel matrices

Let us introduce the following generalization of Seidel matrix.

Definition 1. Given a sequence(an(x,q)) (n≥ 0) of elements in a commutative ring,
we call the q-Seidel matrix asssociated to(an(x,q)) the double sequence(ak

n(x,q))
(n≥ 0,k≥ 0) given by the recurrence

{

a0
n(x,q) = an(x,q), (n≥ 0)

ak
n(x,q) = xqnak−1

n (x,q)+ak−1
n+1(x,q). (k≥ 1,n≥ 0)

(2.7)

Moreover(a0
n(x,q)) is called the initial sequence and(an

0(x,q)) the final sequence of
the q-Seidel matrix.

Lemma 1. We have

ak
n(x,q) =

k

∑
i=0

(xqn)k−i
(

k
i

)

q
a0

n+i(x,q). (2.8)

Proof: Recall that (
n
k

)

q
= qn−1

(
n−1
k−1

)

q
+

(
n−1

k

)

q
.

We proceed by recurrence onk. Clearly (2.8) is valid fork = 1. Suppose (2.8) is true
for k−1. We then have

ak
n(x,q) =

k−1

∑
i=0

(
k−1

i

)

q

(

(xqn)k−ia0
n+i(x,q)+ (xqn+1)k−1−ia0

n+1+i(x,q)
)

= (xqn)ka0
n(x,q)+

k−1

∑
i=1

(xqn)k−i
(

k−1
i

)

q
a0

n+i(x,q)

+
k−2

∑
i=0

(xqn+1)k−1−i
(

k−1
i

)

q
a0

n+1+i(x,q)+a0
n+k(x,q)

= (xqn)ka0
n(x,q)+

k−1

∑
i=1

(xqn)k−i
(

k
i

)

q
a0

n+i(x,q)+a0
n+k(x,q).

Thus completes the proof.
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In particular we pass from the initial sequence to the final sequence and conversely
by theGauss inversion formula[2, p. 96]:

an
0(x,q) =

n

∑
i=0

xn−i
(

n
i

)

q
a0

i (x,q), (2.9)

a0
n(x,q) =

n

∑
i=0

(−x)n−iq(
n−i
2 )
(

n
i

)

q
ai

0(x,q). (2.10)

Define the generating functions as follows:

a(t) = ∑
n≥0

a0
n(x,q)t

n, ā(t) = ∑
n≥0

an
0(x,q)t

n,

and

A(t) = ∑
n≥0

a0
n(x,q)

tn

[n]q!
, Ā(t) = ∑

n≥0

an
0(x,q)

tn

[n]q!
.

Proposition 2. The generating functions of the initial and final sequences are related
by the following equations:

ā(t) = ∑
n≥0

a0
n(x,q)

tn

(xt;q)n+1
; (2.11)

A(t) = eq(xt)A(t). (2.12)

Proof: Note that
1

(t;q)n+1
=

∞

∑
k=0

(
n+ k

k

)

q
tk.

Hence

∑
n≥0

a0
n(x,q)

tn

(xt;q)n+1
= ∑

n,k≥0

(
n+ k

k

)

q
a0

n(x,q)x
ktn+k

= ∑
m≥0

tm
m

∑
n=0

(
m
n

)

q
xm−na0

n(x,q)

= ∑
m≥0

am
0 (x,q)t

m.

By (1.5) we have

eq(xt)A(t) = ∑
i, j≥0

a0
i (x,q)t

i

[i]q!
·

x j t j

[ j]q!

= ∑
i, j≥0

(
i + j

i

)

q
a0

i (x,q)x
j t i+ j

[i + j]q!

= ∑
n≥0

( n

∑
i=0

xn−i
(

n
i

)

q
a0

i (x,q)
) tn

[n]q!
,

which completes the proof of (2.12) in view of (2.9).
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Remark: If x= q= 1 we get the classical formulas [7,9]:

ā(t) =
1

1− t
a

(
t

1− t

)

and Ā(t) = et A(t).

If x= 0 we haveĀ(t) = A(t).

3. A new mahonian statistic “maf”

LetSn be the set of permutations on[n] = {1, 2, . . . , n}. Recall thati ∈ [n] is afixed point
of σ ∈ Sn if σ(i) = i. Let fixσ denote the number of fixed points ofσ. The permutation
σ has adescentat i ∈ {1,2, . . . ,n−1} if σ(i)> σ(i+1) and we calli thedescent place
of σ. Themajor indexof σ, denoted majσ, is the sum of all the descent places ofσ. Let
FIX(σ) = {i | σ(i) = i} be the set of all fixed points ofσ andσ̃ the restrictionof σ to
{1,2, . . . ,n} \FIX(σ).

Definition 2. If σ ∈ Sn with FIX(σ) = {i1, i2, . . . , i l}, then the statistic “maf” is defined
by

mafσ =
l

∑
j=1

(i j − j)+majσ̃.

Example 1. Letσ = 321659487. ThenFIX(σ) = {2, 5, 8} andσ̃ = 316947. Hence
fix σ = 3, majσ = 1+2+4+6+8= 21andmafσ = (2−1)+(5−2)+(8−3)+(1+
4) = 14.

We now show that the bistatistics(fix,maf) and(fix,maj) are equidistributed on the
symmetric groupSn (Corollary 7). In particular, this shows that maf is a Mahonian
statistic.

Let σ = x1x2 . . .xn ∈ Sn. For convenience we putx0 = −∞ andxn+1 = +∞. For
0≤ i ≤ n, a pair(i, i +1) of positions is thej-th slot of σ provided that xi 6= i, i.e., i is
not a fixed point ofσ and thatσ hasi− j fixed pointsf such thatf < i. Clearly we can
insert a fixed point into thej-th slot to obtain the permutation

(σ, j) = x′1x′2 . . .x
′
i (i +1) x′i+1 . . .x

′
n, (3.13)

wherex′ = x if x≤ i andx′ = x+1 if x> i.
More generally, ifσ is a derangement inSn and(i1, i2, . . . , im) a sequence of integers

such that 0≤ i1 ≤ i2 ≤ ·· · ≤ im ≤ n, we can insertm fixed points into the derangement
σ successively, finally obtaining

(σ, i1, . . . , im) = ((σ, i1, . . . , im−1), im).

Note that the fixed points of this last permutation arei1+1, i2+2, . . . , im+m.

Example 2. Let σ = 2143and (i1, i2, . . . , im) = (0,1,1,4). Then we have(σ,0) =
13254, (σ,0,1) = 143265, (σ,0,1,1) = 1534276and(σ,0,1,1,4) = 15342768.
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We can of course undertake the reverse operation. That is, ifa permutationσ in
Sm+n hasmfixed points we can find a unique derangement dp(σ)∈ Sn, called (following
Wachs [17]) thederangement partof σ, and a unique sequence of integersi1 ≤ ·· · ≤ im,
which we call thefixed point sequenceof σ, such that

σ = (dp(σ), i1, . . . , im).

It is easy to see that
mafσ = majdp(σ)+ i1+ · · ·+ im. (3.14)

Consider a permutationσ with n slots. Thej-th slot(i, i+1) of σ is said to begreen
if des(σ, j) = desσ, red if des(σ, j) = desσ+1. We assignvaluesto the green slots of
σ from right to left, from 0 tog, and to the red slots from left to right, fromg+1 to n.
Denote the value of thej-th slot byg j . (When we refer to the ”largest” slot, we will
mean largest in terms ofj.)

Example 3. Let σ = 2143. Then(σ,0) = 13254, (σ,1) = 32154, (σ,2) = 21354,
(σ,3) = 21543, (σ,4) = 21435. Hence slots 0, 2 and 4 are green, while 1 and 3 are
red. Therefore

(g0, . . . ,gn) = (2,3,1,4,0). (3.15)

It is easy to see that every slot is either green or red. In fact, one can see that(i, i+1)
is green if eitherxi+1 < xi ≤ i, or i < xi+1 < xi , or xi ≤ i < xi+1. So(i, i +1) is red if
eitherxi+1 ≤ i < xi , or i < xi < xi+1 or xi < xi+1 ≤ i. (Expressed in terms of cyclic
intervals (cf. [13]), slot(i, i +1) is green ifi +1∈

]]
xi ,xi+1

]]
.)

Denote byd j the number of descents of(σ, j) that lie to the right ofx′i in (3.13).

Lemma 3. Let σ be a permutation inSn. If the j-th slot (i, i + 1) is green then
maj(σ, j)−majσ = d j , if (i, i +1) is red thenmaj(σ, j)−majσ = d j + i.

Proof: Let (i, i +1) be a green slot. Since no new descents are formed by insertinga
fixed point into thej-th slot ofσ, maj(σ, j)−majσ equals the number of descents ofσ
that are displaced to the right when this fixed point is inserted. This number equalsd j .
The case in which(i, i +1) is red is dealt with similarly.

Remark: If σ is a derangement inSn, the j-th slot ofσ is just( j, j +1) for 0≤ j ≤ n.

Lemma 4. If σ is a derangement inSn, then

maj(σ, j) = majσ+g j for 0≤ j ≤ n.

Proof: Let i and j be slots. It follows from Lemma 3 that ifi and j are both green and
i < j then maj(σ, i)≥ maj(σ, j), while if i and j are both red andi < j then maj(σ, i)≤
maj(σ, j). Therefore 0 is the green slot ofσ of highest value, and ifi is red andj
is green we have maj(σ, i) ≥ maj(σ, j). This is because for any red sloti we have
maj(σ, i)≥ maj(σ,0) by Lemma 3. Hence, ifm is the largest red slot ofσ, i.e.,gm = n,
for any two slotsi and j with gi < g j we have

majσ ≤ maj(σ, i)≤ maj(σ, j) ≤ maj(σ,m).
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It therefore suffices to show that

maj(σ,m) = majσ+n.

Now, consider a green slot(i, i+1). If i+1 is a non-excedance place, i.e.,xi+1 ≤ i+1,
then, asσ is a derangment,xi+1 ≤ i. Hencexi+1 < xi ≤ i. Thusi is a non-excedance
place. Sincen is a non-excedance place andm+ 1, m+ 2, . . . , n are green slots, we
have

m+1> xm+1 > · · ·> xn.

As the slotm is red, eitherm is a non-excedance place andm is a non-descent orm is an
excedance place andm is a descent. In each case, inserting a fixed point into them-th
slot introduces a new descent fori = m+1 and movesn− (m+1) descents one place
further to the right. Hence

maj(σ,m) = majσ+(m+1)+ (n−m−1)= majσ+n,

as required.

Remark: Suppose thatσ is a derangement inSn and 0≤ i ≤ n. It follows from Lemmas
3 and 4 thatdi = gi if i is green anddi = gi − i if i is red. If i is green then

maj(σ, i, i) = maj(σ, i)+gi.

Hence, if j ≤ i, it follows from Lemma 4 that

maj(σ, j, i) = maj(σ, i)+g j .

On the other hand, ifi is red, then

maj(σ, i, i) = maj(σ, i)+gi − i.

Now one can easily see that, ifk is the largest green slot to the left of sloti, gk = gi − i.
Hence, if j < i, it follows again from Lemma 4 that

maj(σ, j, i) = maj(σ, i)+g j +1.

We are now ready to state the key result of this section. LetS(σ,m) denote the set
of permutations inSn+m with derangement partσ ∈Dn. Note that

S(σ,m) = {(σ, i) | i = (i1, . . . , im) and 0≤ i1 ≤ i2 ≤ ·· · ≤ im ≤ n}.

Theorem 5. There is a bijectionΨ on S(σ,m) such that ifΨ(σ, i) = (σ, j) then

maj(σ, i) = maf(σ, j). (3.16)

Proof: We divide the proof into two parts.

The definition of Ψ. We will define such a bijectionΨ by induction onm≥ 0.
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First,Ψ is the identity mapping onS(σ,0). Next, we defineΨ onS(σ,1) by

Ψ(σ, i) = (σ,gi).

Then using equation (3.14) and Lemma 4 we see thatΨ satisfies equation (3.16).
Let m> 1 and suppose thatΨ has been defined onS(σ,k) for 0≤ k≤ m−1. Con-

siderτ = (σ, i1, . . . , im). Suppose that theim-th slot of (σ, i1, . . . , im−1) is green. Then,
if

Ψ(σ, i1, . . . , im−1) = (σ, j2, . . . , jm),

we define
Ψ(τ) = (σ,gim, j2, . . . , jm).

Suppose that theim-th slot of(σ, i1, . . . , im−1) is red. Then the slotsi1, . . . , im cannot be
all the same. Letk be the smallest positive integer such thatim−k < im. Thusim−k <
im−k+1 = · · ·= im. Then, if

Ψ(σ, i1, . . . , im−k) = (σ, j1, . . . , jm−k),

we define

Ψ(τ) = (σ,gim − im, . . . ,gim − im
︸ ︷︷ ︸

k−1 terms

, j1+1, . . . , jm−k+1,gim).

The following lemma is easily proved by induction.

Lemma 6. Let τ = (σ, i1, . . . , im) andΨ(τ) = (σ, j1, . . . , jm).
Suppose that at least one of the slots i1, . . . , im is either green or is repeated. Let

i l be the largest such slot. If il is green then j1 = gi l . If i l is red and is repeated then
j1 = gi l − i l .

If on the other hand all of the slots i1, . . . , im are red and are distinct, then j1 = gi1.
Suppose that at least one of the slots i1, . . . , im is red. If il is the largest red slot then

jm = gi l .
If on the other hand all of these slots are green then jm = gi1.

It follows from this lemma thatj1, . . . , jm as defined above are in ascending order.
We now show by induction onm thatΨ satisfies equation (3.16).
If im is green, then using Lemma 4 we have

maj(σ, i1, . . . , im) = maj(σ, i1, . . . , im−1)+gim

= maf(σ, j2, . . . , jm)+gim

= maf(σ,gim, j2, . . . , jm).

If im is red, letk be the smallest positive integer such thatim−k < im, then

maj(σ, i1, . . . , im)
= maj(σ, i1, . . . , im−k)+ (m− k)+ (k−1)(gim− im)+gim

= maf(σ, j1, . . . , jm−k)+ (m− k)+ (k−1)(gim− im)+gim

= maf(σ,gim − im, . . . ,gim− im
︸ ︷︷ ︸

k−1 terms

, j1+1, . . . , jm−k+1,gim).
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This is because inserting the first fixed pointim into (σ, i1, . . . , im−k) adds a descent and
increases maj bygim +(m− k). Inserting each of the remaining fixed pointsim has the
same affect as inserting a fixed point into a green slot of valuegim − im.

Ψ is a bijection. It remains to show thatΨ is a bijection onS(σ,m). It suffices to
show thatΨ is an injection.

We use induction onm. The result is clearly true form= 0 andm= 1.
Let τ= (σ, i1, . . . , im) andΨ(τ) = (σ, j1, . . . , jm). Suppose thatΨ(τ) =Ψ(τ′), where

τ′ = (σ, i′1, . . . , i′m).
If both im andi′m are green or red then it is easy to show using the induction hypoth-

esis thatτ = τ′. So suppose thatim is green andi′m is red. Thusj1 = gim, jm = gi′m.
Suppose thati1, . . . , im are all green. Thenjm = gi1. Hencei1 = i′m, contradiction.
Let iu be the largest red slot amongsti1, . . . , im. Then jm = giu. Hencei′m = iu < im.
Case 1:Suppose that one of the slotsi′1, . . . , i

′
m is either green or is repeated. Leti′v

be the largest such slot. Ifi′v is green, then

Ψ(τ′) = (σ,gi′v +(m− v), . . . ,gi′m).

Hence j1 = gim = gi′v +(m− r). Sinceim and i′v are both green, this means thatim ≤
i′v < i′m, contradiction.

If i′v is red, then

Ψ(τ′) = (σ,gi′v − i′v+(m− v), . . . ,gi′m).

Hencej1 = gim = gi′v − i′v+(m− r). But gi′v − i′v is the value of the largest green slotiw
less thani′v. As im is green this means thatim ≤ iw < i′v ≤ i′m, contradiction.

Case 2:Suppose that all of the slotsi′1, . . . , i
′
m are red and distinct. Then

Ψ(τ′) = (σ,gi′1
+(m−1), . . . , i′m).

Hencej1 = gim = g′i1 +(m−1)> g′i−1. This is a contradiction, sinceim is green andi′1
is red.

Example 4. Let σ = 2143and consider(σ,0,1,1,4) ∈ S(σ,4). Then the values of the
slots ofσ have been calculated in (3.15). The bijectionΨ goes as follows:
since slot 0 is green inσ we have

Ψ(σ,0) = (σ,g0) = (σ,2);

since slot 1 is red we have

Ψ(σ,0,1) = (σ,2+1,g1) = (σ,3,3);

again, since slot 1 is red we have

Ψ(σ,0,1,1) = (σ,g1−1,2+1,g1) = (σ,2,3,3);

Finally, since slot 4 is green we obtain

Ψ(σ,0,1,1,4) = (σ,g4,2,3,3) = (σ,0,2,3,3) ∈ S(σ,4).

Letτ= (σ,0,1,1,4) andτ′ = (σ,0,2,3,3). Thenτ= 15342768andτ′ = 13248675.
It is easy to see thatmajτ= 12andmafτ′ =12. Hence we have checked equation (3.16).
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Using theorem 5, we obtain the following result.

Corollary 7. (a) There is a bijectionφ : Sn → Sn such that for anyσ ∈ Sn we have

(fix, maf)σ = (fix, maj)φ(σ).

(b) The bi-statistic(fix,maf) is equidistributed with the bi-statistic(fix,maj) on the
symmetric groupSn.

The following result was first proved by Wachs [17, corollary3].

Corollary 8. Letσ be a derangement inSn and m≥ 0. We have

∑
π∈S(σ,m)

qmajπ = qmajσ
(

m+n
n

)

q
.

Proof: By theorem 5 we have

∑
π∈S(σ,m)

qmajπ = ∑
π∈S(σ,m)

qmafπ

= qmajσ ∑
0≤i1≤···≤im≤n

qi1+i2+···im

= qmajσ
(

m+n
n

)

q
.

The last line follows from a well-known result [1, p. 33].

4. q-derangement matrices

We first prove the following result.

Proposition 9. Let (ak
n(x,q)) be a q-Seidel matrix. Then the following three conditions

are equivalent:

a0
n(x,q) = [n]q!

n

∑
i=0

(−1)i q
( i

2)

[i]q!
, (4.17)

an
0(x,q) = [n]q!

(

1+
n

∑
i=1

(x−1)(x−q) · · ·(x−qi−1)

[i]q!

)

, (4.18)

an
0(1,q) = [n]q! and a0

n(x,q) is independent of x. (4.19)

Proof: By theq-binomial formula [11, p.7]

∞

∑
n=0

(a;q)n

(q;q)n
tn =

(at;q)∞

(t;q)∞
,

we have in view of (1.5) and (1.6),

1+
∞

∑
n=1

(x−1)(x−q) · · ·(x−qn−1)

[n]q!
tn = eq(xt)Eq(−t).
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Therefore the generating functions of (4.17), (4.18) and (4.19) are respectively the fol-
lowing:

A(t) = ∑
n≥0

a0
n(x,q)

tn

[n]q!
=

Eq(−t)
1− t

, (4.20)

A(t) = ∑
n≥0

an
0(x,q)

tn

[n]q!
=

eq(xt)Eq(−t)
1− t

, (4.21)

A(t)|x=1 = ∑
n≥0

an
0(1,q)

tn

[n]q!
=

1
1− t

. (4.22)

So, it suffices to prove that the equivalence of (4.20), (4.21) and (4.22). Indeed,
(4.20)⇐⇒ (4.21): this follows from proposition 2;
(4.21)=⇒ (4.22): this is obvious;
(4.22)=⇒ (4.20): sinceA(t) is independent ofx, equation (4.20) follows then from

(2.12) by settingx= 1.

Definition 3. A q-derangement matrix is the q-Seidel matrix satisfying any of the three
conditions of proposition 8.

If x= 1, thenan
0(x,q) = [n]q! and theq-derangement matrix is as follows :

k\n 0 1 2 3 4

0 1 0 q q+q2
( q+2q2+2q3

+2q4+q5+q6

)

1 1 q q+q2+q3
( q+2q2+2q3

+3q4+2q5+q6

)

2 1+q q+2q2+q3
( q+2q2+3q3

+4q4+3q5+q6

)

3 [3]q!
( q+3q2+5q3

+5q4+3q5+q6

)

4 [4]q!

(ak
n(1,q))

Denote bySk
n the set of permutations on[n+ k] of which all the fixed points are

included in{n+ 1,n+ 2, . . .,n+ k}. In particularS0
n is the set of permutations with-

out fixed points on[n] andSk
0 the set of all permutations on[k]. The following result

generalizes a result of Dumont and Randrianarivony [8].

Theorem 10. The coefficients akn(x,q) (n, k ≥ 0) in a q-derangement matrix have the
following combinatorial interpretation:

ak
n(x,q) = ∑

σ∈Sk
n

xfix σqmafσ. (4.23)

Proof: Notice thatSk−1
n+1 ⊂ Sk

n. Set

∆k
n = S

k
n \S

k−1
n+1 = {σ ∈ S

k
n | σ(n+1) = n+1}.
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We construct a bijectionϕ : ∆k
n → Sk−1

n such that for allσ ∈ ∆k
n,

mafσ = n+maf(ϕ(σ)),
fix σ = 1+ fix(ϕ(σ)).

Indeed, ifσ ∈ ∆k
n we defineϕ(σ) as the word obtained fromσ by deletingn+ 1 and

reduce all the values strictly bigger thann+1. It is readily verified thatϕ is the desired
bijection. Therefore

∑
σ∈Sk

n

xfix σqmafσ = xqn ∑
σ∈Sk−1

n

xfix σqmafσ + ∑
σ∈Sk−1

n+1

xfix σqmafσ, (4.24)

which is the recurrence (2.7). So it remains to check the initial condition. NowSn
0 = Sn

and it is well-known [14] that∑σ∈Sn qmajσ = [n]q!, so it follows from corollary 7 that

an
0(1,q) = ∑

σ∈Sn

qmafσ = ∑
σ∈Sn

qmajσ = [n]q!.

The theorem follows then from proposition 9, sincea0
n(x,q) is clearly independent ofx.

Remark: Since(fix, maf) and(fix, maj) are not equidistributed onS2
1 we cannot replace

maf by maj in the above theorem.

From Corollary 7, proposition 9 and theorem 10 we derive the following result.

Corollary 11. The final sequence of the q-derangement matrix has the following inter-
pretation:

an
0(x,q) = ∑

σ∈Sn

xfix σqmafσ (4.25)

= ∑
σ∈Sn

xfix σqmajσ (4.26)

= [n]q!

(

1+
n

∑
i=1

(x−1)(x−q) · · ·(x−qi−1)

[i]q!

)

. (4.27)

Note that the last equation has been obtained by Gessel and Reutenauer [12] and by
Wachs [17] in the specialx= 0 case using different methods.

5. An open problem aboutq-succession numbers

Let σ be a permutation inSn. For convenience putσ(0) = 0. We say that an element
p (with 1 ≤ p ≤ n) is a successionof σ if σ(p) = σ(p−1)+ 1. The p is called the
succession position, while σ(p) is called thesuccession value. Let SUC(σ) be the set
of succesion values ofσ and let sucσ be the number of successions ofσ. For example,
if

σ =

(
1 2 3 4 5 6 7 8 9
1 4 3 8 9 5 6 7 2

)

,
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then SUC(σ) = {1,9,6,7} and sucσ = 4.
We use a variant of Foata’s first fundamental transformation[10] to show that the

statistics fix and suc are equidistributed onSn.
Given a permutationσ = σ(1)σ(2) · · ·σ(n) ∈ Sn we setσd = σ(2) · · ·σ(n)σ(1). We

call thestandard formof the factorization into cycles ofσ the unique writingσ̄ such
that in each cycle(a,σ(a), . . . ,σl (a)) the maximumσl (a) is in the last position and the
cycles ofσ are decreasingly ordered according to their maxima. (Note that this isnot
the usual definition of standard form.) We defineϕ(σ) as the permutation obtained by
erasing the parentheses in the standard form ofσ̄d.

The following lemma is easy to verify.

Lemma 12. The mappingϕ is a bijection onSn such that for allσ ∈ Sn, FIX(σ) =
SUC(ϕ(σ)) andfix σ = sucϕ(σ). Hence the statisticsfix andsucare equidistributed
onSn.

For example, ifσ = 142836759∈ S9, then

σd = 428367591 and σ̄d = (14389)(567)(2).

Erasing the parentheses we obtain the permutationϕ(σ) = 143895672. We have

FIX(σ) = SUC(ϕ(σ)) = {1,6,7,9}.

Define the statistic

suc′ σ =

{

sucσ, if σ(1) 6= 1,

sucσ−1, if σ(1) = 1;

and let
Fn(x) = ∑

σ∈Sn

xfix σ, Sn(x) = ∑
σ∈Sn

xsuc′ σ.

Then, using lemma 12, we obtain a bijective proof of the following known results (See
[3,15]).

Proposition 13. We have

Sn+1(x) = Fn+1(x)+ (1− x)Fn(x), (5.28)

and in particular
Sn+1(0) = dn+1+dn. (5.29)

Settingq= 1 in (4.20) we see that

∑
n≥0

Fn(x)
tn

n!
=

e(x−1)t

1− t
. (5.30)

Hence, from equation (5.28), we have

∑
n≥0

Sn(x)
tn

n!
=

e(x−1)t

1− t
+(1− x) ∑

n≥1
Fn−1(x)

tn

n!
, (5.31)
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in which by conventionS0(x) = F0(x) = 1. Thus

∑
n≥0

Sn(x)
tn

n!
=

e(x−1)t

1− t
+(1− x)

∫ t

0

e(x−1)z

1− z
dz. (5.32)

Let L be the formal Laplace transformation on the ring of formal power series, that is,
L(∑anxn/n!) = ∑anxn. Then

∑
n≥0

Fn(x)t
n = L

(

e(x−1)t

1− t

)

= ∑
n≥0

n!tn

[1− (x−1)t]n+1. (5.33)

Therefore

∑
n≥0

Sn(x)t
n = ∑

n≥0

Fn(x)t
n+(1− x) ∑

n≥0

Fn(x)t
n+1

= [1− (x−1)t] ∑
n≥0

Fn(x)t
n

= ∑
n≥0

n!tn

[1− (x−1)t]n
. (5.34)

In the case ofq= 1, using lemma 11, we can restate theorem 9 in terms of succes-
sions. Unfortunately, since the mappingϕ does not keep track of the maj statistic, we
do not have a full interpretation in the last model.

The distribution of our statistics onS3 is as follows:

σ\stat maf maj suc fix
1 2 3 0 0 3 3
1 3 2 1 2 1 1
2 1 3 3 1 0 1
2 3 1 2 2 1 0
3 1 2 1 1 1 0
3 2 1 2 3 0 1

Statistic distributions on S3

Finally we record two open problems related to our work.
1) Find a mahonian statistic “mag” such that(suc,mag) is equidistributed with

(fix,maj) on the symmetric groupSn.
2) Generalize the statistic “maf” on permutations towordsas in [5, 13] for other

mahonian statistics.
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