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Introduction

Many functions and objects in mathematics have natural
perturbations, called q-analogues.

They contain an extra variable q.

When q = 1, everything goes back to normal.

Goals of this talk:

To see an example of a q-analogue, and how it arises.

To see that by making a problem more difficult, it sometimes
becomes easier to solve.



Question 1 (of 3)

Example: 111001010 is a string, made of 0’s and 1’s, that contains
9 characters.

How many strings are there, made of 0’s and 1’s, that contain 9
characters?

Answer: there are two possibilities for each character, so the
number of possible strings is

2× 2× 2× 2× 2× 2× 2× 2× 2 = 29(= 512).

By similar reasoning, there are 2n strings, made of 0’s and 1’s, that
contain n characters.



Question 1, continued

The original question was phrased in terms of 0’s and 1’s.

Example: 111001010: uses 0’s and 1’s.

The question could have been phrased in terms of any two
symbols, e.g., T and F, x and y , etc.

Example: yyyxxyxyx : uses x ’s and y ’s.

Code: x = 0, y = 1.
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The string yyyxxyxyx can be represented by a lattice path.

There are 9 steps.
The start point is (0, 0) and the end point is (4, 5).



Question 2 (of 3)

The string yyyxxyxyx can be represented by a lattice path, starting
at (0, 0) and ending at (4, 5).

How many distinct lattice paths are there, starting at (0, 0) and
ending at (4, 5)?

How many distinct lattice paths are there, starting at (0, 0) and
ending at (k, n − k)?



One way of answering it:

Consider strings of length n: ( , , , , , , , , )

Count the number of ways of choosing k positions to insert x ’s:
( , , , x , x , , x , , x)

Fill the remaining positions with y ’s

In this example, n = 9 and k = 4, and the number of ways of
placing the x ’s is 126

9× 8× 7× 6

4× 3× 2× 1
=

9× 8× 7× 6× 5× 4× 3× 2× 1

(4× 3× 2× 1)× (5× 4× 3× 2× 1)
=

9!

4!5!

In general, the number of distinct lattice paths, starting at (0, 0)

and ending at (k , n − k), is
n!

k!(n − k)!
. “Binomial coefficient”



Another way to view it:

(x + y)9 = (x + y)(x + y)(x + y)(x + y)(x + y)(x + y)(x + y)(x + y)(x + y)

= xxxxxxxxx + · · ·+ yyyxxyxyx + · · ·+ yyyyyyyyy

= x9 + · · ·+ (how many?)x4y 5 + · · ·+ y 9

What is the expansion of (x + y)9?

What is the expansion of (x + y)n?



The binomial theorem

(x + y)0 = 1
(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

The binomial coefficient

(
n

k

)
=

n!

k!(n − k)!
is the number of

lattice paths of length n, that contain k x ’s and (n − k) y ’s.



Pascal’s triangle
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Formula:

(n
k

)
= n!

k!(n−k)!

Recurrence relation:
( n
k−1
)

+
(n
k

)
=
(n+1

k

)



Question 3 (of 3)

y
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The lattice path yyyxxyxyx

How many lattice paths:

have length 9 Ans: 29 = 512

and end at (4, 5) Ans:
(9
4

)
= 126

and enclose an area of 15 square units? Ans: ?



Question 3 (of 3)

y

x
(0, 0)

(4, 5)

The lattice path yyyxxyxyx

General question: Suppose 0 ≤ j ≤ k(n − k).

How many lattice paths

have length n Ans: 2n

and end at (k , n − k) Ans:
(n
k

)
and enclose an area of j square units?



How to keep track of the area?

yx xy

Use a factor of q to record each time a lattice path reduces in area
by 1 square unit.

We say that (x , y) is a q-Weyl pair if:

yx = qxy

qx = xq

qy = yq



Example

yx = qxy , qx = xq, qy = yq

yxyxyy = yx(yx)yy = yx(qxy)yy = qyxxyyy
= q(yx)xyyy = q(qxy)xyyy = q2xyxyyy
= q2x(yx)yyy = q2x(qxy)yyy = q3xxyyyy

yxyxyy = q3x2y4.

x2y4: the path goes from (0, 0) to (2, 4).
q3: the original path encloses an area of 3 square units.



An algorithm

Question

Find the number of lattice paths

of length n

that go from (0, 0) to (k , n − k)

and enclose an area of j square units

Solution

Expand (x + y)n according to the q-Weyl laws

yx = qxy , qx = xq, qy = yq.

Extract the coefficient of qjxkyn−k .



Examples

(x + y)(x + y) = xx + xy + yx + yy

So (x + y)2 = xx + xy + qxy + yy

= x2 + (1 + q)xy + y2.

(x + y)3 = (x + y)(x + y)2

= (x + y)(x2 + (1 + q)xy + y2)

= x3 + (1 + q)x2y + xy2 + yx2 + (1 + q)yxy + y3

= x3 + (1 + q)x2y + xy2 + q2x2y + (1 + q)qxy2+y3

= x3 + (1 + q + q2)x2y + (1 + q + q2)xy2 + y3.



Examples

q-Weyl relations: yx = qxy , qx = xq, qy = yq

(x + y)2 = x2 + (1 + q)xy + y2

(x + y)3 = x3 + (1 + q + q2)x2y + (1 + q + q2)xy2 + y3

(x + y)4 = x4 + (1 + q + q2 + q3)x3y

+ (1 + q + 2q2 + q3 + q4)x2y2

+ (1 + q + q2 + q3)xy3 + y4

(x + y)n =
n∑

k=0

c(n, k)xn−kyk , c(n, k) = ?



(x + y)n+1

= (x + y)(x + y)n

= x
n∑

k=0

c(n, k)xn−kyk + y
n∑

k=0

c(n, k)xn−kyk

=
n∑

k=0

c(n, k)xn+1−kyk +
n∑

k=0

c(n, k)qn−kxn−kyk+1

(x + y)n+1

= (x + y)n(x + y)

=
n∑

k=0

c(n, k)xn−kykx +
n∑

k=0

c(n, k)xn−kyky

=
n∑

k=0

c(n, k)qkxn+1−kyk +
n∑

k=0

c(n, k)xn−kyk+1



Equate coefficients of xn+1−kyk :

c(n, k) + qn+1−kc(n, k − 1) = qkc(n, k) + c(n, k − 1)

c(n, k) =
(1− qn+1−k)

(1− qk)
c(n, k − 1)

c(4, 2) =
(1− q3)

(1− q2)
c(4, 1)

=
(1− q3)(1− q4)

(1− q2)(1− q)
c(4, 0)

=
(1− q4)(1− q3)(1− q2)(1− q)

(1− q2)(1− q)(1− q2)(1− q)

cf.

(
4

2

)
=

4!

2!2!
=

4× 3× 2× 1

2× 1× 2× 1



c(4, 2) =
(1− q4)(1− q3)(1− q2)(1− q)

(1− q2)(1− q)(1− q2)(1− q)

=

1− q4

1− q

1− q3

1− q

1− q2

1− q

1− q

1− q

1− q2

1− q

1− q

1− q

1− q2

1− q

1− q

1− q

=
(1 + q + q2 + q3)(1 + q + q2)(1 + q)(1)

(1 + q)(1)(1 + q)(1)

The q-integer:
[n]q = 1 + q + q2 + q3 + · · ·+ qn−1 (=n, when q = 1)

The q-factorial:
n!q = [n]q[n − 1]q · · · [2]q[1]q (=n!, when q = 1)



The solution of

c(n, k) =
(1− qn+1−k)

(1− qk)
c(n, k − 1), c(n, 0) = 1

is given by the q-binomial coefficient

c(n, k) =

[
n
k

]
q

=
n!q

k!q(n − k)!q

where

n!q = 1(1 + q)(1 + q + q2) · · · (1 + q + q2 + q3 + · · ·+ qn−1).



The q-binomial theorem

Suppose yx = qxy , qx = xq and qy = yq. Then

(x + y)n =
n∑

k=0

[
n
k

]
q

xn−kyk

where [
n
k

]
q

=
n!q

k!q(n − k)!q

and

n!q = 1(1 + q)(1 + q + q2) · · · (1 + q + q2 + q3 + · · ·+ qn−1).



Example, again

How many lattice paths:

have length 9 Ans: 29 = 512

and end at (4, 5) Ans:
(9
4

)
= 126

and enclose an area of 15 square units? Ans: ?

(x + y)9 =
9∑

k=0

[
9
k

]
q

xkyn−k

[
9
4

]
q

=
(1− q9)(1− q8)(1− q7)(1− q6)

(1− q4)(1− q3)(1− q2)(1− q)

= q20 + q19 + 2q18 + 3q17 + 5q16 + 6q15 + 8q14 + 9q13

+ 11q12 + 11q11 + 12q10 + 11q9 + 11q8 + 9q7 + 8q6

+ 6q5 + 5q4 + 3q3 + 2q2 + q + 1



q-binomial coefficients; also called Gaussian polynomials

[
n
k

]
q

=
n!q

k!q(n − k)!q

[
n + 1
k

]
q

=

[
n
k

]
q

+ qn+1−k
[

n
k − 1

]
q

= qk
[

n
k

]
q

+

[
n

k − 1

]
q

The q-binomial coefficient

[
n
k

]
q

is a polynomial in q

of degree k(n − k).

[
n
k

]
q

→
(
n

k

)
as q → 1



Examples of q-Weyl pairs

What are x and y if yx = qxy , qx = xq, qy = yq?

Obviously, x and y are not numbers (real or complex).

x =


1 0 0 · · · 0
0 q 0 · · · 0
0 0 q2 · · · 0
...

...
... · · ·

...
0 0 0 · · · qn−1

 , y =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

Define operators x and y by

x(f (t)) = tf (t), y(f (t)) = f (qt).

Then yx(f (t)) = qxy(f (t)).



Exercises

Prove that

(a + b)(a + qb)(a + q2b) · · · (a + qn−1b)

=
n∑

k=0

[
n
k

]
q

qk(k−1)/2an−kbk ,

assuming all variables commute.

Prove that

∞∏
k=1

(1 + xq2k−1)(1 + x−1q2k−1)(1− q2k) =
∞∑

k=−∞
qk

2
xk



Hint for Exercise 1

Hints: Write

(a + b)(a + qb)(a + q2b) · · · (a + qn−1b) =
n∑

k=0

f (n, k)akbn−k

Then

(a + b)(a + qb)(a + q2b) · · · (a + qn−1b)(a + qnb)

= (a + b)(a + qb)(a + q2b) · · · (a + qn−1b)(a + qnb)

So

n∑
k=0

f (n, k)akbn−k(a + qnb) = (a + b)
n∑

k=0

f (n, k)ak(qb)n−k

See where this leads. (When q = 1, it slips though our fingers...)



Hint for Exercise 2

Start with

(a + b)(a + qb)(a + q2b) · · · (a + qn−1b)

=
n∑

k=0

[
n
k

]
q

qk(k−1)/2an−kbk .

Replace q with q2, n with 2n, b with xq1−2n and let a = 1.

Then take the limit as n→∞.

The result is

∞∏
k=1

(1 + xq2k−1)(1 + x−1q2k−1)(1− q2k) =
∞∑

k=−∞
qk

2
xk



Summary

We have seen q-analogues of:

integers

factorials

binomial coefficients

the binomial theorem

The q-binomial coefficients have combinatorial significance.

The extra variable q allowed us to deduce the q-binomial theorem
instead of just verifying it.

The end!


