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Abstract

The inversion of combinatorial sums is a fundamental problem in algebraic combinatorics.
Some combinatorial sums, such as a, =3, dn b, cannot be inverted in terms of the orthog-
onality relation because the infinite, lower triangular array P = {d,«}’s diagonal elements are

equal to zero (except do,0). Despite this, we can find a left-inverse P such that PP:! and
therefore are able to left-invert the original combinatorial sum, and thus obtain b, = Ek dykak.

Résumé

L’inversion des sommes combinatoires est un probléme fondamental dans 1’algebre combina-
toire. Certaines sommes combinatoires, par exemple a, = » _, dnxbx, ne peuvent pas étre inverties
selon la rélation d’orthogonalité, parce que les éléments sur la diagonale de la matrice triangulaire
inférieure P = {d,«} sont nuls (sauf do ). Malgré cela, on peut bien souvent définir une matrice
left-inverse P telle que PP =1 et, par conséquent, on peut left-invertir la somme combinatoire
d’origine, en obtenant b, =Y, dy kas.

1. Introduction

The problem of inverting combinatorial sums has long interested researchers and the
main reference on the subject is the famous book [11] by John Riordan ‘Combinatorial
Identities’. Riordan summarized his results in a paper [10], and some authors subse-
quently tried to give a unitary approach to his methods (see, e.g., Chu [4], Gould and
Hsu [6], Egorychev [5] and Sprugnoli [15]). Some authors, such as Milne [9], have
examined the problem from various other points of view; a particularly interesting
approach through the Umbral Calculus has been given by Roman [12].

We aim at obtaining a substantial generalization of Riordan’s results by showing
that the method of generating functions, we examine in this paper, together with the
concept of Riordan arrays, are powerful tools for proving a large class of inversions,
that strictly includes all the inversions proposed in Riordan’s book.
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We are mainly interested in the set R[¢] of formal power series f(1)=3 o, fit®
having real coefficients in some indeterminate f; however, instead of R, we could
consider any field F with 0 characteristic, in particular the field C of complex numbers.
If + and - denote the usual sum and Cauchy product in Rz, this is an integral domain;
the smallest field containing R[] is the field R((t)) of fermal Laurent power series
f)y=3"12, fet*, with me Z. The order of f(1)=3_7°, fit* is the minimum value
of k for which f; #0. Ryj¢] denotes the set of all formal power series of order s,
In particular, Ry¢] is the set of invertible power series, i.e., power series f(¢) for
which fy= f(0)#£0: it is well-known that g(¢) € R|s} such that f(t)g(t)=1 exists
only for these series. For a complete theory of formal power series, the reader is
referred to Henrici [8].

If { /i bven 1s a sequence of real numbers, its generating function f(¢) is defined as:

FO=% fiheex = %Lk} :2 fit* Ryl

As usual, the notation [t"] stands for the ‘coefficient of” operator and, therefore,
if £(¢)=3_ fit* is a formal power series, then [t¥]f(?) = f;.

The concept of a Riordan array is a convenient way of expressing certain infinite,
lower triangular arrays {d,;|n,k €N, k<n}. A Riordan array is a pair (d(z),A(¢))
of formal power series, with d(7) € Ry|t}; it defines an infinite, lower triangular array
{dn.1} according to the rule:

dp g = [1"1d () (th(0))~. (1.1)

The most common example of a Riordan array is the Pascal triangle, for which
d(t)=h(t)=(1 —t)~'. When h(z) € Rq[t] the Riordan array is called proper and since
the diagonal elements of the corresponding {d, ;} are all different from 0, the array is
invertible, and its inverse is also a proper Riordan array. No other Riordan array can
be inverted in the usual row-by-column product. Proper Riordan arrays form a group
called the Riordan group. Riordan arrays are the class of lower triangular, infinite ar-
rays for which combinatorial sums can be expressed in terms of generating functions;
more precisely, we have

ki dus fi = ["1d(O) S (h(0)) (1.2)
=0

when f(¢) is the generating function of the sequence { fi }x ¢ N-

Since R|¢] and R[y] (in which ¢ and y are any two indeterminates), are isomorphic,
¢t is usually changed into y or any other indeterminate, and vice versa, whenever it is
convenient. Composition is another important operation in R]¢], and f(g(#))= f(¢) o
()= f(¥)y =g 1s defined whenever g(r) € Ryjt] with s>1 or f(¢) is a polynomial.
If f(¢+)€Ryf¢), then a unique g(r) € Ry ] exist such that f(g(¢))=g(f(z))=1, which
is therefore the compositional inverse of f(t). The elements of R,|¢] are called almost
units or delta series. The computation of the compositional inverse of a delta series
leads us back to the famous, fundamental Lagrange Inversion Theorem, which we use
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in the formulation of Goulden and Jackson [7]: let ¢(r) € Rg|¢]; then a unique formal
power series w(¢) € Ry[¢] exists such that w = t¢p(w). Moreover
1. If f(¢) € R((¢)) then

ST 0" n#0, nzorder(f),
[ fwy=9q oo L (1.3)
DD =D 1 (»ne(y) ¢'(y) n=0.

2. If F(¢) € Rj¢] and the sequence {c,},en is defined by ¢, = [t"]1F(¢)$(r)", then

p F(w)
= et =—t 1.4
c(t) k:OCt T (1.4)

These formulas can be easily manipulated by introducing a particular notation.
By writing:

S@&y={gMlym(t, y)=hat, y)]

we denote the function (or formal power series) of the indeterminate ¢, obtained by

substituting the solution y = y(z), with y(0)=0, to the functional equation A4(z, y)=

ha(t, y) in g(y). The following points should be emphasized:

e the bound variable y in this notation can usually be deduced from the context,
and we omit it as a subscript of the vertical bar. Whenever possible, equation
h(t, y)=ha(t, v) is written as y =h(¢, y), thus clarifying which is the bound vari-
able;

e obviously, we have f(g(¢))=[f(y)|y=g(?)]; besides, a convenient way of ex-
pressing the applicability conditions of the Lagrange Inversion Theorem is

J(y=fu(e) =Lf(w)|w=1tdp(w)];

e in particular, if {¢; }xen is a sequence defined as in point 2 in the Lagrange Inversion
Theorem, then its generating function is

F(w)
L —1¢'(w)

F(w)
1= w'(w)/p(w)
After these preliminary notational remarks, we now go on to illustrate our method

for inverting combinatorial sums with an example directly connected to the problems
we are going to solve in our paper. Let us consider the combinatorial identity:

ay= (;k) b, (15)

k=0

e t¢(w)} - {

c(t):g{c,,}:{ w:tqb(w)}.

where {b;}ren 18 a given sequence and {a;}ren is defined in terms of the 5y’s.
The problem in inverting this identity is to find a relation defining the b;’s in terms of
the a;’s. According to the Riordan array theory, identity (1.5) is related to the Riordan
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array D=(1/(1 —¢),#/(1 — ¢)?), whose generic element can be found by means of
relation (1.1):

ey L r k_ n—2k 1 _ =2k —1 n—2k _[ 1
dn,k—[t]l—_t<m>—[t ]m‘<n_2k)(_l) —(Zk)'

Therefore, the generating function a(s) of the sequence {axlien is a(t)=
b(e*/(1 — £)*)/(1 — t) where b(z) is the generating function of the sequence {b; }ren.
This relation can be inverted:
& b 1 e
— }=(1 - = —t)a(t =—1.
b@_w)Utmnm ) B m>y“ﬂJ
The generic element b, can now be found by a series of computations related to the
Lagrange Inversion Theorem; we find

by =[y"16(») = [¥"I(1 = a(®)t = y"*(1 = )] = W?][(1 = Da(0)jt =w(1 — 1)]

= LA = 0d(0) — a@)(] — 1)
2n

2n—1
1 m—1-k{ 2n+1
_Z(;—o (-1) (Zn—k—l (k + Dagyy

2n—1

2n
_ -1 2n—1—k
g( ) (2n~k—l)ak)
1 22 (2, +2"Z“(_l)k 2n 41\ 21—k
IS Uy 2 an—k)2am 1%

2n
1 2n+ 1\ 2nk +k+2n—k
= — —1)* —_— |
2n (Z;( ) (Zn——k) 2n+1 ak)
By performing some obvious simplifications, we eventually find

2n
b= (1) (2k")ak. (1.6)
k=0

This inversion is not present in Riordan’s book and the reason is fairly obvious.
If we examine the infinite, lower triangular array defined by D above, the diagonal
elements are all zero (except do,0) and, therefore, the array cannot be inverted in the
usual sense. In other terms, identity (1.5) cannot be associated to any orthogonal re-
lation. On the other hand, our proof does not seem to be correct because the two
identities y=1¢%/(1 —¢)? and t=y'(1 — t) are not equivalent. According to the for-
mal power series theory (see [8]), when we have a functional equation y = A(t) and
h(t) € Ry[t] with s> 1, the solution ¢=( ») is not unique and there are exactly s so-
lutions #;(y), 2(),...,t(y) which actually belong to R[y'#]. In our example, among
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the various possibilities, we arbitrarily chose one solution and used it to apply the
Lagrange Inversion Theorem. The question is whether or not our choice is justifiable.
The inversion is definitely correct and, if we define

(@) p-(0 )

we can easily check that PP =/ and PPP =P. P will be called the ‘left-inverse’ array
of P and, strictly speaking, we should refer to the method we develop as a ‘left-
inversion process’.

We conclude this long introduction by summarizing the threefold aim of this paper:
(i) justifying the use of a single solution to a functional equation from a theoretical
point of view, in situations like the preceding one; (ii) examining the process of lefi-
inversion; (iii) giving a number of significant examples of left-inversion, to show how
Riordan’s results can be generalized and new inversions can be found.

n,kGN},

2. Stretched Riordan arrays

In the Introduction, we defined the concept of Riordan array as developed by Shapiro
et al. [13] and Sprugnoli [14]. Riordan arrays are just a concrete way to define the
so-called 1-umbral calculus (see [12]) and, in fact, Riordan arrays are called ‘recursive
matrices’ by Barnabei et al. [2]. Formula (2.2) below is a version of the ‘transfer theo-
rem’ of umbral calculus (see Roman [12, p. 50]). What seems to be new in the present
paper is the extension of umbral results to stretched arrays, a topic only occasionally
considered in the literature (see Al-Salam and Versa [1] and Di Bucchianico doctoral
thesis [3], two references suggested to us by one referee).

We can easily show that the usual row-by-column product of two Riordan arrays is
another Riordan array, and we have

(d(2), k(1)) * (a(2), b(1)) = (d()a(th(z)), h(2)b(th(2))).

The Riordan array (1,1) is the identity matrix and if (d(¢),h(¢)) is proper, then its
inverse (d(t),h(t)) can be computed by equating the identity matrix to the expression
above. We find

dy)=[d) \y=th(®)],  h(y)=T[h(t)""|y=1th()]. 2.1)

Since the Riordan array is proper, h(t) € Rq[¢] and, therefore, the functional equation
y =th(t), has a unique solution £ =1¢(y) and d(¢), h(t) are well-defined. By means of
the Lagrange Inversion Theorem, we can show that the generic element d,; of the
inverse array is given by

d-n,k:%[t"_k] (k—td'(’)) 1

aw ) aomay " (2.2)
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Fig. 1. A vertically stretched R.a., a horizontally streched R.a. and a proper R.a.

and d_o.k =d; ]5;(,0, where J; o is the Kronecker symbol. On the basis of this result,
Sprugnoli [15] proposed an algorithm for proving the inversions in Riordan’s book [11].

When (d(1),A(1)) is not proper, we can write h(t)=h, £*"' + ho® + - .=
PNy gt hg 224 ) =T u(t), where by 1 #0, s> 1 and v(2) € Ryft]. The cor-
responding numerical array is ‘vertically stretched’, whereas proper Riordan arrays are
lower triangular (see Fig. 1). In this case, by going on to R(()), we can formally
derive formulas (2.1) again, but we have h(z) € R,_|t] and the functional equation
y=1th(t) no longer has a unique solution 7 =¢(y). According to the power series the-
ory (see, e.g., [8]), y=th(t) has 5 solutions t; =t;(y),....t; =1,(») in the following
form:

m=|
Here, w, is any one of the sth primitive roots of unity. The coeflicients #,,’s do not
depend on J, ie., they are all the same in the s formal power series in Rjw{y'*].
These s formal power series are said to be conjugate to h(t). They are well-known
thanks to the multisectioning series theory (see, e.g., Riordan [11]). Their main prop-
erty is that

] R
. S G(ER]y, >0,

J=1

i.e., if we make the average of all of them, we obtain a formal power series in which
the roots of unity and the fractional powers of y disappear.

Properly speaking, formulas (2.1) now correspond to s pairs of functions, one for
each choice of #;,(y), j=1,2,...,s. Let us denote the pair obtained considering the jth
solution #;(y) by (d/1(y),AUN¥)), j=1,2,...,s. Since d(t) € Roft|, dUN(p) is well-
defined and belongs to Rojwiy'™| for every j. As far as hl/l(p) is concerned, let
us make the following remarks. 1f we write A(r) =1""'v(r), with v(¢) € Ryj¢| an in-
vertible formal power series, and then fix any j between 1 and s, we should have
y=t(yyo(¢(y)) or tj(y)"':yv(tj(y))‘l, where v(tj(y))’1 is well-defined in Rﬂo)fyl”/“‘ﬂ.
On the other hand, by means of the previous definition, we have

()

Ly ’

B = h(t(9) " = L2 u(() ' =
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thus establishing a very simple relation between kU/1(y) and the solution ti(y) to the
basic functional equation. This also shows that #l/](y) is well-defined and belongs
to Ri_,((wdy'™)).

It is worth noting that in our introductory example, by solving the functional equa-
tion, we obtain

1,2 1/2
; ph
Liy)= *]—_;1—5

Y

ll(}’)zm,

From these expressions and (2.2), we can easily find the two pairs of the inverse
Riordan array:

1 1
d(¥ =7 ;2 G =757
] —1
T AT 15 h =T
YI2(1 + vy 2(y) YI2(1 = yi7)

From a theoretical point of view, this may be satisfactory since we obtain a good
definition of the ‘inverse’ non-proper Riordan array. However, from a practical (and
numerical) point of view, the question is to establish which array corresponds to the
s-uples of formal power series pairs. We can prove the following results:

h(y)=

Theorem 2.1. The formal power series

&)= 3 V)Y

Jj=1

belong to Ry| (properly, to R.[y|, with r = [k/s| VkeN) and, therefore, they can
be taken as the column generating functions of an infinite array D = {d, ;}nren, in
which the rows generating functions have order ns + 1.

Proof. As previously mentioned, all the solutions #,(y), 2(y),...,,(») of the functional
equation y = th(t) have the same coeflicients #,,. According to Henrici [8], these coef-
ficients can be computed by solving the equation z = (¢h(r))"* = tv(¢)'”, which satisfies
normal conditions for series inversion and, in particular, those required for applying the
Lagrange Inversion Theorem. If #(z) is the unique solution to the modified functional
equation, then we have

=4 =twly"™), j=12...5

ie., the actual s solutions are formed by simply substituting the indeterminate y for
the new ‘indeterminate’ w{y'*. We can associate, to the solution #(z) of the modified
equation, the following two functions:

1 , 1
Ry|z], h(z)=
=) < olz] ) h(1(2))

d(z)= R, _,((2)), (2.3)
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having the property that

dU() =d(wly"™), R =hkoly'"®), j=12...s
This immediately shows that all the d [j]( y) and the I;m(y), Jj=12,...,s, have the
same coefficients in R{w{ y'*]. The same is true for the powers ( yl_z[j ]( y)* and all their
combinations. When we make the average of these functions with j=1,2,...,s, by a
well-known property of the roots of unity, the non-integer powers disappear and the
integer powers all have the same coefficient, which therefore becomes the coefficient
in di(y). Finally, from A(t) € R,_[¢], some computations yield that the order of d;(y)
is [k/s]. Fig. 1 illustrates the original array D, the newly defined array D and a proper
Riordan array. O

We call the non-proper Riordan array, i.c., the Riordan array with A(t) ¢ Ryft]
vertically stretched, and the array {d, i} keN,

_ 1 St Y
A =0"15 Y 40RO, @4)
j=1

defined by means of a set of conjugate pairs of formal power series in R[[w{ y]
horizontally stretched, because of its shape.

Theorem 2.2. If we consider the row-by-column product, we find DD =1 and there-

fore DDD = D. In this sense, D is the left-inverse of the array D and can be used to
‘invert’ combinatorial sums related to non-proper Riordan arrays.

Proof. We have

_ 1 S 'y
> dusdim=Y ([y"] = > R o0k | (it 1d@ana)™)
k k j=1

1 S 1
=" 32 4V Y R N it dexae)”
J=1 k

=115 3 O ONGR GR Gn)y

j=1

BN ,
=015 DU d(OR()" |z = (th()) F]|z = o) ]
=1

1< .
— [y = S/ Yt =[]y —
[y ]s jE:] (@ y)" =[y"1y" = onm
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where we freely apply the definition of dt ( y), rule 4(y)= yhm

remarks concerning the evaluation of the #,, coefficients. [

(»), and the above

From a practical point of view, instead of averaging on j=1,2,...,s, we can take

any d m( y) and its corresponding flm( y) and ignore the non-integer exponents to obtain

the following definition:

7Ll

dyi = y"d P R ). @2.5)

In our introductory example, by using j =1, we have

- 1
dn.k =[,V"] ( \/y

n—k/2 1
5 () o aee
I B A =
=k ](1+z)k+1—(2n—k)

(k14 2n—k =1\ on (2
_( 2n—k >( b =D (k>

Alternatively, we can use the solution to the modified functional equation y = (th(t)H)'~,
the functions d(y) and h(y) as defined in (2.3) and relation (2.1), and obtain the
following definition of d,x:

doi = [y")e(») = [y™1d)(P (). (2.6)

The reader can easily prove that this definition gives the same results as the previous
example, if d(y)=(1+ y)~! and h(y)=1/(y(1 + y)). Formula (2.6) is perhaps the
most direct method, while (2.4) and (2.5) are more elegant and show that the di(»)
can be defined as belonging to R]y] and as relating to the series multisectioning.

Remark. In general, to extract the coefficient of y" from a function f(f) where ¢ is
any one of the sth solutions to the functional equation y =t"v(¢), v(t) € Ro[y], we can
extract the coefficient of y* from f(t) being ¢ the unique solution to the functional
equation y = to(t)'~.

We can now prove a formula for dn.r, Which generalizes formula (2.2) for proper
Riordan arrays:

Theorem 2.3 (s-transfer formula).

d'(t)
(1)

- 1 1 -
dpy= E [t(""'"k)] (k —t ) ——, n>0, dox= 5k,0/d0.

A"
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Proof. We have
k

dui = [NV R =1p"] {’—

da(t)
_[ \n] [ _[b( )I vj! — i[,sn-—l i (L) 1
sn- de \d(t) /) v(t)"

y :(th(m"’“}

1 ktk=1d(e) — t*d'(1) 1

sn— 1|
= —|\t
sn[ ! d(1)? v(1)"
and we therefore conclude that
= 1 k d'(t) |
dyr=—[t" k—t——— 0.
h= G ( a0 ) dey "

When n=0, we obtain

’ 0| =110 i (0 ()1
o ["() o } - ]d(t) N O
—k 1 1 1 tkU(t) (t) 71( :
S P R O B (O

or d-O,k = ¢ o/do, because v(t),d(t) € Ry|t].

These formulas solve, from a theoretical point of view, the problem of inverting
combinatorial sums involving Riordan arrays {d,}, with A(¢) € Rj|?] and s> 0, since
every sum

Lnjs! ns  _
a,= 3. dnotby has the inverse b, =Y dyiax.
k=0 k=0

It is actually often more convenient to apply the Lagrange Inversion Theorem to obtain
the inverse formula directly, and this is illustrated in detail in the next section. As a
result of the previous remarks, we can generalize the Lagrange Inversion Theorem in
the following way:

Theorem 2.4. Let h(t)=+""'u(t)€R,_\|t] and set $(t)=uv(t)"'"; Consequently a
unique formal power series w(t) € R|t] exists such that w =td(w). Moreover if f(t)€
R((¢)) then

| LG, n#0,
n A — 1w i w )] — ns L- - 27
7O =] {[y‘)]f(yw%[y"]f(_v)v(y)-‘v'(,v), n—o. 7
If F(t) e R[t] then
n F(W’) S ns ( )
)| g =0 28
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Proof. If f(¢)€ R((¢)) then, by using the previous remark and the classical Lagrange
Inversion Theorem, we obtain

1A ) = wio(w)] = [y 1Lf(w)w = yd(w)]

I - b VRGO C O n#0,
DL+ s~ Y (y), n=0.

If F(r) € Rjt] then, by using the same approach as before, we have

" F(w) s o [ FO0
{t"} [W t=wv(w )} =[»"] { 1 — W(f)'(W)/(b(W) w __yq)(w)]
Fw F .
=[y"] {1———1();')(“\41—) w= )’d’(W)} =[»"] *v((v);?’ -

3. Sample inversions

In the simplest cases, formula (2.3) is a very direct method of inverting (or
left-inverting) combinatorial sums. In the Introduction, we presented an example
developed in a rather natural way corresponding to the general algorithm we are going
to present below. Formula (2.3) can also be applied with s =2, d(t)=(1 — )" and
v(t)=(1 — )%

1 2n—k 1 -1 _ 2
%[t ](k—t*—(l_ty)(l H1—1

k 1 : 2
— 5;1_ [t2n—k](1 _ t)2n+1 _ E [t2n—/\fl](] _ t)hn

_k 2yl 1 2n IV

"~ 2n <2n7k)( b 2n <2n—k—l)( 2
[k (2n+1] 1/ 2n

=D <2n(k+l>+2n(k+1>>

_ (2 (kQ2n 1) 2n—k \ _[(2n\
_(k)( K <2n(k+1)+2n(k+1)>_(k>( D

We can prove the more general left-inversion (s € Z*) in the same way:

d-n.k -

[nis) sn

=Y (s’;()bk, bo= (1) @")ak
k=0 k=0

and the reader can check the following ‘rotated’ version of the same left-inversion:

a~§ ntry, b—f:(—l)“'””‘ sy,
" sk+p)70 " k+p)™

k=0
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The generalizations of Riordan inversions related to the Abel identity are not so
elegant as the left inversions which only involve binomial coefficients. By using ex-
ponential generating functions, we find that the sum related to the Riordan array
D=(e", ts_‘eq’) is:

Z (x+gk)"* by
(n—sk) kU

and, when s> 1, this identity cannot be expressed simply in terms of binomial coeffi-
cients but formula (2.3) can be used for inverting it. Since v(¢) =e?, we obtain

- 1
dn,k — [tsn—k](k —x _ (__l)sn k
RY/]

) ext nqt

y _]_(_ (x+nq)sn—k +_x_(x+nq)s" k—1
sn (sn—k)! sn (sn—k—1)!

_ (k(x+nq)  x(sn—k) o (x + gnysn—k=1
N ( sn + sn >( 2 (sn—k)!
kg +xs g (x +gnysn*1

= (-1 T

Therefore, the left-inverse relation is

bn _ ad ok kg +xs (x+gn)" 1 g
=2 n—k)l k"

Not all cases are so linear and we often have to make multiple use of the Lagrange
Inversion Theorem, especially when the original sum contains some factor depending
on n (the bound variable in the sum that has to be inverted). The Riordan array
approach still applies, but an initial application of the Lagrange Inversion Theorem is
required in order to obtain the Riordan array to be used in the left-inversion process.
The following algorithm can then be applied both in difficult and very simple cases
(see Introduction).

Algorithm: Let the identity a, =), d,,xbx be given:
(1) Put the sum into a suitable form for a Riordan array approach (see [15] for a
discussion on this point);
(2) Express a, as ["]G(¢)
(2a) if G(¢) does not depend on n, G(t)=a(t) is the generating function of the
sequence {a,},eN; then proceed with step (3);
(2b) else, use the Lagrange Inversion Theorem (2.8) to find the generating func-
tion a(?);
(3) invert the identity obtained in step (2);
(3a) if A(t)=1, simply apply the Riordan array rule (1.2) backwards;
(3b) if y =th(r) can be solved explicitly, then substitute the solution in the inverse
relation and apply the Riordan array rule (1.2) backwards;
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(3¢) otherwise, to obtain the expression for b, in terms of a;’s, use the (2.7)
form of the Lagrange Inversion Theorem, if possible, utilizing the notations
in the previous section.

(3d) as an alternative, apply the (2.8) form of the Lagrange Inversion Theorem
backwards.

Let us use this algorithm for solving the following left-inversion problem. Given the
identity

/s )
_ p+agk—k pt+agk—k
a,,-é(( n— sk )+£<n—sk—l i,
we want to find out the value of & corresponding to the inverse identity’s simplest
form. The sum is clearly related to the Riordan array D= ((1 + )7, t*~}(1 4+ )7~ 1)
and steps (1), (2) of the Algorithm give us
@ =["J(1 + P (1 + O + [ W+ )P (1 + )77
=[N+ EO( + O)Pb(*(1 + )77 1)

In this case, G(t) directly gives the generating function a(z), and we can invert the
relation by step (3) and obtain

a(t)

s g-1y_ _ o)
e +07) (1 + &)1+ )P 3.1)
This expression can be written in the following way:
I I ) B -
b(y)—{(l%-ft)(ljtt)ﬂ y=t5(1+1) }
_ a(t) _ pis
B [(l + e +0r| (1 +z)(q—1)/'s]' (3.2)

According to the results in the previous section, we can substitute a new indeterminate x
for y'/s without having to worry about the multiple solutions of the functional equation
y=15(1+¢)?"!. In order to apply step (3c) of the Algorithm, we should differentiate
the right-hand side of (3.1) and thus obtain a rather complicated expression. Instead,
let us try to apply step (3d), since the last expression in (3.2) could be obtained by
an application of the Lagrange Inversion Theorem. In fact, if we apply formula (1.4)
to F(£)=a(t)(1+1)7'"? and ¢(¢)=(1 +w) 9~ we find the following generating
function:

[ Fw)

T () m) Wz”“”]

_ a(w) e t
Clas s swe | T Ew)es |
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However, this generating function is &(y) if we change variables and set
E=(s + g — 1)/s. Therefore:

[ a(t) _ = —P— 1 ~I’l(q" l)
bn‘*[t ]W_g< ns — k U
=Z <p+n(q— 1 +S)_k>(__1)ns—kak
e~ ns —k

and this is the left-inverse identity we were looking for. This example generalizes
inversion 2 in Table 2.2 (Gould Class of Inverse Relations) in Riordan [11], which is
obtained by setting s = 1.

The following example is very simple but illustrates an application of step (3c). Let
us start with the identity:

Ln/s]
n—1+k

By step (2) of the Algorithm, we can write a, =[1"}(1 +£)"~'b(¢°(1 + t)). Since G(¢)
depends on n, we apply the Lagrange Inversion Theorem to find the generating function

a(t):

-1 )8
o) — {(1+w) b(w'(1 + w)) et w)

w
] T itw

= [b(wW*(1 +w))|w=1(1 +w)].

We can now invert this relation:

w s
0= |o (735 =

and apply the Lagrange Inversion Theorem to it:

1 1 w 1
b — — sn—1 !
" sn[w ](1+w)2a<1+w>(l+w)”
ns—1

1 sH ke
=S;Z(S,,_k_l)(l>‘*" 0+ Da.
k=0

We can now change the variable & into k—1 and obtain the following left-inverse
relation:

B 1 sn n s
b"_sn g;k(sn—k)( D™,

valid for n>0. For n=0, we obviously have b, = aj.
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The next example is related to the Abel identity and generalizes inversion 4a in
Table 5.1 of Riordan’s book. We start with the identity (in the following formulas a
‘hat’ denotes exponential generating functions):

a_ﬂ_% (x+n+k)n—sk B (x+n+k)n~sk—\ b_k
- (n — sk)! (n—sk—1 ) &!

_ [tn]e(x+n)tg(tsel) _ [t"—l ]e(x+n)tg(tset) =["1(1 — t)e(xﬁ—n)t’l;(tset)'

We have thus performed step (2) of the Algorithm. In this case, however, G(¢)
depends on n and cannot be considered the generating function of the sequence on
the left. We therefore apply step (2b) by using the Lagrange Inversion Theorem with
F(r)=eX(1 — 1)b(t¢') and P(1) ="

a(t)y= [(1 — w)e™h(w'e") v

I —we—"e»

= te”} = [e™B(w'e") | w=te].

By step (3), we now have /l;(wsew):E(we’w)e"”", or

=~ ~ : : _ el
b(t)=[a(we™)e ™ [t =w'e"]= {a(we_w) > ’ w= ’?j]'
ew’s
We can try to apply the Lagrange Inversion Theorem backwards. If we set

F(W’) = (1 -+ %) a(we—w)e—xw and ¢(W) :e—w,’x’

the element [x"]F(x)@(x)™ has the following generating function:

X
- ews

) =b0)

Fw)
L=t/ (w)

= [atwe ™)™ | w=

(1 + Zya(we™")e ™

1 — WC*W"‘Y( _ lv )ew/s

when x =", Therefore, we have

by, - xwep e b W . ,
‘_' — [tni']b(t) — [M/I’lS]e xura(“}e w )C nw + ; [w,ns—]]e xw (WC w )e—nu
n.

ns—1

Z( 1y ,((x+n+k)"‘ by Z( 1)"5 U+ ) g
N ! k! (ns —k — D! kU

The last sum obtained can be extended to k& =ns by multiplying and dividing by
(ns — k)! Finally, some simple manipulations yield

i(_])m_k sx + sk (x +n+ k) 1 a
(ns — k)! kU

nl
k_.

This is the left-inverse relation we were looking for. When we set s =1, it obviously
coincides with inversion 4a in Table 3.1 of Riordan’s book [11].
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