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Here presented are g-extensions of several linear operators including a novel g-analogue of the derivative operator D. Some g-
analogues of the symbolic substitution rules given by He et al., 2007, are obtained. As sample applications, we show how these
g-substitution rules may be used to construct symbolic summation and series transformation formulas, including g-analogues of

the classical Euler transformations for accelerating the convergence of alternating series.

1. Definitions and Basic Identities

Unless otherwise stated, we consider all operators to act on
formal power series in the single variable ¢, with coefficients
possibly depending on g. We assume that 0 < |g| < 1. Issues
of convergence will be addressed in a later paper.

We will use 1 to denote the identity operator and define
the following operators:

1) E, f(t) = f(tq) (forward multiplicative shift),
(2) Aqf(t) = f(tq) — f(¢) (forward g-difference),
(3) qu(t) = t(log q)f'(t) (forward logarithmic shift).

The first two of these can be regarded as g-analogues of the
ordinary (additive) shift and forward difference operators,
respectively. L, will play arole similar to that of the derivative
D.

The operator inverse of E, (which we denote as E;l)
clearly exists and is equal to E . We define the central g-
difference operator 9, by

o, = f(ta") - f(ta ™). <1>

_ -1/2 _ 1/2 2k _ A2k p—k
andnotethatSq—AqEq —Aq/Eq , Sq —AqEq .

The previous g-operators are linear and satisfy some
familiar identities, for example, Eq =1+A - The binomial
identity

n C nk (1 k
wy= Yot ()8 @
k=0

can be established by induction or by considering the opera-
tor expansion of (E, — ™

Treating these operators formally, we need only to con-
sider their effect on nonnegative integer powers of t. E_, A,
and L, are “diagonal” in the sense that each maps -
M(g, k)t*, with the function M depending on the particular
operator. For example, Aq[tk] = (qk — Dt* for k > 0, and
A, (1] = 0. Similarly, L,[¢"] = £ log(g").

With this observation, it is easy to verify many additional
identities. For example, consider the alternating geometric
series Zfﬁo(—l)”A”q applied to £*. We have

YN[ =y (e - 1)
n=0 n=0
_ Lk 1 ©)
)
_ tkq—k



In other words, this formal power series gives the operator
qul. Stated differently,

(1+a,) " =(B) =Eq = Y0t @)

n=0

which is exactly the result we should expect. We may establish
the following identities in similar fashion:

(1-2,)" =S, ®

log(1+4,) = i(_l)mA” =1 (6)
"Ly a- e

et = Z)%L’; =E, )

In addition to these last two identities, L, obeys the product
rule

Llf@g® =L, [f0lg®)+fO L [g®], (8

j; that L, is a g-analogue of the ordinary derivative operator

2. Main Results

We begin with some g-analogues of the symbolic substitution
rules in [1] (specifically, (2.4) and (2.5)).

Proposition 1. Let F(t) have the formal power series expan-
sion F(t) = Yoo fit%, with coefficients possibly dependent
on q. One may obtain operational formulas according to the
Jollowing rules.

(1) The substitution t — E, leads to the symbolic formula
F(Ey) = Y. 1uEy ©)
k=0
(2) IfE(t) = G(t, €"), the substitution t — L, leads to
N ok
G(L,.E,) = kz fills (10)
-0

(3) IfF(t) = G(t, log(1 +1t)), the substitution t — A, leads
to

G(A,L,)= l;)ka"q. 1)

Note that each of the identities in (5)-(7) can be obtained
from elementary Maclaurin series by applying one of these
substitution rules. We now present a less trivial example.

For k a positive integer, let o (x) denote the Eulerian
fraction (cf. [2], p. 245). It is well known that

Y= A,
0

. _"x) — (x1<1), (@2
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where A;(x) is the kth Eulerian polynomial. Additionally,
([3]. p- 24) gives the formula

13 £
(1 - xet> = Z(xk (x) - (13)
k=0 :
Substituting t — L, leads to the formal identity

(1-xE,) " = i % (0 (14)

1
= K

We can obtain additional identities in this fashion from
other expansions of(l—xet)fl. For example,if x # 0and x # 1,
we have the following analogues of (3.1)-(3.4) in [4]:

0 k

(1-xE,) =Y —S——ak, (15)

o (1 - x)kﬂ 1

0 k+1 AZk AZk
-1 x 174 q
1-xE) =Y¥(—— P . (16)
< Q> z<(1_x)2> < El; E§+1>

k=0

00 k1 /A% A
-1 X
1-xE,) =1+ <—> —L _x2).
< q) kZ:;) (1 _ x)Z <El£;1 Ek

q
17)

Direct proofs of (14)-(17) are given in Section 5.

Proposition 2. For a given function f(t), define Fq(x) _
2k0 f(qk)xk- Ifx+0andx+1,

o (x)
F (9= 2= L ), (18)
co xk r
F (x)=) AL f (1), 19)

0 k+1
_ x 2k Y
Fq(x)_1+];)<(l_x)2> <8q f(q) x8q f(1)>
2D

Proof. Clearly, these follow by applying the operators in (14)-
(17) to the function f(t) and then evaluating at ¢ = 1. O
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3. Some Applications

As an application, taking f(f) = 1/(logq(t) +1),x = -1in
(19) leads to

1 —D*& /& i 1
(-1)f— = ) 1)k —
g') k+1 kzozk”];) J jt+1
& (k+1) 2k j+1
- 1 < 1
_;)kﬂ 2k zkzk’
which gives
1 1 1 1
= - 23
In2 = 2 2~22+3~23+4~24+ @)

The rate of convergence of this series is O(1/2"), much faster
than

1
n2=3 (-1, (24)

k>0

whose convergence rate is O(1/n).

As for a second application, we may substitute x = —1 in
Proposition 2, obtaining the following series transformation
formulas:

T () 3 St
T - S G @08 ()
XEISICORERS Y G R CIIORETAt

These four identities appear to be novel and could be
used to accelerate slowly convergent alternating series
Z;i’l(—l)kf(qk). We consider them as g-analogues of the
ordinary Euler transformations.

4. Extensions of the Main Results

All operational formulas presented in Proposition 1 can
be extended and the corresponding symbolic substitution
formulas established accordingly with an analogous form of
(10). For example, we may consider a generating function of
the form

katk =F <t, Et, 6”) . (26)

k>0

3
Letting t +— L, gives
k o
kaLq =F <L6’ET Eq>‘ 27)
k=0
Applying this to the well-known identity
4 e+e’
Byt® =tcotht = ¢ , 28
1;) (2k)! 2% ef —et (28)
with B, being the nith Bernoulli number, we obtain
-1
4k E +E
> Gaitale =L g 29)
k0 (2K)! 1" "q

Hence, we obtain a symbolic formula

4 2%-1 -1
kzo(Zk) Byl ' (E,—E')=E,+E'.  (30)

Applying this to an infinitely differentiable function f(t) at
t = 1vyields

k
Y (;k)'szLZk Y(E,- B )= (B +E) FQ1).

k>0 (31)

Similarly, using the symbolic relation

we obtain another operational formula

—1+kz0 2 sz Zq’” (Eq+1>71=A’ql, (33)
>

from which one may construct a series transformation
formula.

Another extension is a g-analogue of the symbolic formu-
las presented in [5], which is actually a Newton series type
extension of the symbolic expansions given in [1]. Consider

=Y ()5 G

k>0

(1em) s =3 (3) e

k>0



where (x); = x(x—1)---(x — k + 1). We have
(1+E,) =27 szk' o (35)
<1+Eq>

-2

JF (k= x2k+ Lk+1;-1) +

+1

X GF (k+1-x2k+2k+2;-1)

-1 2%
xEq Aq} Sq ,

(36)
<1+Eq>
- X
- 1+2<k+1>
k=0
,F (k+1—x,2k+2;k+2;—1)Eq
_x—k—l
k+2

x JFy (k+2-x,2k + 2 k + 3;—1)} .
(37)

Finally, we present an extension of (14) using Bell poly-
nomials (see, e.g., p. 134 in [2]) as follows:

(1+E,) =2 ZP(’C) (

where the values of potential Bell polynomials at (1/2,1/2,...)
are defined by

Lk
1
)

2P (

) Z" i (39)

For a given function f(#), define F (x) = X, ¢
k!. From (35)-(38), we obtaln series transformatlon formulas

by simply applying (35)-(37) to f:

oo (%)
F, (x)
< [ x L 3 r x—k
:l;) " LB (k= x,2k + 1 +1;—1)+k+1

X F (k+1-%x2k+2k+2;-1)

xE;lAq} O f ),
(41)
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F_ (x)

:1+Z<ki1>
k=0

,F (k+1—x,2k+2;k+2;—1)Eq

_x—k—l
k+2

x 8 f (1),

Bk +2-x2k+2k+3-1)

(42)

Lk
9
N )kl 1. (43)

=2 ZP(’C) (

As an example, substituting f(¢) = £” into (43) and noting

©0 i+1
L=y wrq

o

©0 1 j+l
Yy E oy (44)
=R
=log(1+(q" - 1))
=nloggq,

yields the series transformation formula from

S () o(1 1 (nlogg)
,;)qkk_!k: ]ZOP]“(ZE ) =2 (45)

;!

5. Selected Proofs

Here we present the proofs of (14)-(17) in the sense of sym-
bolic calculus, namely, every series expansion is considered
as a formal series.

For proving (14), it suffices to make use of E; = = el and
(12). Indeed we have

= (1 - xeL”>71

(o]
k kL
:zxe q
k=0

(1 - xEq>71

_Zkz< )

k=0 j=0 (46)

0o [/ oo I¥
= kRl ) 4
%(zx >ﬂ

0 LJ

=2

j=0
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Equation (15) may be derived as follows:

(1-x(1+a,))"

-1

- -0 ‘%) (47)

<1 - xEq>71 =

To prove (16) and (17), we first establish the following
lemma.

Lemma3. Let f=1+awith0 < a < 1, and let x be any real
number. One has symbolic identities involving the first Gauss
series as follows:

SEI Gy T Eaeh = R

and a modified q-form of Gauss’s first symbolic expression (cf.
Section 127 of [6]):

A2k+1

2k
S K\ A x+k
q ];)[ 2k E’; 2k+1 El;rl
x+k\ ok x+k 2%
Z < >8q +<2k+1>Aq8q Eq}

Proof. Starting from the following Newton’s formula:

(49)

pr= 2 <z> o, (50)

we multiply (x + 1)/ = 1 to the summation from the term «
up and obtain

Il
—_
+

TN
— ®
~——

I
_
+
TN
—
SN——
IR
+

I
_
+
TN
—
SN——
IR
+

Repeating the operation on the series from the term o up
yields

e (5 ()5 ()5 ()5

(52)

. . 5
The above operation is repeated from «” up, and so on. We

obtain
g [<x+k> " <232++k1> %] - (53)

Substituting § = E, and o = A_ into the above identity, we
obtain the desired result. O

Equations (16) and (17) can be proved using the first
Gauss symbolic expression (49) and the following g-form
of the Everetts symbolic expression (cf. [6], Section 129),
respectively.

0o Azk A
Ex:z <X+k>_q_<x+k—1>
1 & 2k+1 Elgfl 2k+1 ) E
_OO x+k 2% x+k-1 2%k
_k;) <2k+1>E€8q _< 2k+1 >8q }

Indeed, using (49) and noting the identity

[
=R

B

(54)

(1) 0
~ \k (1 - x)FH!

nr

(Ix] < 1), (55)

one may derive (16) as follows:

(o]

Z(xEq>j

=0

<1 - xEq>71 =




i N Azqk Skl A2qk+1
= — +
(1 _ x)ZkJrl Elg (1 _ x)2k+2 El[;Jrl
k1 2k 2k+1
_ i(#) ' <1—_xA_q+ A, )
Z\ (1 - x)? x  EE O ERH

k 2k 2k
x +1 x—l A_q ~ A g
2 EX Ek+1 )7
x) q q

Equation (17) can be proved similarly using (54). However,
it can also be verified by a direct symbolic computations. In
fact, we have

(56)

RHS of (17)
X x k Azq ¢
—x)zkzo<(1—x)2> <E_q> (8, -)
14 X Eq—x
(1-2)1-(x/(1-x)7)(A2/E,)
14 x(E, - x)
(1-x) - x(A2/E,) (57)
14 Egx <Eq —x) i
(1- x)qu - x(Eq - 1)
1. qu
l—xEq
= <1 _xEq>71
= LHS of (17).

This completes the proofs of (14)-(17).
The proof of (35) is straightforward:

(1 +Eq>x =

x Aq ¥
=2 <”7> (58)
=27 Zk]zk

To prove (36), we use (49) as follows:

(2 + Aq>x

(1 + Eq>x
=1+ Z <x> E’
j=1 J
A2k+1

2k
X k+] Aq k+] q
()5 ()

j=1
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Aqu ¥\ (k+ AZkH T
:I;_E_];pk(j)( 2k >+Wj§rl<j><2k+l>
[ /x A
:1;)_<k> 2F1(k—x,2k+1;k+1;_1)E_%
2%
+<ki1> 2F1(k+1—x,2k+2;k+2;_1)E§1],
(59)

which implies (36). Equation (37) can be proved similarly
using Everett’s symbolic expression (54).
For (38), we first have

(1) = (e = 3 (5) ()

S0R% -2 ()

= \= J
(61)

Using (39), we may write the part in the parenthesis of the
rightmost term as 2xP]£x)(1/2, 1/2,...) to finish.
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