
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 29, Fasc. 2 (2009), pp. 281–296

ULTRASPHERICAL TYPE GENERATING FUNCTIONS
FOR ORTHOGONAL POLYNOMIALS

BY

NIZAR D E M N I (BIELEFELD)

Abstract. We characterize, under some technical assumptions and up
to a conjecture, probability distributions of finite all order moments with
ultraspherical type generating functions for orthogonal polynomials. Our
method is based on differential equations and the obtained measures are
particular beta distributions. We actually recover the free Meixner family
of probability distributions so that our method gives a new approach to the
characterization of free Meixner distributions.
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1. MOTIVATION: MEIXNER FAMILIES

There is a one-to-one correspondence between probability distributions on the
real line and polynomials of one variable satisfying a three-term recurrence relation
subject to some positivity conditions (see [9]). That is why in most of the cases, if
not all, one tries to characterize probability distributions using generating functions
for orthogonal polynomials. Among the famous generating functions are the ones
of exponential type, that is, if µ is a probability distribution with a finite exponential
moment in a neighborhood of zero:

∫
R

ezxµ(dx) <∞,

then

(1.1) ψ(z, x) :=
∑

n­0

Pn(x)zn =
exH(z)

E(eXH(z))
,

where H is analytic around z = 0 such that H(0) = 0,H ′(0) = 1, X is a random
variable in some probability space (Ω, F ,P) with law µ = P ◦X−1 and (Pn)n­0
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is the set of orthogonal polynomials with respect to µ. Up to translations and di-
lations, there are six probability distributions which form the so-called Meixner
family referring to its first appearance with Meixner [14]. It consists of Gaussian,
Poisson, gamma, negative binomial, Meixner and binomial distributions. This fam-
ily appeared many times under different guises ([16], [13], [1], [15], [11]).

Another well-known example was first suggested and studied in [2] and is
given by a Cauchy–Stieltjes type kernel. Namely, if µ is a probability distribution
of finite all order moments, then

(1.2) ψ(z, x) :=
∑

n­0

Pn(x)zn =
1

u(z)[f(z)− x]
,

where u and z 7→ zf(z) are analytic functions around zero such that

lim
z→0

u(z)
z

= lim
z→0

zf(z) = 1.

This family, known as the free Meixner family due to its intimate relation to free
probability theory, covers also six compactly-supported probability measures. We
refer the reader to [4], [5], [8], [12] for more characterizations and more interpreta-
tions. The natural q-deformation that interpolates the aforementioned families for
arbitrary |q| ¬ 1 was defined and studied in [3] and is up to affine transformations
the so-called Al-Salam and Chihara family of orthogonal polynomials (see [1]).
Their generating functions are given by an infinite product and are somehow sim-
ilar to the q-exponential function. Another characterization of the last family was
recently given in [7].

After this sketchy overview, we suggest another type of generating functions
which may be viewed as a generalization of the free Meixner family. It is inspired
from the case of Gegenbauer or ultraspherical polynomials for which (see [9])

(1.3)
∑

n­0

2n (λ)n

n!
Cλ

n(x)zn =
1

(1− 2zx + z2)λ
, |x| ¬ 1, λ > 0,

where (λ)n = (λ + n− 1) . . . (λ + 1)λ and for complex z such that the right-hand
side makes sense and the series on the left-hand side converges. We adopted here
the monic normalization for (Cλ

n)n, and henceforth all the polynomials are monic
so that they satisfy the normalized recurrence relation

(1.4) xPn(x) = Pn+1(x) + αnPn(x) + ωnPn−1(x), n ­ 0, P−1 := 0, ω0 = 1.

The sequences (αn)n­0 and (ωn)n­0 are known as the Jacobi–Szegö parameters
and ωn > 0 for all n unless µ has a finite support (see [9]). Moreover, we shall
always use that notation for the different families of orthogonal polynomials we
shall cross through this paper.
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It is then natural to formulate the problem of characterizing the probability
measures of finite all order moments, say µλ, so that

ψλ(z, x) :=
∑

n­0

(λ)n

n!
P λ

n (x)zn

=
1

uλ(z)
(
fλ(z)− x

)λ
, λ > 0,

(1.5)

is valid for x ∈ supp(µλ) and z belongs to a complex open region S near z = 0
cut from z = 0 along the negative real axis where uλ, fλ are analytic with

(?) lim
z→0

zfλ(z) = 1, lim
z→0, z∈S

uλ(z)
zλ

= 1, =(
f(z)

) 6= 0, z ∈ S.

By the last assumption,
(
f(z) − x

)λ is well defined for all x ∈ supp(µ), z ∈ S
and λ > 0 (the principal determination of the logarithm is adopted). Moreover,
the above limiting conditions imply that ψλ(z, x) tends to 1 as z tends to 0 in S
for all x ∈ supp(µλ). We shall say that ψλ is a generating function for orthogonal
polynomials of ultraspherical type referring to ultraspherical polynomials. Without
loss of generality, we may assume that µλ is standard, that is, has a zero mean and
a unit variance. Equivalently, if (αλ

n)n­0 and (ωλ
n)n­0 denote the Jacobi–Szegö

parameters of µλ, then αλ
0 = 0 and ωλ

1 = 1. Our strategy is based on the following
general claim that was stated without proof in [6] and proved below for the reader’s
convenience:

CLAIM. For a given generating function for orthogonal polynomials (z, x) 7→
ψ(z, x) associated with a (standard) probability measure µ satisfying some inte-
grability conditions (to be precise later), the measures {Pz} defined by

Pz(dx) := ψ(z, x)µ(dx)

are probability measures such that the mean and the variance of Pz are polynomi-
als in z of degree one and two, respectively.

{Pz} is then referred to as the ψ-family of µ with an at most quadratic vari-
ance, referring to both the exponential and the Cauchy–Stieltjes families ([8], [15]).
When ψ is handable enough so that one can perform computations of the first and
of the second moments of Pz independently of the infinite series, one recovers two
equations that may be used to solve the problem of characterization of probabil-
ity measures whose generating function for orthogonal polynomials is given by ψ
(or of ψ-type). In the case of the Meixner and the free Meixner families, this was
noticed in [6]. In the case in hands, if the assumptions in (?) are valid for z ∈ S
together with the assumption (??) (see below), we obtain
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PROPOSITION 1.1. 1. The function fλ satisfies for z ∈ S

Q2(z)f ′λ(z) = f2
λ(z)−Q1(z)fλ(z) + R1(z),(1.6)

where Q2, R1 are polynomials of degree two while Q1 is a polynomial of degree
one. Moreover, the coefficients of these polynomials depend only on λ, αλ

1 , ωλ
2 .

2. The function uλ is related to fλ by

u′λ(z)
uλ(z)

= λ
1− f ′λ(z)
fλ(z)− λz

. ¥

Once we did, we show that if

(1.7) gλ(z) := fλ(z)− Q1(z)
2

:=
Eλ(z)

z
,

where Eλ is assumed to be a polynomial, then deg(Eλ) ¬ 2, and this follows
from the fact that Q2, Q1, R1 are polynomials (terminating series). Next, we in-
vestigate under the last assumption the case of symmetric measures. We show
that there exist two families of probability measures corresponding to (Cλ

n)n for
λ > 0 and (Cλ−1

n )n for λ > 1/2, λ 6= 1. We warn the reader of the fact that,
though these two families differ from each other by a parameter’s translation,
their generating functions given by (1.5) are totally different since aλ

n depends
on λ and is fixed for both families. Under the same assumption, there is only one
family of non-symmetric probability measures corresponding to shifted monic Ja-
cobi polynomials P

λ−1/2,λ−3/2
n , P

λ−3/2,λ−1/2
n for λ > 1/2, λ 6= 1. The discard of

the value λ = 1 is needed for the computations since we need to remove factors
like 1− λ, 1− λ2. Thus, one deals with this case separately and recovers the free
Meixner family for which deg(Eλ) ¬ 1 too.

PROBLEMS. We do not know if there exists a solution fλ for which Eλ is an
entire infinite series. Note that such a solution does not exist when λ = 1 as we
already know (see [4]) and as we shall prove. Moreover, we already know that
the free Meixner family covers six families of probability distributions [4] while
there are three families for λ 6= 1 when Eλ is a polynomial. Is there any intuitive
explanation for this difference between both cases or for the degeneracy of the
case λ = 1?

2. VALIDITY AND PROOF OF THE CLAIM

Write ψ as
ψ(z, x) =

∑

n­0

anPn(x)zn

for some fixed sequence (an)n, x ∈ supp(µ) and z in a suitable complex domain
D near z = 0 so that the infinite series converge. The integrability conditions we
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need for the claim to be valid are the finiteness of all order moments of µ and

(??)
∫ ∑

n­0

an

(
xiPn(x)

)
znµ(dx) =

∑

n­0

an

∫
xiPn(x)µ(dx)zn, i ∈ {0, 1, 2},

for z ∈ D. In fact, for i = 0, the orthogonality of Pn shows that Pz is a probability
measure for all z ∈ D (remember that P0 = 1) and together with α0 = 0, ω1 = 1
imply

∑

n­0

an

∫
Pn+1(x)µ(dx)zn = 0, n ­ 0,

∑

n­0

anαn

∫
Pn(x)µ(dx)zn = a0α0 = 0,

∑

n­0

anωn

∫
Pn−1(x)µ(dx)zn = a1ω1 = a1z.

Thus, one gets for i = 1 after using (1.4)

(2.1)
∫ ∑

n­0

an

(
xPn(x)

)
znµ(dx) = a1z =

∫
xPz(dx).

For i = 2, one uses twice (1.4) to get

(2.2)
∫ ∑

n­0

an

(
x2Pn(x)

)
znµ(dx) = a2ω2z

2 + a1α1z + 1 =
∫

x2Pz(dx)

and the claim is proved.

REMARK 2.1. In the case in hands, if µλ is compactly supported, then the
Jacobi–Szegö parameters are bounded, thereby one can exchange the infinite sum
and integral signs. Indeed, by the Cauchy–Schwarz inequality

∑

n­0

(λ)n

n!

∫
|xiPn(x)|µλ(dx)|z|n ¬ (∫ |x|2iµ(dx)

)1/2 ∑

n­0

(λ)n

n!
‖Pn‖ |z|n

for i ∈ {0, 1, 2}. Moreover, ‖Pn‖2 = ω0 . . . ωn−1 < cn for some c > 0 so that
Fubini’s theorem applies for |z| < 1/

√
c. As the reader can see, the exchange of

the order of integration depends on the sequence (an)n and the growth conditions
satisfied by µ. As a matter of fact, if (an)n is fixed, they solely depend on µ (or in
‖Pn‖).

3. PROOF OF PROPOSITION 1.1

3.1. First and second moments. On the one hand, the integration of both sides
of (1.5) with respect to µλ gives

uλ(z) =
∫
R

1(
fλ(z)− x

)λ
µλ(dx).
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On the other hand, one gets from (2.1), (2.2) and an = (λ)n/n!

mλ
1(z) :=

∫
xψλ(z, x)µ(dx) = λz,

mλ
2(z) :=

∫
x2ψλ(z, x)µ(dx) =

λ(λ + 1)
2

ωλ
2 z2 + λαλ

1z + 1.

Then, using the elementary operation x =
(
x− f(z)

)
+ f(z), it follows that

mλ
1(z) = f(z)− uλ,1(z)

uλ(z)
, uλ,1(z) :=

∫
R

1(
f(z)− x

)λ−1
µλ(dx).

Differentiating with respect to z ∈ S under the integral sign1 defining uλ,1, one
gets (1 − λ)f ′(z)uλ(z) = (uλ,1)′(z). Thus the right-hand side of mλ

1(z) trans-
forms to

(3.1)
u′λ(z)
uλ(z)

= λ
1− f ′λ(z)
fλ(z)− λz

,

which can be written as

(3.2)
(
uλ(z)[fλ(z)− λz]

)′ = (1− λ)uλ(z)f ′λ(z).

For the second moment, use x2 = x
(
x− f(z)

)
+ xf(z) to get

(3.3) mλ
2(z) = λzfλ(z)− 1

uλ(z)

∫
R

x(
fλ(z)− x

)λ−1
µλ(dx).

Using

( ∫
R

x(
fλ(z)− x

)λ−1
µλ(dx)

)′
= (1− λ)f ′λ(z)

∫
R

x(
fλ(z)− x

)λ
µλ(dx)

= λ(1− λ)zuλ(z)f ′λ(z)

we can write (3.3) as

(3.4)
(
[λzfλ(z)−mλ

2(z)]uλ(z)
)′ = λ(1− λ)zuλ(z)f ′λ(z).

1This is justified by the analyticity of fλ in S and general properties of generalized Cauchy–
Stieltjes transforms; see [17] and references therein.
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3.2. A non-linear differential equation. In virtue of (3.2), (3.4) implies
(
[λzfλ(z)−mλ

2(z)]uλ(z)
)′ = λz

(
uλ(z)[fλ(z)− λz]

)′
,

which gives

[λzfλ(z)−mλ
2(z)]u′λ(z) + [λfλ(z) + λzf ′λ(z)− (mλ

2)′(z)]uλ(z)
= λz[fλ(z)− λz]u′λ(z) + λz[f ′λ(z)− λ]uλ(z).

Therefore

[λ2z2 −mλ
2(z)]u′λ(z) = [(mλ

2)′(z)− λfλ(z)− λ2z]uλ(z).

If λz −mλ
2(z) 6= 0, after comparison of the last equality with (3.1) one gets

(mλ
2)′(z)− λfλ(z)− λ2z

λ2z2 −mλ
2(z)

= λ
1− f ′λ(z)
fλ(z)− λz

,

which shows after elementary computations that fλ satisfies the following non-
linear first order differential equation:

Q2(z)f ′λ(z) = f2
λ(z)−Q1(z)fλ(z) + R1(z),(3.5)

where

Q2(z) = λ

[
λ− λ + 1

2
ωλ

2

]
z2 − λαλ

1z − 1,

Q1(z) = (λ + 1)ωλ
2 z + αλ

1 ,

R1(z) =
λ(λ + 1)

2
ωλ

2 z2 − 1.

Setting gλ(z) := fλ(z)− [Q1(z)/2], the equation (3.5) transforms into

(3.6) Q2(z)g′λ(z) = g2
λ(z) + Q̃2(z),

where

Q̃2(z) = R1(z)− 1
4
[Q1(z)]2 − λ + 1

2
ωλ

2Q2(z)

= [(λ+1)ωλ
2 − 2λ]

λ2 − 1
4

ωλ
2 z2 +

λ2 − 1
2

αλ
1ωλ

2 z +
(λ + 1)ωλ

2

2
− 1− (αλ

1)2

4
.

Finally, once gλ is given, one deduces fλ by adding Q1/2. Then we use (3.1) to
derive uλ.
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4. SOME SOLUTIONS OF (1.6)

From now on, we shall look for solutions of (1.6) of the form

gλ(z) :=
Eλ(z)

z
, Eλ(0) = 1,

for a second degree polynomial Eλ. In fact, since z 7→ zgλ(z) is analytic around
zero, one may always assume that gλ(z) has the above form for an entire function
Eλ. But if Eλ is a polynomial of degree ­ 3, then all the terms of degree ­ 3 will
vanish only by equating both sides of (3.6). For instance, let

Eλ(z) = a0z
3 + a1z

2 + a2z + a3

and write (3.6) as

(4.1) Q2(z)[zE′λ(z)−Eλ(z)]−E2
λ(z) = z2Q̃2(z).

Then by equating terms of degree 6 in this equation, one easily gets a0 = 0 so that
Eλ has degree 2. For Eλ a polynomial of degree 4, start with equating terms of
degree 8, and so on. However, this way of thinking fails or rather become cumber-
some when Eλ is an entire function and the existence of such a solution is open.

4.1. A new approach to the free Meixner family. Recall that the free Meixner
family corresponds to λ = 1 and that it covers six compactly-supported probability
distributions given by their Jacobi–Szegö parameters (see [4])

α1
n = a, a ∈ R, n ­ 1, ω1

n = (1 + b), b ­ −1, n ­ 2,

where we used the fact that µ1 has a mean zero (α1
0 = 0) and a unit variance

(ω1
1 = 1). Moreover, we have (see [5])

f1(z) =
1 + az + (1 + b)z2

z
⇒ g1(z) =

(a/2)z + 1
z

=
a

2
+

1
z
.

But Q̃2 reduces to a constant for λ = 1 so that (3.6) transforms into

[(1− ωλ
2 )z2 − αλ

1z − 1]g′λ(z) = g2
λ(z) + (ωλ

2 − 1)− (αλ
1)2/4.

It is then an easy exercise to check that g1 satisfies (3.6), which reads in this case

(4.2) −[bz2 + az + 1]g′1(z) = g2
1(z) + b− a2/4.

We can even prove that g1 as written above is the unique solution of the last differ-
ential equation subject to the condition zg1(z)→ 1 when z → 0. In fact, writing
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g1(z) = h1(z) + 1/z in some punctured neighborhood of zero where h1 is analytic
around zero, by simple manipulations we see that h1 satisfies

−[bz2 + az + 1]h′1(z) = h2
1(z)− a2

4
+

2
z

(
h1(z)− a

2

)
.

Taking the limit as z → 0, from the singularity at z = 0 on the right-hand side we
obtain h1(0) = a/2. Thus, we get

−[bz2 + az + 1]
∑

n­1

ncnzn−1 =
∑

n­1

cnzn
[ ∑

n­1

cnzn + a
]
+ 2

∑

n­1

cnzn−1

for some sequence (cn)n­1, which makes sense for z = 0, therefore c1 = 0. Re-
moving z from both sides of the obtained equation, then setting z = 0 will give
c2 = 0; removing z2 and taking z = 0 gives c3 = 0, and so on. As a result, h1(z) =
a/2 and our method gives a new (geometrical) approach to the characterization of
free Meixner distributions.

5. SYMMETRIC MEASURES: ULTRASPHERICAL POLYNOMIALS

In the sequel, we shall focus on the case αλ
n = 0 for all n. This is equivalent

to the fact that µλ is symmetric, that is, the image of µλ by the map x 7→ −x is
still µλ. In this case, we get by taking αλ

1 = 0:

Q2(z) =
λ

2
[2λ− (λ + 1)ωλ

2 ]z2 − 1,

Q̃2(z) = [(λ + 1)ωλ
2 − 2λ]

λ2 − 1
4

ωλ
2 z2 +

(λ + 1)ωλ
2

2
− 1.

Writing Eλ(z) = a0z
2 + a1z + a2 and equating both sides in (3.6), we obtain

a2 = 1,

a1 = 0,

−3a0 − λ

2
[2λ− (λ + 1)ωλ

2 ] =
(λ + 1)ωλ

2

2
− 1,

−a2
0 + a0

λ

2
[2λ− (λ + 1)ωλ

2 ] = [(λ + 1)ωλ
2 − 2λ]

λ2 − 1
4

ωλ
2 .

The third equation gives

a0 =
(1− λ2)(2− ωλ

2 )
6

.

Hence, it remains to check when the above a0 satisfies the fourth equation. Since
the case λ = 1 is known, we assume λ 6= 1 so that one removes the term (1−λ2) in
the above equalities. Substituting a0 in the fourth equation, we see that ωλ

2 satisfies

−(λ + 1)(λ + 2)(ωλ
2 )2 + (4λ2 + 6λ− 1)ωλ

2 + (1− 4λ2) = 0.
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What is quite interesting and even surprising, that though this polynomial looks
complicated, its discriminant is equal to 9 so that there are two solutions:

ωλ
2,1 =

2λ + 1
λ + 2

, ωλ
2,2 =

2λ− 1
λ + 1

,

where for the second value we consider λ > 1/2 in order to avoid finitely-supported
probability measures and signed measures. As a result, we get

a0 =
1− λ2

2(λ + 2)
, a0 =

1− λ2

2(λ + 1)
=

1− λ

2
.

Thus
fλ(z) =

1 + λ

2
z +

1
z
, fλ(z) =

λ

2
z +

1
z
,

and from (3.1) we obtain

u′λ(z)
uλ(z)

=
λ

z
,

u′λ(z)
uλ(z)

= λ
z2 + 1− (λ/2)z2

z
(
1− (λ/2)z2

) .

Finally,

uλ(z) = zλ, λ > 0, λ 6= 1, uλ(z) =
zλ

1− (λ/2)z2
, λ > 1/2, λ 6= 1,

for z ∈ S. Note that S is easily described: in fact, fλ is not real outside the real
line and the circle |z| < 2/(1 + λ) or |z| < 2/λ, respectively. Moreover, the µλ

is compactly supported as we shall see below, so that (??) is satisfied in a ball
centered at the origin (see Remark 2.1).

5.1. Ultraspherical polynomials: symmetric beta distributions. The value ωλ
2,1

corresponds to the ultraspherical polynomials. However, in order to fit into our set-
ting, we have to consider the monic Gegenbauer polynomials, say C̃λ

n , which are
orthogonal with respect to the standard beta distribution

cλ

(
1− x2/[2(1 + λ)]

)λ−1/2
dx, x ∈ [±

√
2(1 + λ)],

for some normalizing constant cλ. They are given by

C̃λ
n(x) =

(√
2(1 + λ)

)n
Cλ

n

(
x√

2(1 + λ)

)
.

Now, it is easy to see from (1.3) that

∑

n­0

(λ)n

n!
C̃λ

n(x)zn =
∑

n­0

2n (λ)n

n!
Cλ

n

(
x√

2(1 + λ)

)(√
1 + λz√

2

)n

=
1(

1− zx + (1 + λ)z2/2
)λ

= z−λ

[
1 + (1 + λ)z2/2

z
− x

]−λ

=
1

uλ(z)
(
fλ(z)− x

)λ
. ¥
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For ωλ
2,2, ψλ is written as:

ψλ(z, x) =
1− (λ/2)z2

zλ(λz/2 + 1/z − x)λ
=

1− (λ/2)z2

(λz2/2 + 1− zx)λ

and we claim that P λ
n = C̃n

λ−1
for all n and all λ > 1/2, λ 6= 1. In fact,

∑

n­0

(λ)n

n!
C̃n

λ−1
(x)zn =

∑

n­0

λ + n− 1
λ− 1

(λ− 1)n

n!
C̃n

λ−1
(x)zn

=
1

(λ− 1)zλ−2
∂z

∑

n­0

(λ− 1)n

n!
C̃n

λ−1
(x)zn+λ−1

=
1

(λ− 1)zλ−2
∂z

[
z

1− zx + λz2/2

]λ−1

=
1− (λ/2)z2

(1− zx + λz2/2)λ

as the reader may easily check. ¥

6. NON-SYMMETRIC PROBABILITY MEASURES: JACOBI POLYNOMIALS

Henceforth, we suppose that αλ
1 6= 0, λ 6= 1, and we will show that there is

only one family of probability measures subject to

gλ(z) =
a0z

2 + a1z + a2

z
.

Then, we get the following equations:

a2 = 1,

a1 =
λαλ

1

2
6= 0,

−3a0 − λ

2
[2λ− (λ + 1)ωλ

2 ]− a2
1 =

(λ + 1)ωλ
2

2
− 1− (αλ

1)2

4
,

−a0α1λ− 2a0a1 =
λ2 − 1

2
αλ

1ωλ
2 ,

−a2
0 + a0

λ

2
[2λ− (λ + 1)ωλ

2 ] = [(λ + 1)ωλ
2 − 2λ]

λ2 − 1
4

ωλ
2 .

From the second, third and fourth equations, it follows that

a0 =
1− λ2

6

[
(αλ

1)2

2
+ 2− ωλ

2

]
=

1− λ2

4λ
ωλ

2 .
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Actually, this gives a constraint on λ, αλ
1 , ωλ

2 :

(6.1)
(

(αλ
1)2

2
+ 2

)
λ =

(
λ +

3
2

)
ωλ

2 .

Substituting a0 by (1 − λ2)ωλ
2/(4λ) and removing (1 − λ2), we obtain the fifth

equation in the form

−1− λ2

16λ2
(ωλ

2 )2 +
ωλ

2

8
[2λ− (λ + 1)ωλ

2 ] = [2λ− (λ + 1)ωλ
2 ]

ωλ
2

4
.

In the non-degenerate case ωλ
2 6= 0,

ωλ
2 =

4λ3

2λ3 + 3λ2 − 1
.

But −1 is a double root of the polynomial in the denominator so that

ωλ
2 =

2λ3

(λ + 1)2(λ− 1/2)
,

which is positive for λ > 1/2. Finally, one deduces from (6.1) that

(αλ
1)2 = 2

[
(2λ + 3)λ2

(λ + 1)2(λ− 1/2)
− 2

]
=

2
(λ + 1)2(λ− 1/2)

> 0,

a0 =
(1− λ2)λ2

2(λ + 1)2(λ− 1/2)
=

(1− λ)λ2

(λ + 1)(2λ− 1)
.

It follows that

fλ(z) =
a0z

2 + a1z + a2

z
+

(1 + λ)ωλ
2 z + αλ

1

2

=
1
z

[(
1− λ

2λ
+ 1

)
1 + λ

2
ωλ

2 z +
λ + 1

2
αλ

1 + 1
]

=
1
z

[
λ2

2λ− 1
z2 ± 1√

2λ− 1
z + 1

]

and

u′λ(z)
uλ(z)

=
λ

z

[
1− (λ− 1)2

2λ− 1
z2

] [
λ(1− λ)
2λ− 1

z2 ± 1√
2λ− 1

z + 1
]−1

.

The discriminant of the polynomial

λ(1− λ)
2λ− 1

z2 ± 1√
2λ− 1

z + 1
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is easily seen to be

1
2λ− 1

− 4λ(1− λ)
2λ− 1

= 2λ− 1 > 0.

It follows that, when αλ
1 > 0, the roots are given by

z1 = −
√

2λ− 1
λ

, z2 = −
√

2λ− 1
1− λ

.

Writing

1− (λ− 1)2

2λ− 1
z2 = −(λ− 1)2

2λ− 1

[
z +
√

2λ− 1
1− λ

] [
z −
√

2λ− 1
1− λ

]
,

we get

u′λ(z)
uλ(z)

=
λ− 1

z

[
z +
√

2λ− 1
λ− 1

] [
z +
√

2λ− 1
λ

]−1

=
λ

z
− 1

z +
√

2λ− 1/λ
.

As a result we obtain

uλ(z) =
√

2λ− 1
λ

zλ

z +
√

2λ− 1/λ

and the generating function is written as

(6.2)

ψλ(z, x) =
λ√

2λ− 1

[
z +
√

2λ− 1
λ

] [
1− z

(
x− 1√

2λ− 1

)
+

λ2

2λ− 1
z2

]−λ

.

In the case αλ
1 < 0, similar computations yield

uλ(z) = −
√

2λ− 1
λ

zλ

z −√2λ− 1/λ

and

ψλ(z, x)

= − λ√
2λ− 1

[
z −
√

2λ− 1
λ

] [
1− z

(
x +

1√
2λ− 1

)
+

λ2

2λ− 1
z2

]−λ

.
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6.1. Orthogonality measures: special Jacobi polynomials. We will show that
P λ

n is a shifted monic Jacobi polynomial with parameters depending on λ. To pro-
ceed, recall that (see [10]) the monic Jacobi polynomials pα,β

n are orthogonal with
respect to the beta distribution with density function given by

cα,β(1− x)α(1 + x)β1[−1,1](x), α, β > −1,

for some normalizing constant cα,β and that the non-monic Jacobi polynomials
Pα,β

n are related to pα,β
n as

Pα,β
n (x) =

(n + α + β + 1)n

2nn!
pα,β

n (x) =
(α + β + 1)2n

(α + β + 1)n2nn!
pα,β

n (x).

We will show that

P λ
n (x) =

[
2λ√

2λ− 1

]n

pλ−1/2,λ−3/2
n

(√
2λ− 1x− 1

2λ

)

when αλ
1 > 0 and

P λ
n (x) =

[
2λ√

2λ− 1

]n

pλ−3/2,λ−1/2
n

(√
2λ− 1x + 1

2λ

)

when αλ
1 < 0. Before proceeding, note that both cases are related using Pα,β

n (x) =
(−1)nP β,α

n (−x) (see [9]):

P λ−3/2,λ−1/2
n

(√
2λ− 1x + 1

2λ

)
= (−1)nP λ−1/2,λ−3/2

n

(√
2λ− 1(−x)− 1

2λ

)

so that their generating functions are the same up to the transformation (z, x) 7→
(−z,−x). Moreover, the orthogonality measures are given by

µλ(dx) = cλ

(
1−
√

2λ− 1x− 1
2λ

)λ−1/2 (
1 +
√

2λ− 1x− 1
2λ

)λ−3/2

dx,

µλ(dx) = c′λ

(
1−
√

2λ− 1x + 1
2λ

)λ−1/2 (
1 +
√

2λ− 1x + 1
2λ

)λ−3/2

dx

for some normalizing constants cλ, c′λ and for

x ∈
[

1− 2λ√
2λ− 1

,
1 + 2λ√
2λ− 1

]
, x ∈

[
− 1 + 2λ√

2λ− 1
,

2λ− 1√
2λ− 1

]
,

respectively.
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Now, we proceed to the proof of our claim and we consider the case αλ
1 > 0.

To this end, we need (see [10])

1
(1 + t)α+β+1 2F1

(α + β + 1
2

,
α + β + 2

2
β + 1

;
2(y + 1)t
(1 + t)2

)

=
∑

n­0

(α + β + 1)n

(β + 1)n
Pα,β

n (y)tn =
∑

n­0

(α + β + 1)2n

(β + 1)nn!
pα,β

n (y)
(

t

2

)n

for |t| < 1, |y| < 1, where 2F1 is the Gauss hypergeometric function (see [9]).
Substituting (α, β) by (λ − 1/2, λ − 3/2), then (α + β + 1)/2 = λ − 1/2 =
β + 1, we have

2F1

(
α + β + 1

2
,
α + β + 2

2
β + 1

;
2(y + 1)t

1 + t2

)
= 1F0

(
λ;

2(y + 1)t
(1 + t)2

)

=
(

1− 2(y + 1)t
(1 + t)2

)−λ

,

where we used the equality 1F0(λ, y) = (1− y)−λ for |y| < 1 (see [9]). Thus

1
(1 + t)α+β+1 2F1

(
α + β + 1

2
,
α + β + 2

2
β + 1

;
2(y + 1)t
(1 + t)2

)
=

1 + t

[1 + t2 − 2ty]λ
.

Now use the Gauss duplication formula (cf. [9])

√
πΓ(2a) = 22a−1Γ(a)Γ(a + 1/2), a > 0,

to see that
(α + β + 1)2n

(β + 1)n
=

(2λ− 1)2n

(λ− 1/2)n
= 22n(λ)n.

As a result,
∑

n­0

(λ)n

n!
pα,β

n (y)(2t)n =
1 + t

[1 + t2 − 2ty]λ
.

It finally remains to substitute in the last equality

y =
√

2λ− 1x− 1
2λ

, t =
λ√

2λ− 1
z

for small z to see that it is nothing but (6.2) and the claim follows. ¥
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